
THE SINGULAR POINTS OF ANALYTIC SPACE-CURVES*

BY

ARTHUR RANUM

1. The singular points of analytic space-curves have been investigated

by various writers, f The object of this paper is to simplify the theory and

also to make it self-dual by introducing the dual counterparts of the ordi-

nary curvature and spherical curvature. Let

(1) x = xit),    y = yit),    z=zit)

be the equations of a twisted curve, the functions being analytic. Then in

the neighborhood of any given point P0 of the curve, at which t = to, there

exists a certain region of the complex f-plane, within which x, y, z are ex-

pressible as series of powers of t—t0 (with positive integral exponents),

and such that to different values of f in the region will correspond different

points.

The point P0 will be singular, in the broader sense which we shall adopt,t

if
*'      y'      z'

x"     y"     z"(2)

y">

=  0,

when f = f0; here x' = dx/dt, etc. The points for which x'=y'=z' = 0, to which

the term singular is sometimes confined, are therefore only a special case.

2. With every point P0, singular or non-singular, there is associated a

triad of positive integers (a, ß, y), such that if we put

* Presented, in part, to the American Mathematical Society, December 27, 1915. Abstract in

the Bulletin of the American Mathematical Society, vol. 22 (1916), pp. 265, 268.

t Fine, American Journal of Mathematics, vol. 8 (1886), pp. 156-177; Björling, Archiv der

Mathematik und Physik, (2), vol. 8 (1890), pp. 83-91; Wölffing, Archiv der Mathematik und
Physik, (2), vol. 15 (1897), pp. 146-158; Burali-Forti, Atti di Torino, vol. 36 (1901), pp. 935-938;
Mehmke, Zeitschrift für Mathematik und Physik, vol. 49 (1903), pp. 62-83; Saurel, Annals of

Mathematics, (2), vol. 7 (1905), pp. 3-9; von Lilien thai, Vorlesungen über Differentialgeometrie, vol.

1, Leipzig, 1908, pp. 242-262; Meder, Crelle's Journal, vol. 137 (1910), pp. 83-144; Zindler, Wiener
Sitzungsberichte, vol. 1271 (1918), pp. 871-918; Study, Mathematische Annalen, vol. 87 (1922),

pp. 207-228.
Î The definitions used by Lilienthal (loe. cit., p. 182), Study (p. 212), Burali-Forti (p. 935)

and Mehmke (p. 71) are all practically the same as this; but no writer, so far as I am aware, writes

the condition in this simple form. Lilienthal gives three possibilities, but the first two are included

in the third.
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(3) A = A(a,ß,y) =

x(a) y(a) 2(a)

x(a+ß) y(a+ß-> z(.a+ß)

x(a+ß+y)       yla+ß+y)       ¡¡(c+ß+y)

then

(3') A j¿ 0,   when   t = h,

whereas every determinant A(a', ß', y') vanishes, if the triad (a', ß', y')

precedes (a, ß, y) lexicographically, which means that either

d < a,

or
a' = a,    ß' < ß,

or
c¿ = a,    ß' = ß,    y' <y.*

Hence P0 is a non-singular point, if a=/8=y = 1, and is singular, if a+/3+y

>3. We shall call (a, ß, y) the type] of the point P0 or of the curve (namely

the region in the neighborhood of P0), writing P0 = (a, ß, y).

By the use of homogeneous coordinates it has been shownî that the type

of a curve is invariant under the group of collineations, and that every

correlation transforms a curve of type (a, ß, y) into one of type (7, ß, a),

so that these two types are dual. Hence the type of a curve is a concept

belonging to projective, as well as to metric, differential geometry.

We define w and W by the equations

w = ( y^fxwyyi2

(4) ^V
W = ( y\(ywz(-a+ß) — z^y^+^yy12,

where the summations are cyclic with respect to x, y, z, and where t is put

equal to t0.

3. From now on we shall assume that / is real and that x, y, z are real

functions of t. Then the condition (3') shows that wW^O; and by choosing

the positive square roots we have w>0, W >0.

If we substitute a new parameter t for t — tQ and also choose the coordi-

nate axes so that the origin O coincides with P0, the #-axis with the tangent at

Po, and the ¡cy-plane with the osculator (osculating plane) at Po, then the

equations of the curve (in the given region or interval) become

* See Lilienthal, pp. 242-251; Mehmke, pp. 68-70; Study, p. 210.
t Lilienthal appears to be the only writer who uses the integers a, ß, y, which he calls n, H, v»;

Study calls the triad (a— 1, 0—1, y— 1) the characteristic of the point Po, writing it (ki, h, k¡).

X Björling, p. 85; Study, p. 212.
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x = at"+ ■ ■ ■ ,

(5) y - bf+o + ■■■ ,

z = et?*»-* + • ■ ■ ,

where abc^O and we can choose a>0,b>0,c>0. Then

(6) w = a\a,    W = a\(a + ß)\ab,     \ A \ = a\(a + ß)\(a + ß + y)\abc,

and therefore

w W | A|
(7) a = —y   b =->    c —-•
W a! w(a+ß)\ W(a + ß + y) !

