
UNIVERSAL QUADRATIC FORMS*

BY
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1. A form is called universal if it represents all integers, and Null if it

is zero when the variables are integers not all zero. We shall determine all

universal Null quadratic forms F in « variables for « = 4.

For n = 3, F is readily reduced to 2'gaxy+f, where f=gby2+cyz+gdz2,

ga is odd, a is prime to d, and g to c. Let 72 be the discriminant of /. Let t

be the the largest divisor of a which is prime to g. Then F is universal if and

only if 7? is a quadratic residue of t and one of the following sets of condi-

tions holds: (I) e = 0; (II) c even, e = 1, either d is odd, or d = 2 (mod 4) and

b is odd; (III) c odd, e^l, bd even. There is a canonical form (§21) which

depends only on the Hessian.

For « = 4 numerous subdivisions arise. There is almost an even chance

that a Null form taken at random is universal. The conditions for univer-

sality are much milder for n = 4 than for n = 3. They are still milder for n = 5,

the theory for which is under elaboration in a Chicago thesis.

2. Reduction to normal form. Let £, v, • • ■ be integral values, not all

zero, of the variables x, y, ■ • ■ for which the Null form N vanishes. In

view of the homogeneity of N, we may assume that £, n, ■ ■ • have no

common factor >1. It is known that there exists a square matrix M of

determinant unity whose elements are all integers, those of the first column

being £, r¡, ■ ■ ■ . The linear substitution with the matrix M evidently re-

places TV by a form F in which the coefficient of x2 is zero.

When there are only two variables, F = axy+by2. The case in which a

and b have a common factor c > 1 is excluded since F then represents only

multiples of c.

First, let a have an odd prime factor p. Then 7? represents no integer of

the form bv+pk, where v is a quadratic non-residue of p.

Second, let a be even and hence b odd. Then F is never the double of an

odd integer.

Hence a = 1.   Replacing x by x — by, we get xy.

Theorem 1. Every universal binary Null quadratic form is the product

of two linear functions of determinant unity and hence is equivalent to xy.

* Presented to the Society, December 31, 1928; received by the editors in September, 1928.
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Henceforth let there be n variables, where w = 3. The part of F which

involves x may be written as Axy', where y' is a linear function of y, z, ■ ■ ■ ,

the greatest common divisor of whose coefficients is unity. As noted above

there exists a square matrix of determinant unity whose elements are all

integers, those of the first row being the coefficients of y'. Let z', w', • • •

be the linear functions of y, z, • • • whose coefficients are the elements of

the second, third, • • • rows of that matrix. The resulting linear substitution

replaces F by an equivalent form /. After dropping the accents on y',

z', ■ ■ ■ , we have

(1) / = Axy + fay,z,w, ■ ■ ■).

If « = 3, this is of the form (2) with \{/ = z2. If n>3, the sum of the terms

of d> which are linear in y is cyz', where z' is a linear function of z, w, • • • ,

the g. c. d. of whose coefficients is 1. There exist further linear functions

w', ■ ■ ■ such that the determinant of the coefficients in z', w', ■ ■ ■ is 1.

Hence / is equivalent to

(2) h = Axy + By2 + cyz + Afa[z,w, ■ ■ •'),

in which the g. c. d. of the coefficients of ^ is 1.

Let A =2'a, where a is odd. Let g be the g. c. d. of a=ga and A=gd.

Then c is prime to g. For, if a prime p divides c and g, p is odd and h=By2

(mod p), whence h has at most \ip+l) values modulo p and is not universal.

If we replace z by z+ty in h and note that A=0 (mod g), we get a form

(1) in which the coefficient of y2is =B+ct (mod g). This is divisible by g

when f is suitably chosen.  Hence we may take B =gb in (2).

Theorem 2. Every universal Null quadratic form in three or more variables

is equivalent to a form

(3) F = 2'gaxy + gby2 + cyz + gdfaz, w, ■ ■ ■) ,

where g and a are odd, a is prime to d, c is prime to g, and the g. c. d. of the coeffi-

cients of yp is unity.

Part I.  Case of three variables

3. Here F=Px+f, P = 2'gay, f=gby2+cyz+gdz2. Let G be any given

integer. Our method is briefly as follows. Under specified conditions on the

coefficients of F, we shall show how to select an odd prime it, not dividing

gad, such that/=G (mod P) has a solution z = Z when y = ir. Thus/=G +PQ,

where Q is an integer.   Hence F = G when x= — Q, y = ir, z = Z.

Iif=G is solvable for the separate moduli 2e, ga, y, it is solvable modulo

P.   For modulus y, the condition is

(4) igdz)2 = gdG (mody).
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We shall satisfy this condition in §6 by choice of y = ir.

Consider modulus ga. A prime factor of it either divides both g and a

or just one of them.  Hence we may write

,.-. jg~Qr, a = st, q and s have the same distinct prime factors,

\r and t are prime to each other and to both q and s.

Iif=G is solvable for the separate moduli qs, r, t, which are relatively prime

in pairs, it is solvable modulo ga, their product.  By (5) and Theorem 2,

(6) d is prime to st,    c is prime to q, r, and s.

Since/=-c;yz (mod g),f=G (mod g) is solvable when y = ir by (6) and the

fact that ir does not divide g. This disposes of modulus r.

4. Consider/^G (mod qs). Since q is a factor of g, we saw that/=cyz=G

(mod q) has a solution Zi when y = 7r, whence cyzi = G+Mq. Its general solu-

tion is z = Zi+Çq, where f is arbitrary. Insert the value of z into/=G (mod

qs), cancel G, and delete the common factor q.  We get

rby2 + cyÇ + M + rd(zi + fg)2 = 0 (mod s).

If j is a product of powers pn of distinct primes, it suffices to prove that

the like congruence is solvable for each modulus pn. Let pm be the highest

power of p which divides q, whence m^l.  The congruence is of the form

(7) 5f + i-V(f) ■ ft (modp"),

where S = cy is not divisible by p by (6), and ft depends upon y, but not on

$". If m^n, this is SÇ = k and is solvable. Next, let n>m. As before, (7)

has a solution f ' modulo pm, whence

f = t'+Zp",    St' = k + Rp~.

Cancellation of k from (7) and division by pm gives

R + SZ + <b(t' + Zpm) = 0,  or SZ + pmP(Z) = ft'   (mod p"~m)

where ft' = 0(f')—P is independent of Z. If n — m^m, this is SZ = k' and is

solvable. If « — m>m, we repeat the process and reduce the problem to a

congruence modulo pn~2m.

To proceed by induction on p, suppose the problem has been reduced to

(8) Su + pm4>(u) = ft    (mod pn~"m),    « > fim.

lin—pm^m, then pm is a multiple of the modulus and (8) is solvable. Next,

let n—pm>m.  Evidently (8) has a solution w' modulo pm, whence

u = u' + vpm,      Su' = ft + p™Q.
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Cancellation of A from (8) and division by pm gives

Sv + Q + </>(«' + vpm) = 0,    or    Sv + pmPÇu) = k'     (mod /»--"•»-'»),

where k' is free of v. Since this is of type (8) with p replaced by p+1, the

induction is complete. Ultimately we reach a congruence (8) with«—pm = m,

which is therefore solvable.  This proves

Lemma 1. For every integer G, and for y = ir, F=G is always solvable

modulis qs and r.

5. Let / be a product of powers pn of distinct primes. Multiplication

of f=G (mod p") by 4gd, which is prime to t by (5) and (6), gives the equiv-

alent congruence

(9) Z2-Ry2=k imodp»),

where

Z = 2gdz + cy,      R = c2-4g2db, k = 4gdG.

li R = 0 (mod p), 4gdF=Z2, whence F has only hip + 1) values modulo p

and is not universal.

Let R be a quadratic non-residue of p, and take G=0, whence A=0

Çmodp). Theny=0, Z = 0,z=0 Çmodp). Thus F is divisible by p2 and is

not universal.

