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1. In the following for e- read euclidean, for E- read elliptic. Let x, y, z

be ordinary rectangular coordinates of a point in e-space whose origin is 0.

Set r2=x2+y2+22, X=4A>2+r2, ß = 4R2-r2, where R is an arbitrary positive

constant.  For all points of e-space

da2 = dx2 + dy2 + dz2.

For points within and on the e-sphere ß = 0 we establish an elliptic metric

by means of

(1) ds = i4R2/\)da.

Points outside of ß = 0 do not exist in F-space while two diametral points

on ß = 0 are regarded as identical.

An F-straight is an e-circle cutting ß = 0 in diametral points; an F-plane

is an e-sphere cutting ß = 0 along a great circle. The e-sphere ß = 0 is regarded

as an F-plane. Angles between F-straights and planes have the same

measure in E- as in e-space.

The 4 F-planes x = 0, y = 0, z = 0, ju = 0 form an F-tetrahedron which we

call t. From a point xyz drop F-perpendiculars on the 4 faces of t and let

öi, ¿ = 1, 2, 3, 4, be their F-lengths.   We set

Zi = R sin idi/R).

We find

zi = 4R2x/\,  Zi = 4R2y/\,  z3 = 4R2z/\,  z4 = F/t/X.

Also

(2) 3i2 + Zi2 + z32 + Zi2 = R2,      ds2 = dzi2 + dzi + dz32 + dzt.

In these coordinates the equation of an £-plane has the form

aiZi + a2z2 + a3z3 + a&i = 0.

The distance 5 between two points z, z' is given by

ZiZi   + 22Z2   + Z3Z3   + Z4Z4

cos iô/R) =
R2

* Presented to the Society, February 23, 1929; received by the editors February 1, 1929.
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We may without loss of generality set i? = l and this will be done in the

following.

2. Letci, • ■ • ,c4 be the coordinates of the point of suspension O' whose

latitude is <p and whose longitude is 9. Let OO' =p in ^-measure. For brevity

we set

r = sinp,       r' = cosp,      ri = cotp ;      p = sin<5, h' = cos<j>.

Then

Ci = rCi = rp' cos 8,        c2 = rp' sin 0,        c3 = rp,

Let us now displace the xyz axes so that O moves to 0'. The new e-axes

call £, i], f, where +£, +tj point south and east respectively, while +f

points to the zenith. These axes define a new E-tetrahedron which we call t'.

The relation between the coordinates Zi, • • • , z4 referred to t and the

coordinates fi, • • • , £4 of the same point referred to r' is given by the table,

read as in ordinary analytic geometry.

(3)

Zl

p cos 0

sinö

r'p' cos 0

rp' cos 0

Z2

p sinfl

cosö

r'p' sin 0

rp' sin 0

z3

-.¥

r'p

rp

z4

0

— r

We now suppose that t remains fixed in space, that the earth rotates about

the z axis with a constant angular velocity k = Ô = dd/dt and that finally r'

is rigidly attached to the earth.

We suppose the bob B of the pendulum to be a particle of mass m,

and attached to the point of suspension c or 0' by a weightless rod of length

L in £-measure. Set ¿ = sin L, l' = cos L; let the plane through B and the

f axis make the angle co with the £ • f plane, let the rod O'B make with the

negative f axis the angle yp. Then the coordinates of B relative to r' are

(4) f 1 = I sin ^ cos co,       f j = / sin p sin co,       f3 = — / cos yp,       f4 = /'•

3. Let the force F act on a particle; if the particle is displaced along an

elementary segment of length ds as defined by (1) or by (2) and if 6 is the

angle between F and ds we assume with Killing* that the work done is

dW = F cos dds. We ask now what is dW when yp receives the increment d\p.

In the triangle 00'B we have setting OB =ß in £-measure

* W. Killing, Die Mechanik in den nicht-euklidischen Raumformen, Crelle's Journal, vol. 98

(1885), p. 1.
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sin p
sin B =-; sin \f/ = — cos 0.

sin ß

As ¿s = sin Ld\p we have

sin p sin p
(5) ¿W=-F--•sinFsin^#= -F-¿f3.

sin ß sin j3

Since the length of the pendulum L is negligible compared withp, sin ß = sin p

with a high degree of exactitude. We may therefore write

(6) dW = - Fdii = - F sin F sin ̂ #,

which is what we would expect at once.

We note that the work done when w receives an increment is 0, since in

this case 6 = tt/2, hence dW/du = 0.

4. We now wish to calculate the velocity v of the bob B. We have

Î»2 = s2 = ¿l2 + z22 + ¿32 + ¿42 .

From the table (3) we express the z's in terms of the f's and these by means

of (4) in terms of \p, w. We then differentiate the z's, squared, and add. We

find, setting as before k = Ô,

v2 - k2[l2 sin2 ^ sin2 to + ipl sin ^ cos to - r'/>7 cos </< + Z'/>'r)2]

+ ¿V2 + I2 sin2 ^to2

(7)
+ 2k4>[rp'll' cos ^ sin to - 2V/>' sin to]

+ 2kw[l2p sin2 ^ — r'^72 sin ^ cos ^ cos to + r^>7/' sin ^ cos to].

The kinetic energy of the bob B we define by

T = \mv2.

5. We assume now that the motion of the bob B takes place according to

Hamilton's principle

r iôT + ÔW)dt = 0.
/'

On performing the variation we get as usual Lagrange's equation

d   dT      dT _ d   dT      dT _dW

dt   du        du dt   d\¡/        d\¡/        dtp

Let us calculate the to equation.  From (7)

dT
—- = /2(sin2 \p)-ú + k [l2p sin2 \j/ — r'p'l2 sin ^ cos tf/ cos u> + rp'W sin \f/ cos to],
Otó
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dT
-= k2 [I2 sin2 y sin co cos co — pi sin y sin tc(pl sin y cos co — r'/>7 cos y + /'/>V) J
do¡

+ ky[rp'W cos ^ cos co — ZV/»' cos co]

+ ¿co[r'/>'/2 sin y cos ^ sin co — rp'W sin ^ sin co].

Thus the first equation (8) gives

d d l2   d d
I2—(w sin2 fa + kl2—(sin2fa - kr'p'-(sin 2 y cos co) + krp'W— (sin y cos co)

di d¿ 2   dt dt

= ¿2/2 sin2 y sin co cos co — k2pl sin ^ sin w(pl sin ^ cos co — r'p'l cos ^ + I'p'r)

+ krp'll'((cos co cos ^)i/< — (sin ^ sin co)w)

— kl2r'p'((cos u)y — (sin y cos ^ sin co)có).

We will now suppose that \¡/ is so small that we may set sin ^ = \f/ without

sensible error; then (9) becomes

I2 — (có^2) + kl2p —(fa) - kr'p'l2 —(y cos co) + krp'W—(y cos co)
dt dt dt dt

= k2Pfa sin co cos co — k2ply sin co{^ cos co + (I'r — r'l)p'}

d d
+ krp'W—(y cos co) - klh'p'—(y cos co) ;

dt dt

or as I'r — r'l = cos L sin p — cos p sin Z = sin (p — 7,)= sin p-r very nearly,

we get

l(ùy2 + 2iH¿ + 2kpyfa

— k2ly2 sin co cos co — k2pHfa sin co cos co — k2pp'ry sin co.

Hence

2^(co + kp) + yic = k2p'2y sin co cos co — (k2pp'r/l)sin co.

These are entirely analogous to the equations of classical mechanics. Under

similar conditions we may say therefore that in first approximation the

angular velocity of the plane of vibration is

co = — k sin <t>.
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