The exponents of t in the terms actually present in thé expansions (5) will

have no common factor; but of course a, ß, y may have a common factor.

The positive branch of the curve, corresponding to small positive values

of /, will lie in the octant [+1, +l,+l], in which x, y, z are all positive;

and the negative branch will lie in the octant [(-1)", (-1)«-*, (-l)"^"^],

which is therefore determined by the evenness or oddness of a, ß, and y.

This gives the first rough classification of singular points into eight categories.

We also arrive at the same classification in a more significant, because

self-dual, manner by considering the curve to be generated by three elements,

namely a point, a line (the tangent), and a plane (the osculator), and allowing

each of these elements to be either ordinary or a reversal-element (Rück-

kehrelement) .

It is known* that as / decreases (or increases) through the value zero,

then at the origin 0:

the  generating point  continues  or the generating osculator continues or

reverses the direction of its motion reverses the direction of its rotation

along the tangent, according as a is about the tangent, according as y is

odd or even; odd or even;

and the generating tangent continues or reverses the direction of its rotation

in the osculator (or about the point), according as ß is odd or even.

4. These results are expressed in the following table. In each case, as /

decreases through the value zero, the generating point emerges from the first

octant [ + 1, +1, +1] into the octant indicated, whose number, given in

the last column, is also the number of the category to which the curve (or

point) belongs. The octants 1, 2, 3, 4, for which z>0, are numbered like the

corresponding quadrants in the xy-plane, and the octants 5, 6, 7, 8 are

* Fine, pp. 166, 173; Saurel, pp. 6-7.
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symmetric to the respective octants 1, 2, 3, 4 with respect to the origin,

and not with respect to the zy-plane, as Lilienthal (p. 202) numbers them.

Type

ß

Octant («0)

(-1)«     (-I)**   (-l)"-^
Number of Octant

and of Category

even even + 1. +1, + 1 1

odd
odd
even

odd
even

odd

even

odd
odd

-1,
-1,

+1,

+1,
-1,
-1,

+1
+1
+1

odd
even

even

even

odd
even

even

even

odd

-1,

+1.
+1,

-1,
-1,

+1,

-1

-1
-1

odd odd odd -1, +1, -1

In the case of a singular point of the 2d, 3d, or 4th category, one of the

three generating elements is a reversal-element and the other two are

ordinary; the 2d and 4th categories are dual and the 3d is self-dual. Similarly

the 5th and 7th are dual and the 6th is self-dual. The 1st and 8th are also

self-dual; the 8th includes the non-singular points (1, 1, 1).*

The positive and negative branches of the curve will lie on the same side

of the osculating plane (categories 1, 2, 3, 4) or on opposite sides (categories

5, 6, 7, 8), according as the number of reversal-elements is odd or even.

5. The interval (—h<t<h) within which the curve is defined by (5)

can be chosen such that every point except the origin O is non-singular. At

any such point P = Çx, y, z) consider the six variables

s       $       r¡
p        a

where 1/p and 1/r are the ordinary curvature and torsion and where

* -   f  ( 2>'2)1/2(Ö>      e =  f  ds/p,     i, =   f  ds/r   and    o- = p/r.
J o «7 o J o

Then p = ds/d6, r =ds/dr¡ and <r = dr¡/d$ ; ds, dd and dr¡ are the element of arc,

* Mehmke (pp. 65-67) and Zindler (pp. 876-879) give distinctive names to these eight cate-

gories; Zindler's names seem to be highly appropriate, except that in accordance with his definition

a point of the 8th category is called non-singular (gewöhnlich) ; it would be better to call it a "Gegen-

henkel."
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the angle of contingence and the angle of torsion, respectively; 5 is dual to n,

p to a, and 6, r are self-dual. Following Plucker* we shall call a the conical

curvature at P.

We define the value of p at a singular point O to be the limit of its value

at P as /—*0, including the case where p—>oo ; similarly for r and a.

6. We now proceed to find a second classification of the singular points

0 into thirteen classes, depending on whether the values of p, t and a at O

are zero, finite and different from zero, or infinite. Since a = — cot co, where

a is the angle between the tangent and the rectifying line, a will be zero,

infinite, or neither, according as the rectifying line coincides with the bi-

normal, with the tangent, or with neither one.

From (5) by means of known formulas we easily derive for the values

of p, r and a at the non-singular point P the following expansions in ascending

integral powers of t, in which the exponents of / in the initial terms are some-

times negative:
a2a2

p =-v-t H-,
ßia + ß)b

aßia + ß)ab
(8) r =-1°~> + ■ ■ ■ ,

7(ß + J)ia + ß + y)c

ayiß + y)ia + ß + y)ac
a = — -fi p + - - ■ .