Hence v2=R (mod p") is solvable when « = 1. To proceed by induction

from n = m to n = m+l, let w2 = R+Spm. Then w is not divisible by p, and

2wT+S=0 (mod p) has a solution T.  Hence Çw+Tpm)2=R (mod pm+1).

Determine 5 by î>5 = 1 (mod pn). Multiply (9) by S2 and write u = 5Z,

K = 82k. We get

(10) u2 - y2 = K (mod/»").

Modulo p, this has a solution with y prime to p unless

(11) P = 3,    K =. 1 (mod 3).

To prove this fact, let a be any integer not divisible by p and determine

ß by aß = l (mod p). Then 2y=a—Kß (mod p) determines an integer y

not divisible by p if a2f^K (mod p). Since at most three residues a are ex-

cluded, we can find a suitable a if p > 3. In case p = 3 and 7\=0 or 2 (mod 3),

only a = 0 is excluded. Takew=y—a. Then y+«= —7X0, and (10) holds.

To show that (10) has a solution with y prime to p, we proceed by in-

duction from n = m to n = m + l.   Hence let

u2 - Y2 = K + Spm,    Y prime to p.
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Then 2Y»—S (mod p) has a solution r/, and (10) holds modulo pm+l for

y = Y+rjpm. Except in case (11), there is therefore an integer Y prime to

p such that, when y = Y (mod pn), (10) has a solution u, and hence f=G

(mod pn) has a solution 2.

In case G=0, whence K=0 (mod p), we shall need the fact that (10)

has a solution in which y has any assigned value v not divisible by p. If

» = 1, we may take u = v.  To proceed by induction, let

U2 - v2 = K + pnQ..

Then (10) holds modulo pn+1 when u = U+Spm, y = v, if 25«7+Q=0 (mod

p), which is satisfied by choice of S.

6. We are now in a position to prove

Lemma 2. If R is a quadratic residue of t, to each G corresponds an odd

prime w not dividing agd such that, when y = ir,f=G (mod ty) is solvable.

Write t = rT, T=pini • • ■ pknk, where no one of the distinct primes p.-

divides G, while each prime factor of T divides G. Except in case (11), we

saw that there is an integer F< not divisible by p, such that, when y=Yi

(mod pin ¿), there exists a solution 2, oif=G (mod pf •). But there are integers

Y and 2 satisfying

Y = Yi,    z = zi    (modpi">), • • • ,    Y = Y.k,    2 = zk    (mod pkn").

Hence Y is prime to t, and there is a solution 2 oif=G (mod t) when y = Y.

Write 7) for gdG.   Since gd is prime to t by (5) and (6), t is prime to D.

The divisor t of a is odd.  Let m, • • • , ir«. be the distinct odd primes which

occur in D with odd exponents.  The system of congruences

w = Y      (rnodr),       ir = 1       (mod 8),       it = 1       (mod tt,)       (i == 1, • • -,h)

has a solution 7r = F (mod M), where V is prime to J7 = 8titi • • • irk. There

are infinitely many primes of the form V+Mw. Yet ir be one of them which

does not divide 2 agd. We shall prove that Lemma 2 holds for this ir. For

Jacobi's symbols,

(m/ir) = (x/V.) = 1,    (2/r) = 1,    (Z7/V) = 1.

Hence by (4),/=G (mod y) has a solution 2 when y=7r. We saw that/=G

(mod t) has a solution 2 when y=.F=:7r (mod t). It remains only to prove

that/=G (mod T) has a solution 2 when y = 7r. Let pn be a highest power of

a prime dividing F. Thus p divides G. Since w is not a divisor of a and hence

not of T,ir^p. At the end of §5, we saw that, when y has any assigned value

not divisible by p, and hence when y = w, f=G (mod pn) has a solution 2.

The same is true modulo T.
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Combining Lemmas 1 and 2, we have, except for case (11),

Theorem 3. Let t denote the largest divisor of a which is prime to g. If F

is universal, then

(12) R = ct—4:g2db is a quadratic residue of t.

In case (12), to every G corresponds an odd integer it such that, when y=ir,

f=G (mod agy) has a solution z.

7. It remains to prove Theorem 3 for the special case (11). Then 52 = 1,

7? = 1, A^l (mod 3), and (9) requires y=0. Take F prime to 3, and 3Y=Yi

(mod p**) for each prime factor /»i5*3 of t. Now A+972 F2 is a quadratic re-

sidue of 3 and hence of 3n+1. For y^3Y, f=G therefore has a solution z

modulo 3B+1 and hence modulo 3r. Define ir as in §6. For y=37r, f=G

has a solution z modulo 3r and modulo x, and hence modulo 3rw=yT.

By the first remark in §3 and Theorem 3, we have

Theorem 4. If e = 0, F is universal in case (12).

8. Consider the classic case of forms F in which the coefficients of pro-

ducts of different variables are all even, whence e = 1 and c is even. We shall

prove

Theorem 5. When e = l and c is even, F is universal if and only if (12)

holds and

(13) e = 1 ; either d is odd, or ¿=2 (mod 4) and b is odd.

First, let F be universal and employ the notations A =ga, B=gb, c = 2C,

D = gd.  Then

F =2'Axy+ f,    f = By2 + 2Cyz + Dz2,    A odd.

Since 7? shall represent odd integers, B and D are not both even. If B

is even and D odd, we replace z by z+y in 7? and obtain a like form with

B' =B+2C+D, which is odd.  Hence we may take B odd.

First, let e = 3. Since F represents a complete set of residues modulo 8,

the same is true of

BF = y2 + 2BCyz + BDz2 = Y2 + kz2 (mod 8),

where Y = y+BCz.  If A is even, Y2+hz2 has at most six values modulo 8.

Hence A is odd and Y2+hz2 has at most seven residues 0,1, 4; A, A+l, A+4;5.

Second, let e = 2. If A =3 (mod 4), we change the signs of y and z in F

and obtain an equivalent form having A' = — A.   Hence let A = 1 (mod 4).
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Then F=ixy+f (mod 16). Replacing x by x+ky+sz, we obtain a like form

having B' = B+4k, C' = C+2s.  Hence we may take 73= ±1, C = 0 or 1.

The case 73 = C = 1. The residues of F modulo 4 are 0, 1, D, D+3.

Hence D = 4A+3.  Consider odd values of F.  Then y+zis odd and

f=iy + z)2+iD- l)z2,    F m 4*(z + 1) + 1 + (4A + 2)z2   (mod 8).

For z even, F=4x+l = l or 5; for z odd, F=4A+3 (mod 8). Hence F repre-

sents only three of the four odd classes modulo 8.

The case 5 = 1, C = 0. Then F = 0, 1, D, D+l (mod 4), whence

D = 4k+2. Then

F = 4xy + y2 + (4A + 2)z2 (mod 16).

When F is even, y = 2F and F = 2<p, <p = 4xY+2Y2+mz2, m = 2k + l. Since

F represents all even residues modulo 16, <p represents all residues modulo 8.

But if 4> is odd, z is odd and <p=m, m+2, or m+6 (mod 8). Thus <pfám+4:

(mod 8).
The case B = — 1. In the universal form — F we change the signs of y

and D and obtain F with 73 = 1, which was treated in the preceding cases.

This proves that e = 1. We return to the notations in §3. By hypothesis,

c is even and g is odd. Let d be even. Since F is not always even, b is odd.

If ¿ = 0 (mod 4), F = 2 (mod 4) is impossible. For that requires that y be

even and then F=0 (mod 4). Hence (13) are necessary conditions that F

be universal.

We readily show that (12) and (13) are sufficient conditions. If d is odd,

and y is any chosen odd integer, F = by2+dz2=G (mod 2) has a solution z

when G is arbitrary. Thus F is universal by Theorem 3. Next, let d = 2D,

where D and b are odd. If y is odd, then F is odd and F=G (mod 2) has a

solution z when G is odd. Next, let G be even. Take y = 2 F, where Y is odd.

Then F = 4gaxY+4gbY2+2cYz+gdz2 = 2z2 (mod 4), whence F=G (mod 4)

has a solution z. This 7? is derived from (3) by replacing e by 2, b by 42>,

c by 2c, y by Y, and has the same g, a, d. The conditions in Theorem 2

still hold, while R is multiplied by 4. We may therefore apply Theorem 3

with F = 7T, e = 2.

9. In view of Theorems 4 and 5, it remains only to treat the case e^l,

c odd.
(I) Let d be even. Assign an odd value to y and write A for the odd in-

teger cy. Then F=gby2+<p (mod 2e), where <p = kz+gdz2. Then <p ranges with

z over a complete set of residues modulo 2'.  For, <p = kZ+gdZ2 implies

(z -Z)[k + gdiz + Z)] = 0 (mod 2«).
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Since the second factor is odd, z=Z (mod 2e). Hence if G is arbitrary, F=G

(mod 2') has a solution z.  Hence F is universal if (12) holds.

(II) Let d be odd. If b is odd, F=y+yz+z (mod 2) and F is even only

when y and z are both even, whence F^2 (mod 4). Hence for a universal

F, b is even.

Determine w so that gdw = l modulo 2'+3; then F=G is solvable if and

only if (cF=uG is solvable. It therefore suffices to study

(14) H = 2'Axy + 2By2 + Cyz + z2 (e^l.Codd).

(i) Assign a fixed odd value to y. The values of 77 modulo 2" are the sums

of 2By2 and the values of <p = z2+tz, where t = Cy is odd. Evidently <f> is

always even.   Consider

0 s Z2 + tZ,    (z - Z)iz + Z + t) m 0 (mod 2«).

If the first factor is even, the second is odd and z=Z (mod 2"). Hence if

z ranges over the 2e_1 even integers

(15) 0,2,4, ••• , 2«-2,

<p takes 2e_1 even values incongruent modulo 2°, which are therefore congruent

to the numbers (15) rearranged. Since this result is not changed if we add

to them the constant 27Jy2, we conclude that 77=k (mod 2*) has a solution

when k is any even integer. Hence Theorem 3 applies when G is any even

integer.

(ii) Let y = 2yi, where yx is odd, but undetermined.   Then

77 m Z2 + ryi2    (mod 2'+»),   Z = z+Cyu    r = 8B - C2.

In view of (i), we need consider only odd values of H. Then Z = 2fand H=3

(mod 4).  If k is any integer = 3 (mod 4),

4f2 + ryi2 = k (mod 2«+>)

has a solution with yi odd. This is evidently true modulo 8. To proceed by

induction, let

4a2 + rb2 = k + 2"Q,    bodd,m>3.

Then

4a2 + rib + 2m~lw)2 = k + 2miQ + rbw) m k (mod 2m+1),

by choice of w modulo 2. The induction is complete. To each k corresponds

an odd G for which F=G (mod 2e+1) has a solution with yi odd.

Since yi was not preassigned, but was suitably determined, we must

modify our determination of ir in §6.   Since D = gdG is now odd, we omit



172 L. E. DICKSON [January

7T = 1 (mod 8) from the system of congruences for it and replace it by 7r=yi

(mod 2«+0-
(iii) Let y = 4y2, where y2 is a fixed odd integer. Then

H = Z2 + Ary22 (mod 2'+2), Z = z + 2Cy2, r = &B -C2.

In view of (i), we need consider only odd values of H, whence Z is odd and

H = 5 (mod 8). If k is any integer =5 (mod 8), then H=k (mod 2e+2) has

an odd solution Z. This is evident for modulus 8. To proceed by induction,

let
a2 + 4ry22 = ft + 2*"<2,    a odd,    w¿3.

Then
(a + 2m~1x)2 + 4ry? = ft + 2m(Q + ax) = ft        (mod 2m+1),

by choice of x modulo 2.  Our F is derived from (3) by replacing e by e+2,

y by y2, b by 16b, and c by 4c, and has the same g, a, d.  The conditions in

Theorem 2 hold also here, while P is multiplied by 16.

(iv) Let y = 8y3, where y3 is a fixed odd integer. Then

U =Z2 + ltry32    (mod 2e+3),    Z = z + 4Cy3.

Take Z odd. Then P = l (mod 8). If ft is any integer =1 (mod 8), then

H=k (mod 2e+3) has an odd solution Z. This is proved by induction as in

(iii).
Since every integer k falls under one of our four cases, we conclude from

Theorem 3 that P is universal if (12) holds.  This completes the proof of

Theorem 6. When e^l and c is odd, F is universal if and only if (12)

holds and bd is even.

10. Another proof of Theorem 6 reveals a property to be utilized in the

more complicated case of four variables. When (12) holds, F is universal if

and only if F = G (mod 2") is solvable when «^2e+2, irrespective of the

evenness or oddness of y.

When G is even, we retain the proof in (i) of §9. Next, let G be odd. Now

H is the product of F by a modulo 22e+2 instead of 2e+3. For » arbitrary and

ft odd, H =- ft (mod 2n) has a solution with x = 0, y even. For proof, put y = 2 F.

Then

H=Z2 + rY2,        Z = z + CY,        r = 8B - C2.

Modulo 8, H=Z2-Y2 has the values 0, 1, 3, 4, 5, 7, whence P=odd (mod 8)

is solvable. To proceed by induction, let

f2 + rq2 = ft + 2mQ,    m ^ 3 .
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Since f and r; are not both even,

(f + 2--1«)2 + r(r> + 2m~h)2 = k + 2m(Q + f« + rvv) = k   (mod 2m+1),

by choice of u, v modulo 2.

Now take » = 2e+2. If in a solution of H = k (mod 2"), F is divisible

by h = 2'+l, then Z2 = k, whence 77 = k (mod 2") has a solution in which F

is an arbitrary multiple of h, and hence a solution with Y = h. Next, let

there be no solution having Y divisible by h. Then in every solution, Y is

the product of 2* by an odd integer where s^e. In both cases there is a solu-

tion with Y = 2'r¡, where 77 is odd and rr^e+l. Then y — 2lr\, l^e+2. Since

e+l^n, we see that H=k (mod 2t+l) has a solution with x = 0, y = 2lr\.

Insertion of this y into (3) gives a form Fi which is derived from F by re-

placing e by e+l, y by 17, b by 22!ô, and c by 2'c. Since Fi has the same g, a, d

as F, Fi satisfies the conditions in Theorem 2. The R of Fx is the product of

R in (12) by 22i. For G odd, we proved that F = Fi=G (mod 2'+') has a

solution with r\ odd.   Thus Fi and therefore F is universal if (12) holds.

Part II. The case or four variables

11. In (3), let

(16) «A = hz2 + jzw + lw2,    1 = g.c.d. of h,j,l.

We may assume that h is relatively prime to any given odd integer m. For,

the replacement of w by w+tz alters only h and y. Then h' = h+jt+lt2. We

can choose t so that h' is divisible by no one of the distinct prime factors

pi, ■ ■ , pk of m. In fact, since h, j, I are not all divisible by p., there are

at most two incongruent roots t of h'=0 (mod pt). Since p,>2, there is a

value Vi of t such that h' is not divisible by pi. There exists an integer

v such that

v = z>i    (mod p.), • • • , v =• vk    (mod p*).

Hence when t = v, h' is divisible by no one of pi, • • • , pk.

12. Let F have the properties in Theorem 2. In (16) we may take h

prime to ga by §11.

Lemma 3. 7/ each of the congruences

F =G   (mod 2'), F =G   (mod ga)

has a solution x, y, z, w such that y has a fixed value 1 or an odd prime dividing

no one of g, a, d, h, N=j2—\hl, then F = G is solvable.

We first prove that F=G (mod y) is solvable.   Proof is needed only when
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y is the specified odd prime. Determine m by gdm = l (mod y). Multiplica-

tion of F=G by imh yields the equivalent congruence

4 hip s 4mhG   or   Z2 - Nw2 m 4mkG (mod y),

where Z = 2hz+jw. There is a solution Z, w since A7 is not divisible by the

odd prime y.  Since A is not divisible by y, Z determines z.

Hence F=G (mod 2"gay) is solvable. As at the beginning of §3, the equa-

tion F = G is solvable.