ß2{a + ß)2b2

We also find that

s' = aaf-1 + • • • ,

ßia + ß)b
(9) ff =--— tß-L+---,

aa

yiß + y)ia + ß + y)c
rf =-fï-i + . . .

ßia + ß)b

and therefore that

s = at" + • ■ • ,

(« + ß)b .
(10) 0 =-f> + ■■■ ,

aa

iß + y)ia + ß + y)c

V =-P + • ■ • .
ßia + ß)b

* Geometrie des Raumes, 1846, pp. 34-35. See also E. Müller, Wiener Sitzungsberichte, vol.

126 (1917), pp. 311-312. In the Quarterly Journal of Mathematics, vol. 46 (1915), p. 36, I called
<r( = l/r') the plane-curvature.
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The leading coefficient can never be zero in any of these nine expansions.

The leading terms in (81), (82) and (83), under the respective hypotheses

a=ß, a—y and ß=y, become equal to /, m and n, respectively, where

a2 ßab
I = — > m = —

2b (2a + ß)c

1 2a(« + 2ß)ac

(a + ßW

If a = /3=7, then m and n become simpler in form and we have

/ « a2/i2b),    m - - ab/i3c),    n = - 3ac/(2ô2).

We now pass to the limit by letting /—»0 and obtain for the values

of p, r and <r at the origin O the following :

p = < I  > according as a < = > ß,

(12) T = <m >'according as a < = > 7,

a = < » > according as 7 < = > ß,

where f, m and «, given by (11), are finite and 5^0. By means of (7), (3) and

(4) we can, if we wish, express l, m and n in terms of the original equation (1)

of the curve.

By examining (122) and (112) we see that if a point O is of type (a, ß, a),

then the absolute value of r at O is always less than ab/c, and is greater

than, equal to, or less than ab/i3c), according as ß is greater than, equal to,

or less than a; also if a is fixed and /?—>«>, then \r |—>a£»/c, and if ß is fixed

and a—>oo, then \t |—>0.

By a similar examination of (123) and (113) we see that if a point is of

type (a, ß, ß), then \<r [ is always less than 2ac/b2, and is >, =, or <3ac/(2ô2),

according as ß is <, =, or >a. Hence u (an acute angle) is always greater

than cot-1 i/lac/b2), and is <, =, or > cot-1 (3ac/(2¿»2)), according as ß

is <, =, or >a; also if a—>oo, then co—>cot_1 i/2ac/b2), and if ß—*<x, then

w—*ir/2.

7. Formulas (12) show us that the class to which any real and finite

point of type (a, ß, 7) belongs depends only on the relative magnitudes of

a, ß, and 7. From this fact or the relation p = or we see that the number of

classes, instead of being 33, reduces to 13, as is shown in the following table:
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Class-Number Type

a'

2b

ab

Tc

3ac

2Ï»
a = y <ß

a =y> ß

m

m

a = ß < y

y = ß <a 0

0

n

a = ß > y

y = ß > a

a <ß < y

y <ß <a

10

11

a <y <ß

7 <<* < 0

12

13

ß <ct < y

ß <y <a

In each of the six classes 2-7 exactly two of the type-integers a, ß, y are

equal and therefore exactly one of the variables p, t, a is finite and ^0.

In each of the last six classes 8-13 the three integers are all distinct and

p, t, a are all =0 or oo. Classes 1, 2 and 3, in which r is finite and ^0, are

self-dual; and 4 is dual to 5, 6 to 7, 8 to 9, 10 to 11, and 12 to 13. In any pair

of dual classes the values of p and a in one are interchanged in the other

(except for the difference between I and «).

8. From our cross-classification of singular points into eight categories

and thirteen classes, by combination, we obtain a classification into species;

the species of a point depends, therefore, on the evenness or oddness of a, ß,

y and also on their relative magnitudes. Since these two properties are not

entirely independent, the number of species is less than 8 • 13 = 104.

First, a singular point of class 1 must clearly be of category 1 or 8. Hence

if p, t and a are all finite and different from zero, the curve must either emerge

(jor t<0) in the 8/A octant or return to the 1st octant. This gives two species.

Next, in each of the six classes 2-7 two of the integers a, ß, y, being equal,

must be either both odd or both even, while the third may be odd or even.

This gives 6 • 4 = 24 species.

In particular, putting a=ß ip — l), we see that the only categories of singu-

lar points at which the ordinary curvature 1/p can be finite and different from

zero are the 1st, 8th, 2d and 7th, for which the negative branch of the curve lies

in one of the octants [(-!)", +1, ( —l)1'].

Similarly (a = 7, t = m) the only categories of points at which the torsion

1/t can be finite and different from zero are the 1st, 8th, 3d and 6th, for which
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the negative branch of the curve lies in one of the octants [( — l)a, ( —l)a+",

( — 1)*]. Of these four octants no two are adjacent (symmetric with respect

to a plane).

Again (ß=y, o = n) the only categories of points at which the conical curva-

ture a can be finite and different from zero are the 1st, 8th, kth, and 5 th, for which

the.negative branch of the curve lies in one of the octants [( — l)a, ( — 1 )""**, ( — 1)" ] .*

In other words, if the negative branch of the curve lies in the 2d or 7th octant,

t and a must be zero or infinite; if in the 3d or 6th octant, p and a must be zero

or infinite] if in the 1th or 5th octant, p and t must be zero or infinite.

Finally, in each of the six classes 8-13 the integers a, ß, y are unrestricted

as to oddness or evenness; that is, a point at which p, t, a are all zero or in-

finite may belong to any one of the eight categories. This gives 6 • 8 = 48

species.  The total number of species is therefore 2+24+48 = 74. f

9. Since every point belonging to a self-dual class (a=y, t =m) will also

belong to a self-dual category, the self-dual species are precisely those that

belong to the classes 1, 2, 3, and their number is 2+4+4 = 10.

It is evident that the species of a point is invariant under all the real

collineations that carry the point into a. finite point.Î

If the curve is imaginary, our entire classification falls to the ground,

classes as well as categories; for by (4), (7) and (11) we see that w and W may

vanish and that a, b, c, I, m, » may not be determined. For instance, the

origin is a non-singular point (1, 1, 1) of the curve x = it, y = t+t2, z = l3,

and yet since w = 0, W = 2i and A = 12z, we have p=a=0, r = i/3, which

contradicts (12).

The simplest singular points are (2, 1, 1), (1, 2, 1) and (1, 1, 2); the first

is said to be a stationary point (of the first degree), at the second the tangent

is said to be stationary, and at the third the osculator is said to be stationary.

Fine (p. 174) has shown that if the curve is algebraic, then with respect to

its effect on the order, class, rank, and genus of the curve, a singular point of

type (a, ß, y) is equivalent to a—1 stationary points, ß — 1 stationary-

tangents and y — 1 stationary osculators.

Study (p. 214) has also shown that (a, ß, y) is an enfold point of the curve,

the corresponding tangent is /3-fold, and the osculator is 7-fold.

* The first two parts of this triple theorem were proved by Mehmke (pp. 75, 77).

t Burali-Forti (p. 938) and Mehmke (p. 78), by ignoring a, obtain a classification that is not

self-dual. Instead of 13 classes and 74 species they obtain only 9 classes and 50 species. For them

our classes 5,9 and 13 coincide; also 7,8 and 10. For them the points (1, 2,4), (1, 2, 2) and (1, 4, 2)

are of the same species, although the corresponding values of a are 0, n and <», respectively.

X Meder (loc. cit.) studies the "Ordnungszahlen" of p, r and various other variables at an

infinite point.
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Projections on the coordinate planes

10. Now consider the orthogonal projections of a curve C on the osculat-

ing, rectifying and normal planes at a point 0 = (a, ß, y). From (5) we see

that the types of these three plane curves at their common point are

Oxy = (a,ß),

(13) Oxz = (a,ß + y),

Oyz= (a+ ^,7),

respectively. Also consider a curve C dual to C and on it the point 0' that

corresponds to O in a correlation; then 0' = (y, ß, a), Ox'z =(7, a+ß) and

Oyl = (ß+y, et). But in plane geometry a point (X, u) is dual to a point

(u, X). Hence Oyl is dual to Oxz and Ox'z to Oyz. That is, if two space-curves

are dual, the projection of either on the normal plane at a point O is dual

(planar duality) to the projection of the other on the rectifying plane at the

corresponding point O'.

If a=ß+y, Oxz (and therefore also Oyl) is self-dual, and conversely. If

a+ß=y, Oyz (and therefore also Oxl) is self-dual, and conversely.

If «2=7, so that O is self-dual (spatial duality), then Oxz = (a, a+ß)

and Oyz = (a+ß, a), which are therefore dual (planar duality), and conversely.

That is, if the torsion at a point O is finite and different from zero, the projections

of the curve on the normal and rectifying planes at O are dual, and conversely.

11. It is known* that the singular points of plane curves are divided into

four categories (quadrants), three classes (p = 0, <», or neither) and ten

species. Consider the possible combinations of categories (classes, species)

of the three projections (13). The combinations of categories are obviously

eight in number, and there is a one-to-one correspondence between the eight

octants in which the negative branch of the curve C may lie and the eight

combinations of quadrants in which the negative branches of the projections

may lie.f

12. When we come to the combinations of classes or species, we find

a very different situation. Let pxy, pxz and pyz be the respective radii of

curvature of the three projections (13) at their common point. Of course

pxy—p, and its value is determined by (12i) and (Hi). Similarly pxz and pyz

are determined as follows:

* See Burali-Forti, p. 938.

f See the figures drawn by Mehmke, pp. 65-67.
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(14)

where

(15)

Pvî -{¿■}-

according asa< = >j3 + 7,

according as a + ß < = V7,

Ai = a2/(2c) j¿ 0,    k2 = ô2/(2c) ^ 0.