The proof of Lemma 1 applies also here if we take w = 0 and multiply the

coefficient of z2 in §4 by h.

Since / is prime to g, d, and h, while / divides a, multiplication of F = G

(mod t) by 4gdh yields the equivalent congruence

(17) 4g2dhby2 + 4gdhcyz + g2d2[Ç2hz + jw)2 - Nw2] m 4gdhG       (mod t).

Let t be a product of powers pn oi distinct primes.

13. Case N not divisible by p. The product of (17) by N is

(18) Nu2 - v2 + Jy2 = k (mod p"),

where

u = gdÇ2hz + jw) + cy, v = Ngdw + cjy, k = 4NgdhG,

(19) R = c2 - 4g2dhb,       J = c2j2 - NR.

(I) JfáO (mod p). Since Nu2-v2 = k-J (mod p) is solvable, (18) has a

solution modulo p with y = l (mod p). Write Nu2 — v2 + J = k + pQ.

Determine Ci so that Q+2/ci=0 (mod p). Then (18) holds modulo p2 with

y = l+Cip (mod p2).   Hence

Nu2 -v2 + 7(1 + cip)2 = A + p2T.

Determine c2 so that r+27c2=0 (mod p). Then (18) holds modulo p3 with

y = l+Ci/>+c2/>2 (mod pz). To proceed by induction from n = m to n = m+l,

let (18) hold modulo pm when y=F (mod pm), where Y = l+Cip+ • • ■

+cm-ipn~l.  Write

Nu2 - v2 + JY2 = k + pmS.

Determine cm so that S+2Jcm=0 (mod p). Then (18) holds modulo pm+l

with y = Y+cmpm (mod />m+1). The induction is therefore complete and

shows that (18) has solutions with y = r) (mod p"), rj = l +Cip+ ■ ■ •+cn_i/>n_1,

with each c< determined modulo p. There exist infinitely many primes y

of the form t]+xpn.
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(II) N a quadratic residue of p. Thus N=T* (mod p). Write U for

Tu,Kiork-J. Takey = l. Then (18) holds modulo pii U2-v2=K (mod p).

This has solutions. In case K = 0, take ¿7=» = 1. Hence Nu2—v2=K always

has solutions u, v, not both divisible by p. To proceed by induction from

n = m to n = m+l, let

Ntf - vi = K (mod/>m)

have solutions w, », not both divisible by /».  Then

Nu2 - v2 = K + pnQ,

Niu + pm£)2 - (» + />m7j)2 = K + pnL (mod />m+1),

where L = Q+2Nu% — 2»??=0 (mod />) has solutions £, -n. Since the induction

is complete, (18) has solutions with y = l.

(III) If N is a quadratic non-residue of p and 7=0 (mod p), F is not

universal. Consider (18) for k = pK and write J = Tp. Then A7«2—»2=0,

m=7) = 0 (mod />).  By the origin of (18),

4gdhNiF - G) = Nu2 -v2 + Jy2-k.

The second member is =pM (mod p2), where M = Ty2—K. We can choose K

so that M is not divisible by p for any y. To each K corresponds a single G

by the value of A below (18). Hence F is never congruent modulo p2 to cer-

tain multiples G of />.

14. Case N = 0 Çmodp). Write A7 = />e.

(I) Let/c^O (mod ^>). In (17) we may solve 2hz=—jw (mod pn) for

z, since A is prime to g<z and hence to p.  Take y = 1 and write

p = 2gdcj,        v = g2d2e, k = 4g2dhb - 4gdhG.

Then (17) is equivalent to

(20) pw + vpw2 = k    (mod pn),        p f± 0    (mod p).

This has a solution w' modulo p, and w = w'+u>p, pw' = k+yp. Then (20) is

equivalent to

pu + y + viw' + co/02 = 0      or      peo + pfico) m K (mod /»"-1).

Suppose we have similarly reduced the solution of (20) to

(21) pu + pfÇu) m K (mod pn~m).

This has a solution u' modulo p, and

u = u' + vp,    pu' = K + Sp.

Then (21) is equivalent to
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PV + 6+ fiu' + vp) = 0     or     pv + pPiv) m K' (mod /»»—»~l).

This is of type (21) with m replaced by m+1. Hence the induction from

f» to f»+l is complete, and (20) is solvable.

(II) Let j=0 (mod p).  Then (17) gives

(22) Z2-Ry2=k    (mod/»), Z = 2gdhz + cy, k = 4gdkG.

Since this is of type (9), R is not divisible by p. Next, if R is a quadratic non-

residue of p, and if G=0 (mod />), then y=0, Z=0, z=0 (mod p), F=gd\p

(mod p2).  Since N=pe and f = 2hz+jw is divisible by p,

4hF = gdi£2 - Nw2) as T/»a>2    (mod />2),    t = - g¿e.

Hence F represents only those multiples mp of p for which 4Aw = rw2 (mod

/>). Hence m has at most iip+1) values modulo p. Thus F is not universal.

Hence R must be a quadratic residue of p. We take w = 0. The discussion

in §§5, 7 applies here. There are infinitely many primes y having specified

residues with respect to odd moduli pn.

(III) Let c=0,jféO (mod p). In (17) write Z for gdi2hz+jw). We get

the congruence (22). As in (II), R must be a quadratic residue of p. By

§5 with » = 1, (22) then has a solution with y prime to p except in case (11).

There is a solution with w = 0, y prime to p, of

(23) F =G: gby2 + cyz + gdhz2 = G (mod p").

To proceed by induction from n = m to n = m+l, let

gfiF2 + cFZ + gdAZ2 = G + kpm,    Y prime to p.

Then (23) holds modulo pm+1 iox y = Y+r¡pm, z=Z, if

* + 2gôFi; + c-nZ = 0 (mod /»).

This has a solution -n since c=0, 2?^0, whence gbjéO by (19).

15. This completes the proof of

Theorem 7. For the form F defined by (3) and (16), fef g and a be odd, a

prime to d, c prime to g, and h prime to ga. Employ the abbreviations

(24) N = j2 - 4M,    R = c2 - 4g2dhb,    J = c2j2 - NR.

We may assign to y a fixed value which is 1 or an odd prime such that F=G

(mod gay) is solvable for every G except in the following cases :

J=0 (mod p), iN/p) = -1; N=cj = 0 (mod p) and either
(25)

R^O (mod p) or (R/p) = -1,

where p is any prime dividing a but not g.  In these cases F is never universal.
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By the first remark in §3, we have

Theorem 8. If e=0, F is universal except in cases (25).

16. Assume that the coefficients of products of different variables in F

are all even, as in the classic theory. Hence e^l, c and dj are even. First,

let e = l.

If d is odd, j is even and h and I are not both even by (16). Then

F = by+hz+lw=G (mod 2) is solvable when y has an assigned odd value and

G is arbitrary. Then F is universal except in cases (25).

Next, let d = 2D. Then b must be odd. For G odd, F=y2=G (mod 2)

holds if y is odd, whence §15 applies. Finally, let G = 2y. Then must y = 2F

and F = 2f, where

/ = 2gaxY + 2gbY2 + cYz + gD(hz2 + jzw + lw2).

Since /= 7 shall be solvable for every y, D must be odd. The function in

parenthesis can be made congruent to either 0 or 1 modulo 2. Whatever be

F or 7, /=7 (mod 2) is therefore solvable. Since/ is derived from F by

replacing b and d by 2b and |d, the initial conditions in Theorem 7 are

satisfied by /, and N, R, J are unaltered. Hence / and F are universal ex-

cept in cases (25).

Theorem 9. Let e = l. If d is odd, let c and j be even ; then F is universal

except in cases (25). If d = 2D, let c be even. Necessary and sufficient condi-

tions that F be universal are that b andD be both odd except in cases (25).

17. Let e^2, d odd. Then c = 2C, j = 2s. The products of h, s, I by the

odd interger gd will be designated H, S, L.  Write ß for gb. Then

(26) F = 2'gaxy + ßy2 + 2Cyz + Hz2 + 2Szw + Lw2,

where H and L are not both even. Here let L be odd. Write

\ = LH-S2,        W = Lw + Sz.