The number of combinations of classes is only eleven. For if a^ß, then

a</3+7 and 7 may be either <, =, or >a+ß; this gives 2-3 = 6 combi-

nations. But if a>ß, 7 may be either *ta+ß or =a—ß, or finally we may

have a+ß>y>a—ß; this gives 5 combinations. Altogether 6+5 = 11

combinations, which are exhibited in the following table.

Type Pzv (=P) Pi» Pv»

1
2

3
4

5
6
7
8
9

10
11

«<|S

a=ß

a>ß

a<ß+y a+ß<y

cc+ß=y

*+ß>y

a+ß<y

a+ß = y

a+ß>y

a+ß<y

a+ß = y

a+ß>y

a = ß+y

a>ß+y 0

0
00

h
0
00

o
o
o

If a^ß+y, then a>/3 and a+ß>y. Hence by (14) and (12i) or by an

inspection of the table, we see that the only points 0 for which the radius of

curvature pZI of the projection of the curve on the rectifying plane at 0 is not

infinite are those for which the radii of curvature pxv and pvz of the projections on

the osculating and normal planes are both zero.

Putting a=ß+y ora+ß=y, we easily find, by §4 or by a known theorem

on plane curves, that if the two branches of the curve at a point 0 lie on opposite

sides of the osculating plane, then the radii of curvature pxt and pVI of its pro-

jections on the rectifying and normal planes must be zero or infinite.

13. The number of combinations of species is easily seen to be only 62,

although each projection by itself is entirely unrestricted in species (ten

cases). There is obviously no one-to-one correspondence between the 13

classes (74 species) of curves and the 11 combinations of classes (62 combi-

nations of species) of their projections. Not only may two curves of different
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species have projections belonging to the same combination of species, but

two curves of the same species may have projections belonging to different

combinations of species (their projections Oxy on the osculator must, of course,

be of the same species).

The first possibility is illustrated by the types (4, 2, 3) and (4, 2, 5),

for which t=0 and °o, respectively, whereas their projections are of types

(4, 2), (4, 5), (6, 3) and (4, 2), (4, 7), (6, 5), respectively, for which in both

cases PxV = 0, pxi = <*>, pV! = 0. The second possibility is illustrated by (4, 2, 3),

just considered, and (6, 2, 3); these two types are clearly of the same species,

whereas the projections of the latter type of curve are of types (6, 2), (6, 5),

(8, 3), for which pxy =pxz =pyz = 0.

In spite of this lack of uniformity in the correspondence, there is, of course,

a close connection between the values of p, r, a and the values of pxyi—p),

PxzjPvz- For instance:

If ct^/3+7, then a>ß and a>7.        If y~=ß+a, then y>ß and 7><*.

By (14) and (12) this says that if By (14) and (12) this says that if

Pzt = ki or 0, then p=t=0. pv* = A2or °o, then <r = 0 and r = <».

Hence, for every point O except those        Hence, for every point O except

at which p=t = 0, the projection of the those at which o- = 0 and r = <», the

curve on the rectifying plane at O has projection of the curve on the normal

an infinite radius of curvature p«. plane at O has a vanishing radius of

curvature pyz.

Sections of the tangent surface by the coordinate planes

14. The osculating, rectifying and normal planes at a point O = (a, ß, y)

will cut the tangent surface of the curve in three plane curves Oxy, Oxz and

Oyz, whose character at their common point O we shall now consider. The

parametric equations of the tangent surface of the curve (5), §3, are

x = iat" +•••)+ uiaaf'1 +■■■),

(16) y = ibf+» +•••)+ u[ia+ß)bta+f>-1 +•••],

2 = (cf+^+y +■••)+ w[(« + ß + y)ct"+^-1 +•••],

where t and u are the parameters. The osculator z = 0 will intersect the sur-

face in points for which

1
« =-;+....

a + ß + y

Substituting this expansion of u in (16i) and (16«), we find the equations of

the section Oxy to be
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ß + y y
(17) x - ———at« +■■■ ,     y:--L—bt+ß +... .

a+ß+y a+ß+y

Similarly the equations of 0XI are found to be

ß y
(18) x =-at" + ■ ■ ■ ,     z =-ct*+l>+> + ■ ■ ■ ,

a+ß a+ß

and the equations of 0yz to be

ß ß + y
(19) y =-bf+» + ■ ■ ■ ,    z =-ct'+e-* + • • • .

a a

Since the leading coefficients in the six expansions of (17), (18) and (19)

are all ^0, the sections Oxy, 0« and Ovz are of the same types as the respective

projections Ozy, 0« and 0VI, as given by (13), §10. Hence everything stated

in §§10-13 about the categories, classes and species of the three projections

applies equally well to the three sections.

15. Let pxy, pxz and pv, be the respective radii of curvature of the three

sections at the point 0. Their values are easily found to be the following:

(20) pxV = < Oo ?• according as a< = >/3,

where
(a + 7)2a2

(200 a0
2-y(2û! + 7)ô

(21) pxt = < ai > according as a< = > ß + y,

where
ß2a2

(21') a, = -
27(2/3 + y)c

(22) pyt = < a2 > according asa + /3< = >7,

where
ß2b2

(22') a2 = -
2a(a + 2ß)c

Comparing (20) and (20') with (12i) and (Hi), we see that when a point

is of type (a, a, y) then

(a + 7)2

(23) pxv =   \ -p * 0,
7(2a + 7)

and therefore
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Pxy > p (= Piv = a2/i2b)),      and

(24) fx»\ = >—p, according as y< = >a.

In other words if the radius of curvature p of a curve C at a point O is finite

and different from zero, then the radius of curvature pxy of the section of the

tangent surface of C by the osculator at O is always finite and greater than the

radius of curvature pxyi=p) of the projection ofCon the osculator, and is greater

than, equal to, or less than (4/3)p, according as the radius of torsion t of C at

O is zero, finite and different from zero, or infinite. The osculating circle of the

section and that of the projection lie on the same side of the tangent.

16. By a similar comparison of (21) and (21') with (14i) and (15i),

we see that when a=ß+y, then

ß2

(25) p„ = - p„ * 0 ;
7(20 + 7)

hence \p„ | ̂ p« and

I ?« I { < } P« according as ß j > 1 (1 + 2I/2)7 ;

in particular if ß=y, p~M = —Pn/3.

That is, at a singular point O of type iß+y, ß, y), the radius of curvature

¡Pzt | of the section of the tangent surface by the rectifying plane is never equal

to, but is always a rational multiple of, the radius of curvature p„ of the pro-

jection of the curve on the rectifying plane, and is greater or less than p„,

according as ß is greater or less than (l+21/2)7. The osculating circle of the

section and that of the projection lie on opposite sides of the tangent.

In particular, if the point is of type (27, 7,7), then p"„ = —pxt/3.

Finally, comparing (22) and (22') with (142) and (152), we see that if

a+ß=y, then

ß2

(26) pyi =--——— Py« * ° !
a(a + 2ß)

hence \pyi \ ?*pyi, and

I Pv> I { < } P.. according as ß j > 1 (1 + 2"2)a ;

in particular, if ß=a, pyz= —pyj3.

That is, at a singular point of type Ça, ß, a+ß) the radius of curvature

\fvt I of the section by the normal plane is never equal to, but is always a rational
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multiple of, the radius of curvature pyz of the projection on the normakplane, and

is greater or less than pyz, according as ß is greater or less than (1 +2ll2)a. The

osculating circle of the section and that of the projection lie on opposite

sides of their common tangent (the principal normal of the original curve).

In particular, if the point is of type (a, a, 2a), then pyz = —pvz/3.

Spherical and quasi-spherical curvature

17. The dual counterpart of the osculating sphere of a twisted curve C at

a point 0 we shall call its quasi-osculating sphere* at 0. Its center is the cor-

responding point on the edge of regression of the rectifying developable and

its radius is the distance from that point to the corresponding tangent to G

Since the radius Pi of the osculating sphere has been called the radius of

spherical curvature of C, we shall call the radius P2 of the quasi-osculating

sphere the radius of quasi-spherical curvature of G By means of the known

formulas

(27) Pi» = p2 + (-j , Rt -  -

we proceed to find the values of Pi and P2 at a point (a, ß, y).

18. Differentiating (8i) and (83), §6, we obtain

, <■'<« - «<■■
(28, «• + Wt

ay(ß2 - y2){a + ß + y)ac
a> =-p-ß-i + • • • ,

ß2(a + ß)2b2

where the initial coefficients will vanish under the respective conditions

a =ß, ß =y. Some of the succeeding coefficients may also vanish, and we have

the following:

if    a = ß,     P'=aiP-\- (i^O, ai^O) ;

if    ß = y,    oJ=bkt"+--- (k^0,bk^0).

From (28i), (29t) and (93) we see that

a2(/3 — a) d'-
il    a*ß,   p'   r,' =-í-0-r + • • ■ ,

.„. y(ß + y)(a + ß + y)c
( Ó\J)

2a2bai
if    a = ß,  p'/r,' ■■-1*»-» + • • • .