Since our moduli are powers of 2, we may take W and z as new variables in

place of w, z. We get

(27) LF = L(2'gaxy + ßy2 + 2Cyz) + Xz2 + W2.

Here let also X be odd. Write

A = \Lga,       M = \Lß - LPC2,      Z = \z + LCy,      Fx = \LF.

Then

(28) Fi = 2'Axy +My2+Z2 + \W2 (A,\odd).
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If F is universal, FX = A (mod 22e) is solvable when A is arbitrary. Con-

versely, let there be solutions. If y is divisible by 2", the terms in y drop out

and there is a solution with y = 2'. In every case we may write y = 2"r¡, r¡ odd,

s = e. The solution gives one of Fi = A (mod 2<+*). Insertion of this y into (3)

gives a form F' which is derived from F by replacing y by jj, e by e+s,

b by 22,2>, and c by 2*c. Since F' has the same g, a, d, h, j, I as F, F' satisfies

the initial conditions in §15. While N is unaltered, 7? and 7 are multiplied

by 22*. Hence conditions (25) are unaltered. This proves that, except in

cases (25), F is universal if and only if Fi = k (mod 22e) is solvable when k is

arbitrary.  Solutions with y even are here not excluded.

(I) X=3 (mod 4). The case M=Q (mod 4) is excluded since Z2+3W%

takes only the values 0, 1, 3 modulo 4.

Let MféO (mod 4). Then Fi with x = 0 represents all residues of 8. For

Z2+XW2 represents exclusively 0, 1, 3, 4, 5, 7 (mod 8). The missing 2 and 6

are obtained from y = l. We may select u from the six so that M+u = 2

(mod 8) since 2 — M = 2 or 6 only if M = 0 or —4 (mod 8). Similarly, we may

select » from the six so that M+v = 6 (mod 8).

To proceed by induction from m = 3 to m+1, let

(29) x = 0,    My2 +Z2 + XW2 = k + 2™Q.

Then

Miy + 2m~1v)2 + (Z + 2"'-1f)2 + XiW + 2m~1oi)2 = k (mod 2-+1)

if Q+Myr)+ZÇ+XWw = Q (mod 2). The latter has solutions v, f, co unless

My, Z, W are all even.  This disposes of odd A's.

Let A = 2 (mod 4). First, let M be odd and take x = 0. Then My2+Z2

+31F2 = 2 (mod 4) shows that one of y, Z, W is even and two are odd. For

y and Z odd, W e\en,Fx = M + l or Af+5 (mod 8). For y and IF odd, Zeven,

the values of Fi are M+X and M+X+4, i.e., M+3 and M+7 (mod 8).

Hence Fi takes all even residues and therefore the value A modulo 8, when y

is odd. By the above induction, Fi=-k (mod 2") is solvable.

Second, let k=M = 2 (mod 4). Then y=T, Z = PF (mod 2). Take z = 0.

For y, Z, PF all odd, Fi=M+l+X (mod 8). Now 17+1+X and A are con-

gruent modulo 4. If they are congruent modulo 8, the preceding induction

yields solutions modulo 2". There remains the case A=lf+1+X+4 (mod 8).

Write A = 2/c, M = 2p,X=4t+3. Then k and p are odd and K=p+2t (mod 4).

Since Z and W must now be even, write Z = 2f, W = 2co. Thus Fi = A (mod 2n)

becomes

(30) /iys + 2f2 + 2Xw2 = k   (mod 2""1),    y odd.
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Since K=u+2t+is, this holds modulo 8 if and only if

f2 + 3co2 = í + 2í (mod 4).

This is solvable except when

/ + 2s m 2    (mod 4), k = p + 4   (mod 8),

* = M + 8    (mod 16), X ■ 3    (mod 8).

In the latter case, Fi=k (mod 16) has no solution with x = 0 and hence no

solution if e = 4. This excludes the case X = 3 (mod 8), e^4.

When (31i) fails, (30) is solvable modulo 8. We proceed by induction.

If (30) holds modulo 2m, m^3, it holds modulo 2m+l for the same f, w,

but with y replaced by y+2m~1r], where r¡ is determined modulo 2 since /ty

is odd. Hence Fi = k (mod 2") is solvable when k=M^2 (mod 4),X^7

(mod 8).

Let (31) hold and e = 3. We do not now take x = 0. The conclusions

preceding (30) continue to hold modulo 8. But (30) is now replaced by

(30') 4Axy + py2 + 2f2 + 2Xo>2 = k    (mod 2""1),    y odd.

This holds modulo 8 iix=Ay, f=w (mod 2). There is always a solution with

x — Ay. Equate the left member to k+2mQ. Thenif?»^3,

(4A2 + p)(y + 2"-1r/)2 + 2f2 + 2Xco2

= k + 2m[Q + (4A2 + p)yv] = k       (mod 2«+»)

by choice of r> modulo 2.

Let (31) hold and e = 2. The first coefficient 4 in (30') is now replaced

by 2. There is a solution with x = 2^4y.

If in a solution of Fi = k (mod 2") we multiply the variables by 2*, we

obtain a solution of Fi =4'k.

(II) X = l (mod 4). The case M = 0 (mod 4) is excluded since Z2+W2

takes only the values 0, 1, 2 modulo 4.

Modulo 8, Z2+\W2 represents exclusively

(32) 0, 1,4,5, X + l.

First, let M be odd. Then My2 = 0, M, or 4M=4 (mod 8). Adding 4 to
(31), we get the single new residue X+5. It with X + l gives 2, 6 (mod 8).

These with (32) give all residues except 3, 7. If one of the latter is congruent

to the sum of M and a number (32), the latter must be even and hence 0, 4,

or X + l. These plus M = l or 5 (mod 8) give a single new residue, viz.,

X + l+717. If e = 3, Ft has a missing residue. Hence if if=l (mod4) ande^3,

Fi has a missing residue. Hence if M s 1 (mod 4) and e ̂  3, Fi is not universal.
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But if e = 2, Fi has the missing residue X+5+J7 modulo 8, when x, y, Z, W

are all odd; and (28) represents all residues modulo 16.

If M=3 or 7 (mod 8), M+0 and M+4 give the missing 3, 7.

If M = 2 (mod 4), My2 = 0 or M (mod 8). The first four in (32) include

all =0 or 1 (mod 4). Adding 0 and M, we get all residues modulo 4 and hence

all modulo 8.

Hence if M = 2 or 3 (mod 4), Fi = k is solvable modulo 8 with x = 0 for

every A. The first induction under (I) yields solutions modulo 2" for every

odd A.
Let M = 3, k=2 (mod 4). For* y = 2F, Z and W odd, 7A=4F2+1+X

(mod 8). According as 1+X=A or A+4 (mod 8), T^A holds for F = 0 or 1.

To proceed by induction, note that (29) implies

My2 + (Z + 2m-1f)2 + XJF2 = A + 2miQ + Zf ) = A (mod 2*"+1),

by choice of f modulo 2. Hence if M = 3 (mod 4), 7?i=A(mod 2") is solvable

when A, n. are arbitrary.

Let M=A = 2 (mod 4). Then 2y2+Z2+tF2 = 2 (mod 4). There are only

two possibilities. Either Z and W are odd, and y = 2F, whence Fx=k if

A = l-f-X (mod 8), with induction to 2n. Or Z = 2f, W = 2u, and y is odd;

then, for x = 0, Fi = M+4^2+4w2=M or M+4 (mod 8), whence Fi =A (mod

8) is solvable. For # = 0, we have (30), which for modulus 8 is equivalent to

f2+w2=d (mod 4), where 2d = K—p. This is solvable unless

Í33)        d = 3    (mod 4),    6 = /c - p    (mod 8),    12 =. A - M    (mod Í6).

There was a solution with y = 2 Y unless A = 1+X+4 (mod 8).  If both fail,

(34) M = 1+X (mod 8).

Except in this case, Fi = k (mod 2n) is solvable. When e~4 and i/33) and (34)

hold, we saw that Fi = k (mod 16) has no solution. If Í33) and (34) hold and

e = 3, we have (30'), which holds modulo 8 if and only if f+w is odd, x = Ay

(mod 2). The former induction on (30') applies also here. Likewise when

e = 2.

Theorem 10. Let e^2, c = 2C, j = 2s, d, I, and X=g2d2 Qh-s2) be odd.

Write M=Xg2dbl—g2d2l2C2. Then F is universal, if and only if we exclude

cases (25) and the following :

M = 0 (mod 4) ;   X = 3 (mod 8),    e = 4 ;        X = M = 1 (mod 4), e = 3 ;

X = 1 (mod 4),   M = 1 + X (mod 8),   e = 4.

* These are the only possible values modulo 4.
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18. Next, let L be odd and X even in the notations of §17. It suffices

to treat the form (27) which we denote by

(35) / = 2'Axy + By2 + 2Ryz + \z2 + W2 (e 2 2).

If e = 2, 2.R+X = 2 (mod 4),/is universal except in cases (25). For, when

y is odd, f—B has the values 0, 1, t = 2R+\, t+1 (mod 4), which form a

complete set of residues modulo 4. If e^3, we separate the case t = 2 into

two subcases.

I. Let e^2, X=0 (mod 4), R odd. Assign a fixed odd value to y. Then

/-_By2=2fz+4Az2+lF2 (mod 2'), where t = Ry is odd and 4à=X.   By (I) of

§9, tz+2hz2 ranges with z over a complete set of residues modulo 2". Take

n — e—1. Hence 2fz+4Äz2 takes all even values modulo 2e. By use of W = 0

and 1, we see that/ takes all values modulo 2".

II. Next, let e = 3, X = 2r, R = 2p, where r is odd. Then

Fi = rf = 2'rAxy + Ty2 + 2Z2 + rW2,    Z = rz + py,
(36)

T = rB - 2p2.

Since y enters linearly only in the first term, the first italicized result in §17

holds here. Hence we ask if Fi = k (mod 22e) is solvable when k is arbitrary

and both odd and even y's are allowed.

The values modulo 8 of 2Z2+rW2 (r odd) are

(37) 0, 2, 4, 6, r, r + 2.

If F = 0 (mod 8), Fi has only these six values and is excluded. If F = 2 or 6

(mod 8), the values of Fi are (37) and the same increased by 2 or 6, and hence

are (37) and either r+4 or r+6 ; thus Fx has only seven values and is excluded.

Let F = 4f, where f is odd, and consider even values of Fi. Then W = 2w,

and Fi is the double of

2e~1rAxy + (b,        <b = 2ty2 + Z2 + 2rw2.

Since 2r= ±2 (mod 8), Z2+2rw2=0, 1, 2, 4, 6, 1 ±2 (mod 8). The further

values of d> are obtained from these by adding 2f. If such sums yield both

missing values 1 + 2, 5, they are obtained by adding the odd 1, 1 ±2 to 2f.

This is impossible since f is odd and 2f = 2 or 6 (mod 8). This excludes e = 4.

But Fi yields universal forms if e = 3. First, if y is odd, the values of Fi

modulo 8 are (37) increased by 4 and hence are all even residues and r+2,

r+6. We lack r, r+S, r+2, r+10 (mod 16). We get these odd residues by

taking y = 2F, F odd, whence Fi=2Z2+rW2, whose odd values modulo 16

are derived by adding 0, 2, 8 to each r, 9r. The sum 9r+2=r + 10 (mod 16).

Finally, let F be odd. Then Fi represents all residues modulo 8, as shown
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by the first four numbers (37) and the values 0 and 1 of y. If k is odd,

Fi = k (mod 2") is solvable with x = 0. For, if Pi = k+2 mQ, then

T(y + 2--M2 + 2Z2 + r(W + 2m~lw)2

= ft + 2m(Q + Tyv + rWw) m k    (mod 2m+1)

by choice of 77, w modulo 2.

Henceforth, let ft = 2/c. Then y+lF is even. We may set y = r¡+C,

W = r,-Ç, T+r = 2M. From P = 2k (mod 2n), we cancel 2 and get

(38) 2'~1rAxy + Mr,2 + Mt2 + 2(M - r)vÇ + Z2 =. K (mod 2»-1).

(a) If M is odd, multiply (38) by M and write

F = Mv + (M - r)f, X = 2Mr - r2 m 1 (mod 4).

We get

(39) 2'~1MrAxy + MZ2 + Y2 + Xf2 = kM (mod 2"-1).

Aside from the first term, in which y = 7J+f, this, is of type (27) for the case

(II) of §17 and M odd. It was proved there that, when M = 3 (mod 4), (39) is

solvable with x = 0 lor every k; but, when M = l (mod 4), MZ2+Y2+\Ç2

represents all residues of 8 except X+5+M. Hence if e ̂  4, Pi is not universal.

The same is true if e = 3 since

(40) 4MrAxy + MZ2 + F2 + Xf2 = X + 5 + M    (mod 8),    y = v + f,

are not solvable. For, Z2+ Y2+P = 3 (mod 4) requires that Z, Y, J" be all odd.

By F = 7] (mod 2), 77 is odd and y even. The left member of (40) is M+1+X

(mod 8).

(b) Let M = 2m. Write /for the odd integer M — r. Let <p denote the sum

of the terms other than the first and last in the left member of (38). Then

<j> = 2mr]2+2mP+2tr)^. For r¡ even, 0 = 0, 2m, 2m+\ (mod8). By symmetry,

<t> takes the same values when f is even. For 77 and f both odd, <p=4m±2

(mod 8).
(bi) Let m = 2p. Then <j> takes all even values modulo 8. This holds also

modulo 2°. For proof, take r? = l. Then 0 = 2w+2^, ^ = 2¿¿f2+tf. By (I)

of §9, y\> ranges with f over a complete set of residues modulo 2"~x. Give Z

the values 0 and 1. Hence (38) is solvable with x = 0, k arbitrary.

(b2) Let m be odd. Then 0 = 0, 2, 6 (mod 8). Hence (38) is not always

solvable modulo 8 if eïï4 and F¡ is then not universal. This is true also if

e = 3. For, we saw that 0+Z2 fails to represent 4 or 5 (mod 8).  Suppose that

(41) Ar A xy + 0 + Z2 = 4 or 5 (mod 8).
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Then

<f>+Z2 = 0orl,      4>f¿2,      0 = 0 (mod 4),      r,2 + f2 + r,f = 0 (mod 2),

whence r\ and f are even. Thus y is even and (41) is impossible.

Theorem 11. Let e^2, c = 2C, j = 2s, d and I be odd. Write \=g2d2

■ (lh-s2), R=gdlC. If X=0 (mod 4), F is universal. Next, let X = 2r, R = 2p,
wherer isodd. If e = 2,F is universal. For e^3, write T=rg2dlb — 2p2. 7/F = 0,

2, or 6 (mod 8), F is not universal. If T=4 (mod 8), F is universal if and

only if e = 3. If T is odd, write 2M = T+r. Then F is universal if and only

if M = 0 or 3 (mod 4). Throughout, universality is to be qualified by excepting

cases (25).

19. Consider (35) for R odd, X = 2 (mod 4). We may assume that 7¿ = 1

(mod 2«+2). For, if i? = 1+2y, X = 2r, replace 2 by 2+ ey. We obtain a form

like (35) with

R' = 1 + 2(7 + re), B' = B + 2Re + 2rt2.

Since r is odd, we may choose e so that y+re=0 (mod 2e+1). Note that

73'=73 (mod 4), so that the later conditions for universality are independent

of this transformation.

If 73 = 1 (mod 4), there is no solution of/=X+5 (mod 8). The latter

implies
(y + 2)2 + 22 + W2 = 3 (mod 4).

Whence y+2, 2, W are all odd. Then y - 2F and

/ = 4F2 + 4F + X + 1 = X + 1 (mod 8).