_ y(a + y)(2a + y)c

* Quarterly Journal of Mathematics, vol. 46 (1915), pp. 364-366; Mathematische Annalen,

vol. 101 (1929), p. 2; G. Loria, Curve Sghembe Speciali, vol. 1, 1921, p. 6; Th. Schmid, Darstellende
Geometrie, vol. 1, 1919, p. 164.
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For the sake of brevity we put

gi =

159

(31)

a2(ß - a)a

Âi =

y(ß + y)(a + ß + y)c

2a2ba{

\y(a + y)(2a + y)c

so that (30) becomes the following:

if    a^ß,     p'/v' = ± git"-^ +

if    a = ß,     p'/v' = ± hitt+l~' +
(32)

19. Comparing (27i), (8i) and (32i) we see that if a^ß, the significant

term in the expression for R* is (p'/v)3-   Hence

(33) if   a*ß, Ri = \ git"-*-* + ■■■].

On the other hand if a=ß, so that (8i) reduces to

(34) p = a2/(2b) +

then by comparing (322) and (34) we see that the significant term depends

on whether i + l — y is negative, zero or positive. Hence

/ i + 1 < y,    then   Ri = | *»*-<*—» + ■ •■ | ,

(35)    if a = ß   and   )i + l=y,    then   Ri = (hi2 + a*/(ib2)yi2 + • • • ,

' i + 1 > 7,    then    i?i - a2/(2ô) + • • • .

Equations (33) and (35) give the value of Ri at a non-singular point in the

neighborhood of the singular point 0. Passing to the limit by letting /—»0,

we find for the value of Ri at O the following cases :

(a) If  « > 0 + 7, Ri = 0.

(b) If  a = ß + y, Ri = gi = a2/(2c).

(c) If  a < 0 + 7 and   a^jî,    Ri = oo .

(d) lfa = 0   and i + 1 > y,    Ri = a2/(2b).

(e) lfa = 0   and i + 1 = y,    Ri = (hi2 + a4/(4ô2))1'î.

(f) If  a = ß   and i + 1 < y,    Ri = oo .

In cases (b), (d) and (e), in view of (31), Ri is finite and 5*0. If y = 1, case

(f) does not occur.

(36)
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20. Turning now to R2, given by (272), we soon find that by using (9i),

(282) and (292) and putting

ß\a + ß)2b2
gi =

(37)

A2 =

(38)

\yiß2-y2)ia + ß + y)c\

aa

H '

we obtain the following expansions of R2:

if   ß*y,    Ri = | g2t°+^ + •• -|   ;

if   (3 = 7,    7?« = | *,?-*-'+ • •   | .

Again passing to the limit as t—>0, we find for the value of R2 at the singular

point O the following cases:

R2 = oo .

Rt = gt = ß2b2/i2a{a + 2ß)c).

and   0 5*7,    7c2 = 0.

k + 1 > a,    Ri = oo .

k + 1 = a,    Rt = hi.

k + 1 < a,    Rt = 0.

In cases (b) and (e), 7c2 is finite and 5*0. If a = 1, case (f) does not occur.

21. From (36) and (39) we easily derive a number of interesting conse-

quences. In view of (14), (21), (22) and (12) we see that 7?i is closely con-

nected with p«, pxz and p, and that 7?2 is connected with pyz, pyz and a. Indeed:

(39)

(a)

(b)

(c)

(d)

(e)

(f)

If a + /3<7,

If a + ß = y,

If a + ß>y,

If ß = 7    and

If ß = 7    and

If ß = 7    and

The radius of spherical curva-

ture 7?i at a singular point O is zero,

infinite or neither, according as the

radii of curvature pxz and pxz (of the

projection on, and the section by,

the rectifying plane at 0) are zero,

infinite or neither, provided that

when p„ and p„ are infinite, the polar

line at O either coincides with the

binormal or lies at infinity; p« and

fx, are zero, if, and only if, 7?i is zero.

If p is finite and 5*0 and if the

osculator is simple (7 = 1), then 7?i is

finite and 5*0.

The radius of quasi-spherical cur-

vature 722 at a singular point O is zero,

infinite or neither, according as the

radii of curvature pyz and pyz (of the

projection on, and the section by,

the normal plane at O) are zero, in-

finite or neither, provided that when

py, and pyz are zero, the rectifying

line at O coincides either with the

binormal or with the tangent; p„,

and pyz are infinite, if and only if 7?s

is infinite and 0- is zero.

If <r is finite and 5*0 and if the

point is simple (a = l), then R2 can-

not vanish.
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If pxz and pxz are finite and  5^0 If pvt and py, are finite and ^0

(a =ß+y), we can say more. For by iot+ß=y), we can say more. For by

comparing (36), case (b), with (14i) comparing (39), case (b), with (22)

and (15i) we see that Ri is not only and (22') we see that R2 is not only

finite and ¿¿0, but is actually equal finite and ^0, but is actually equal

to pxz',   also since p=0 (a>/3),   the to   \pVz\; also since cr=0iy>ß), the

polar  line   coincides  with   the  bi- rectifying  line   coincides  with   the

normal. binormal.

Hence if the curvature of the pro- If the curvature of the section of the

jection of the curve on the rectifying tangent surface by the normal plane is

plane is finite and different from zero finite and different from zero ia+ß

ia = ß+y), then the osculating circle =y), then the osculating circle of this

of this projection is a great circle of the section is a great circle of the corre-

corresponding osculating sphere of the sponding quasi-osculating sphere of the

original curve.    This sphere will lie original curve.    This sphere will lie

on the positive side  (z>0) of the on the negative side (z<0) of the

osculator. osculator.

22. If ot=ß+y, either all three of the integers a, ß, y are even or just

one is even, so that by §4 the point belongs to category 1, 2, 3 or 4. Hence,

by §§12 and 15, we see that if the negative branch of the curve lies in one

of the octants 5, 6, 7 or 8,

and if p = 0 (a>/3), then Ru pxi,

pXz, Pvz, and pyz are all = 0 or oo.

In other words if the two branches Oj

sides of the osculating plane,

and if the polar line at O coincides

with the binormal, then no one of the

five variables pxz, pXz, pVz, Pyz, Ri can be

finite and different from zero.

If Ri is finite and ¿¿0, either

a=ß+y or a=ß. By §8 this can

happen only for points of categories

1, 2, 3,4, 7 or 8.

Hence if the negative branch of the

curve lies in Ike 5th or 6th octant, no

orte of the four variables p, pxi, Pxz, Ri

can be finite and different from zero.

and if <r = 0 iy>ß), then R2, pXI, pXI,

Pyz and pyz are all =0 or oo.

of the curve at a point O lie on opposite

and if the rectifying line at O coincides

with the binormal, then no one of the

five variables pxz, Pxz, Pyz, Pyz, R2 can

be finite and different from zero.

If R2 is finite and ^0, either

«+(3=7 or ß=y. By §8 this can

happen only for points of categories

1,2, 3, 4, 5 or 8.

Hence if the negative branch of the

curve lies in the 6th or 1th octant, no

one of the four variables a, pyz, pyz, R2

can be finite and different from zero.



162 ARTHUR RANUM [January

An immediate consequence is the remarkable fact that if the negative

branch lies in the 6th octant [ + 1, —1, — 1], no one of the eight variables p,

<r, pxz, pxz, pyz, pVz, Ri, Rt can be finite and different from zero. The simplest

example of this is a point of type (2, 1, 2).

23. Finally we shall exhibit in the following table some of our results as

applied to a number of the simpler types of singular points, together with

the type (1, 1, 1) of non-singular points. Here a, b, c, Ci, and A2 are all finite

and 5*0; a, b, c are the coefficients in the equations (5) of §3; h2 is given by

(372) of §20; and Ci is the value of Ri when it may come under case (d) or

case (e) of (36), §19.

The table includes the twenty-seven types for which a, ß, y are =3

and a few others. Wherever three types are grouped together, the first

and third are dual and the second is self-dual. All of the types listed belong

to distinct species except (1, 1, 1) and (3, 3, 3); the latter is the simplest

type of singular point that looks exactly like a non-singular point.

aßy
a, a+ß,

a+ß+y\

Oct-
ant pIt Px. Pxy Pi/' Pyz R2

111 123
ab

Je

3ac 2a2

~3b
¡or oo

112

121

211

124

134

234

ab

Je

0

oo

16ac

cior oo

fl-

ic

9a*

m
b1

6c 6c

0

0, hi or »

9

10

11

~U

13

14

122

212

221

222

123

132

213

231

312

321

136

235

245

246

136

146

236

256

346

356

ab

Je

0

~a~b

Je

lOac

~9bT

0

3ac

2Ï2
cior oo

0

9a2

Too
JoJ
36

0

16c

2a2

~Sc

a*

Jc

a2

2c

0

0

0

2i2

5c

0

¿>2

Tec

¡2 or oo

0

0

0, hi or »

~2b*

5c

0

i!.
Ï6c
0
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gßy

113

131

311

133

313

331

223

232

322

233

323

332

333
~Ï2Ï

142

214

241

412

421

224

242

422

a, a+ß

a+ß-\-y

125

145

345

147

347

367

247

257

357

258

358

368

369

137

157

237

267

457

_467_

248

268

468

Oct-
ant

3ab"17

0

ab

Je

3o6

"Tc
0

oft

4c

0_

~~äb_

Tc

o
0

0

oo

ab

~ 2c

15ac

~SbT

lac

0

42ac

256

32oc

25*»

0

3ac
"2*2

0

CO

0

00

0

16ac

~~9b

Pxz Rx

cior »o

cior =o

cior =o

c\ or °o

0

0

ci or i

le

8a2

156

O

8aa
"76~

25a2"426

0

25a1

l26~~2^~

36

Plf«

CO

0

0

0

0

0

0

0

0

0

0

0

0

0

9a2

166

0

0

0~V

2c

0

Pit«

CO

0

0

0

0

0

0

0

0

0

0

0

62

6c~
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