If 73 = 2 (mod 4), there is no solution of/=5 (mod 8). That implies

2<f> + W2 = l (mod 4), <p = y3+y2+22, whence W is odd and <p is even. Thus

y and 2 are even and/=!F2 (mod 8).

Hence when/is universal, 73 = 0 or 3 (mod 4).

First, let x = 0, y = l, 2 = 2Z. Then/=73+4Z+4XZ2+IF2. By (I) of §9,

Z+\Z2 ranges with Z over a complete set of residues modulo 2n. Hence/

represents all 4/+T3 and 4Í+73+1 (mod 2").

Second, let z = 0, y = 2 F, 2 = 1, where F is odd. Then

(42) / = ABY2 +4F + X + W2.

If k is any odd integer, /=2¿ (mod 2") is solvable with W = 2u. Since

2k— X is a multiple 4e of 4, this is equivalent to BY2+Y+co2 = e (mod

2B^2). ButF = 2r;+l. Hence 2r+73+l+ûj2 = e, where r = 27V+(273 + l)r>.

But t ranges with r¡ over a complete set of residues.   Hence the congruence
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is solvable with w = 0 or 1.  Thus if k is any integer =2 (mod 4),f=n (mod

2n) is solvable with y a double of an odd integer.

Third, let x=0, z = 1, y =Ar¡, ij«2£+l. Then

/ = 1673tj2 + 8r, + X + W2 = 16p + 16B + 8 + X + W2,

where p = 4Bt,2+i4B+l)l- ranges with £ over a complete set of residues

modulo 2B. Take IF = 1 and 3. Thus if A=X + 1 (mod 8),/=A (mod 2") is

solvable.

When 73 = 0 (mod 4), our three cases dispose of all except X+5 (mod 8).

We then take W = l in (42). Cancellation of 4 now gives 73F2+F=T,

2t+73+1 = 1 (mod 2"-2), which is solvable for n.

When 73 = 3 (mod 4), our first two cases dispose of all except 1 (mod 4).

Take x = 0, y = 47;=4(2£+l), z = 2.  Then

/ = 167V + 16j; + 4X+W2 =32« + 16(73 + 1) + 4X + W2,

where w = 273£2+(273+l)Ç ranges with £ over a complete set of residues

modulo 2". Take W = 1, 3, 5, 7. Then 32u+W2 represents all 8<r+l, and the

same is true of / modulo 2". There remains only the 8o-+5. We take # = 0,

z = 2,y = 2F, F = 2»j + 1. Write73+1 =4A. Then

Bf = 4«2 - 4 + 473X + BW2,    e = BY + 1 = 2r,

t = Tin + 2b.

We may employ t as a new variable in place of r\ modulo 2n. If A =73 (mod 8),

16r2+BW2=k (mod 2") is solvable with W odd. For m^3, let 16t2+73IF2

= k+2mQ. Then

16r2 +BÍW + 2m~1u)2 = A + 2miQ + BWu) = A     (mod 2m+i)

by choice of a modulo 2. Hence if k=B+4 (mod 8), 73/= k (mod 2") is solv-

able. Thus/=8tr +5 (mod 2") is solvable when <r is arbitrary.

Theorem 12. Employ the initial assumptions and notations of Theorem 11.

Write B=g2dbl. Now let R be odd and X = 2 (mod 4). Except in cases (25), F

is universal if and only if 73=0 or 3 (mod 4).

20. Finally, consider (35) for 7t = 2p, X = 4r. Then/=73y2+PF2 (mod 4),

and/has the values 0, 1,73, 73 + 1, which form a complete set of residues only

if 73 = 2 (mod 4).

First, let e = 2. For y odd,/=2 or 3 (mod 4). For y = 2Y,f=4rz2+W*

(mod 8), independently of F. If r is even,/=5 (mod 8) is impossible, and F

is not universal. But if r is odd, /=0, 1, 4, 5 (mod 8) for F odd, and 7^ is

universal.
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Next, let e~3. If r is even,/=73y2+4pyz+TF2 = 5 (mod 8) is impossible,

since it holds modulo 4 only when W is odd and y is even. If r and p are odd,

/=73y2+4yz+4z2+iF2=73+5 (mod 8) is impossible, since it holds modulo 4

only when W and y are odd.

There remains only the case 73 = 2/3, p = 2a, with ß, o, r all odd. Write

Z = rz+ay, T = rß-2o2. Then

Fl = rf=2'rAxy + <p,    d> = 4Z2 + 2Ty2 + rW2.

As in §17, F is universal except in cases (25) if and only if Fi^sk (mod 22e)

is solvable when A is arbitrary, when both even and odd values of y are

allowed. The even residues modulo 8 of cp are 0, 4, 2T, 2T+4, which are a

permutation of 0, 2, 4, 6. The odd residues are obtained by adding r to these

four. Hence Fi = A (mod 8) is solvable when A is arbitrary.

For k odd, n — T = 2q. Then <p = 2 A (mod 16) requires

W = 2w,    y odd,    Z2 + rw2 = q (mod 4).

But Z2+rw2 = 0, 1, r, r+1 (mod 4), which lack 3 or 2 according as r = 1 or

3 (mod 4). Hence <p = k (mod 16) is impossible for certain integers A, whence

F is not universal if e = 4.

If e = 3, 73 = 2 (mod 4), r is odd and p even, we shall prove that F is uni-

versal.  For y odd,

/- B = 4z2+ W2 = 0,1,4,5 (mod 8).

Since/—73 takes the values 0, 1 (mod 4),

(43) /= 2,3,6,7,10,11,14,15 (mod 16).

For y = 2F, F odd, }-4B = \p = 4rz2+W2 (mod 16).

(i) Let r = l (mod 4). Then ^ = 0, 1, 4, 5, 8, 9, 13 (mod 16). To these
we add 473=8 and get 0, 1, 5, 8, 9, 12, 13 (mod 16). From these and (43)

only 4 is missing. For y = 4??,/=4rz2+TF2 (mod 32). We take IF = 2, z = 0,

2 and get 4, 20 (mod 32) and hence the missing 4 (mod 16).

(ii) Let r = 3 (mod 4). Then ^ = 0, 1, 4, 5, 9, 12, 13 (mod 16). To these

we add 473=8 and get 1, 4, 5, 8, 9, 12, 13. From these and (43) only 0 is
missing. We use y = 4v, z = 0, W = 0,4 and get 0, 16 (mod 32).

Theorem 13. Employ the initial assumptions and notations of Theorem 11.

Write B =g2dbl. Now let R = 2p, X = 4r. Except in cases (25), F is universal if

and only if B =■ 2 (mod 4), either e = 2, and r odd, or e = 3,r odd and p even.

Theorems 10-13 cover all classic forms with e>l,d and / odd, c and/ even.

The remaining forms will be treated in a later paper.
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Part III.  Equivalence and canonical forms

21. We consider henceforth only classic forms/in which the coefficients

of products of different variables are all even. By the Hessian of/ is meant

the determinant of the halves of the second partial derivatives of /. We

shall prove

Theorem 14. The Hessian H of a universal classic ternary quadratic

Null form fis either odd or the double of an odd integer. In the respective cases,

f is equivalent to

(44) d> = 2*y - Hz2,    rp = 2xy + y2 - Hz2.

Each of these forms is universal.

By §8, / is equivalent to

(45) 2Axy + By2 + 2Cyz + Dz2,    A odd.

First, let A = 1. Replacing x by x+ky — Cz, we get a form like (45) with

C' = 0, B' = B+2k = 0 or 1 by choice of *.  Then 77= -D and we have (44).

First, let H be even. Then d> is excluded. If 77=0 (mod 4), yp is never s 2

(mod4). Hence H = 2 (mod 4) in fa For y = l, z = 0;y = 2, z = 0, 1, the values

of yp are 2a;+l, 4(a;+l), 4(^+1) —77, which together give all integers.

Second, let H be odd. In yp replace x by x+Hz and z by z+y; we get

2xy+il—H)y2 — Hz2. We now replace * by x+J(77 — l)y and get <p. Hence

we may drop fa The values of <p for y = 1, z =0, 1 are 2x and 2x—H and to-

gether give all integers.

This proves Theorem 14 when .4=1.

22. Case A prime to D. There exist solutions 5 and f of Ds—Al = C.

Replacing x by x+tz, we get a form (45) having C = C+At=Ds. We now,

replace z by z—sy and obtain a form (45) lacking yz. In the notation (3),

it has g=l and is

(46) F = 2axy + by2 + dz2    (a odd and prime to d).

If F is universal the first part of §5 with f = a, c = 0, shows that — bd is a

quadratic residue of each power of a prime which divides a and hence of a

itself. Thus b is prime to a, and b= —r2d+am, where r and m are integers,

and r is prime to a.

(I) Let d be odd. If m is even, write m = 2p,r =p. Then

(47) b = — p2d + 2ap    ip,a relatively prime).

If m is odd, then m + 2rd+ad is an even integer 2p ; for p = r+a we again have

(47).  For x = X—py, (46) becomes
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F = 2aXy- p2dy2 + dz2.

V\itz = Z+py. Then F = 2y%+dZ2, where % = aX+pdZ. Since a and dp are

relatively prime, there exist solutions of av — dpu = l. Write r¡ = uX+vZ.

The transformation from X, Z to £, r? is of determinant unity and replaces

F by 2y£+d(ai] — w£)2. Replacing y, £, -n by x, y, z, we obtain a form (45)

having ^4=1.

(II) Let d be even. If F is universal, b is odd and d=2 (mod 4). For,

if d=0 (mod 4), F is never =2 (mod 4). Thus d = 2D, where P is odd. Then

/» is odd, m = 2n + l. Replacing xby x — ny,we obtain

F = 2axy + Ty2 + 2Dz2,    T = a- 2r2D.

Write d = ir2D — a. Since ArD is prime to a, it is prime to 8. Hence there

exist integers ß and y satisfying ArDy—dß = 1. Now F = 0 for x = — 1, y = 2,

z = 2r.  Hence the substitution

* = - {,      y = 2$ + ßr, + 47Jf,     z = 2r{ + yr, + 6Ç

has determinant unity and replaces F by a form G in which the coefficient of

£' is zero. That of 2£tj is

- aß + 2Tß + Wry = aß + 4rD(y - rß) = ArDy -6/3=1.

That of i£ is 8rD(d — a+2T) =0. Replacing £, r¡, {" by x, y, z, we see that G

is of the type-(45) with A=l.

The Hessian -a2d of (46) is odd in (I) and =2(mod 4) in (II). This

completes the proof of

Theorem 15. When A is odd and prime to D, (45) is equivalent to (46),

which is universal if and only if — bd is a quadratic residue of a and either d is

odd or b is odd and d = 2 (mod 4). In the respective cases, (46) is equivalent to

(44).

This proves Theorem 14 when A is prime to D.

23. Let the form (3) be universal and classic, whence e^l, c = 2C,

^ = CiiZ2+2ci2ZW+ • • ■ , where cn, cn, ■ ■ ■ have no common factor >1.

If b is even, then d is odd and cn, c22, c33, • • • are not all even. We may

assume that cu is odd. If the number » of variables is 3, Cn = 1. If » > 3 and

if Cn is even and c22, for example, is odd, replace why w+z; then the new Cu is

odd. In (3) we replace z by z+gy and obtain a form 2'gaxy+<p(y, z,w, ■ ■ ■ )

in which the coefficient of y2 is the product of g by b + 2C+dg2Cu, which is

odd. Hence (3) is equivalent to a like form with b odd.

Let D he the g.c.d. of a = Da and b = Dß.   Then D, a, ß are odd, while
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2'a and ß are relatively prime. Let E be the g.c.d. of D=E8 and C = Ey.

Then 8g is prime to 27. Hence there are solutions r,s;M, v; h, u of

(48) 2'ar + ßS = - 27,

(49) ôgM + 27» = 1,    2eaA + ßu = M.

The form (3) is

(50) 7? - 2'gE8axy + gESßy2 + 2Eyyz + g#(z,w, • ■ ■ )•

Consider the linear substitution

x= ßX+hY + rZ,

S : y = - 2'aX + uY + sZ,

z= vY + gôZ,

which does not alter w, etc. Multiply the second row of its determinant

A by ß. To the new second row add the product of the first row by 2"a and

apply (48) and (492). Hence

0A = ß
M    - 2y

v gô
A = 1

by (49i). We see that 5 replaces F by a form in which the coefficient of X1

is zero, and that of X Y is

2'gE8aißu - 2'ah) + gEoßi~ 2-2'au) + 2Eyi~ 2'av)

= - 2eaEig8M + 27») = - 2'aE,

by (49). The coefficient of XZ is the product of -2'gEa8 by -ßS+2'ar

+2ßs+2y = 0, by (48). Changing the signs of F and Z, we get an equivalent

form

(51) 2'aEXY + xiY,Z,w, ■ ■ ■).

Let m denote the minimum odd positive integer such that a given uni-

versal classic form is equivalent to 2"mxy+(piy, z, w, ■ • • ). By (50),

m=gE8a.   Since F is equivalent to (51), aE=m.  Hence l\Wg8, g = 8 = l.

Since g = 1 and a is prime to d, when we express a ternary form (3) with

e = l in the notation (45), we see that A is prime to D. Hence Theorem 15

applies and proves Theorem 14.

Incidentally we have also

Theorem 16. Every universal classic Null quadratic form is equivalent to

(2) with A =2'm, where the minimum m is prime to A, c = 2C, m and B are odd

and their g. c. d. divides C.
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Part IV. All universal f=ax2+by2+cz2

24. Theorem 17. / is universal if and only if (i) a, b, c are not all of like

sign and no one is zero; (ii) a, b, c are relatively prime in pairs; (iii) — be, —ac,

— ab are quadratic residues of a, b, c, respectively; (iv) abc is odd or double an

odd integer.

This was proved elsewhere* by the writer. We shall give here a new proof

that the conditions are sufficient. Byt (i), (ii), (iii), /=0 has solutions

£, t], f, relatively prime in pairs. Then s£—rr\ = \ has solutions s, r. The

substitution

x-& + rY,      y = vX + sY,      z = ÇX + Z

has determinant unity and replaces/ by

F = 2uXY + 2c£XZ + vY2 + cZ2,

where u = a!-r + bns, v = ar2 + bs2.

The Hessians abc and — c(u2+cvÇ2) of / and F must be equal, whence

(52) u2 + cvÇ2 - - ab.

This follows also from the identity

u2 — v(aÇ2 + bn2) = — ab(s!- — rr¡)2

in £, t). By (52) and (ii), no prime divides both u and c. Suppose u and f

have a common prime factor p. By (52), p divides ab. If p divides a, it

divides the second term of a$?+brf+cC2 = 0, whereas b is prime to a, and r\

to f.   Similarly, p cannot divide b.

Hence the coefficients of yi = uY+c£Z are relatively prime. Thus there

is another linear function 2i of F and Z such that the determinant of the

coefficients in yi and 2i is unity. Hence F is equivalent to 2Xyx+<p, where

<j> is quadratic in yi and ««.. The new form is of type (45) with .4 = 1. Its

Hessian abc has property (iv).  By §21, it is universal.

Finally, we give a new proof that (i)-(iv) are necessary conditions that

a Null form / be universal. Such an / is equivalent to F in §8 with e—\.

Then the Hessian of F is —A2D, where D is odd or double an odd. This

proves (iv). If a and b have a common odd prime factor p, /=cz2 (mod p)

and/ would not be universal. This proves (ii). Suppose that — be is a non-

residue of an odd prime factor p of a =pA. Consider values x, y, z for v/hich

/ is divisible by p. Then —bcy2 = (cz)2 (mod p), whence y=2=0, f=pF,

F^Ax2 (mod p), and/ would not be universal.

* Bulletin of the American Mathematical Society, vol. 35 (1929).

t Dirichlet-Dedekind, Zahlentheorie, 4th edition, §157, p. 432.
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