FOUCAULT’S PENDULUM IN ELLIPTIC SPACE*

BY
JAMES PIERPONT

1. In the following for e- read euclidean, for E- read elliptic. Let x, y, 2
be ordinary rectangular codrdinates of a point in e-space whose origin is O.
Set r2=a2+92+32, N\=4R*+72, u=4R?—72, where R is an arbitrary positive
constant. For all points of e-space

do? = dx* + dy? + dz?.

For points within and on the e-sphere p=0 we establish an elliptic metric
by means of

(1) ds = (4R?/N)do.

Points outside of u=0 do not exist in E-space while two diametral points
on p=0 are regarded as identical.

An E-straight is an e-circle cutting p =0 in diametral points; an E-plane
is an e-sphere cutting u =0 along a great circle. The e-sphere u =0 is regarded
as an E-plane. Angles between E-straights and planes have the same
measure in E- as in e-space.

The 4 E-planes =0, y=0, 2=0, u=0 form an E-tetrahedron which we
call 7. From a point xyz drop E-perpendiculars on the 4 faces of = and let
8;, 2=1, 2, 3, 4, be their E-lengths. We set

2y = R sin (8.'/R) .
We find
31 = 4R?x/\, 22 = 4R*y/\, 323 = 4R%/\, 24 = Ru/\.
Also

2 22 + 22 + 22 + 22 = R%,  ds? = dz? + dz? + dz? + dzd.
In these codrdinates the equation of an E-plane has the form

6121 + @222 + a33s + @424 = 0.
The distance 6 between two points z, 2’ is given by

2131 + 2027 + 2325 + 243{

cos (3/R) = T

* Presented to the Society, February 23, 1929; received by the editors February 1, 1929,
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We may without loss of generality set R=1 and this will be done in the
following.

2. Letcy, - - -, cq be the codrdinates of the point of suspension O’ whose
latitude is ¢ and whose longitude is . Let 00’ =p in E-measure. For brevity
we set

r=sinp, ¢ =cosp, r =cotp; p=sing, ! = cos ¢.
Then
c1=rp’ cosd, ¢ = rp’sinb, ¢ =r1p, ca=1r.

Let us now displace the xyz axes so that O moves to O’. The new e-axes
call ¢ 19, ¢, where +£, +7 point south and east respectively, while +¢
points to the zenith. These axes define a new E-tetrahedron which we call 7’.

The relation between the coordinates z, - - -, 2, referred to 7 and the
coordinates {1, - - - , {sof the same point referred to 7’ is given by the table,
read as in ordinary analytic geometry.

21 22 23 %4

&1 pcosd psin 6 -7 0

3) &2 — sin g cos 0 0
t3 | #'p'cosB | PP sind r'p -7

¢a | rp'cos@ | rp'sind rp r

We now suppose that 7 remains fixed in space, that the earth rotates about
the z axis with a constant angular velocity k=60=d6/dt and that finally 7’
is rigidly attached to the earth.

We suppose the bob B of the pendulum to be a particle of mass m,
and attached to the point of suspension ¢ or O’ by a weightless rod of length
L in E-measure. Set I=sin L, I’=cos L; let the plane through B and the
¢ axis make the angle w with the £ - { plane, let the rod O’B make with the
negative { axis the angle y. Then the codrdinates of B relative to 7’ are

4) f1=1Isinycosw, ¢a=Isinysinw, ¢3=—1lcosy, {a=1V.

3. Let the force F act on a particle; if the particle is displaced along an
elementary segment of length ds as defined by (1) or by (2) and if 6 is the
angle between F and ds we assume with Killing* that the work done is
dW =F cos 6ds. We ask now what is dW when y receives the increment dy.
In the triangle O0’B we have setting OB =8 in E-measure

* W. Killing, Die Mechanik in den nicht-euklidischen Raumformen, Crelle’s Journal, vol. 98
(1885), p. 1.
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sin p
sin B=——;siny = — cos#.
sin 8
As ds=sin Ldy we have
sin p sin p
(5) dW = — F ——sin Lsinydy = —F —— d¢3.
sin 8 sin 3

Since the length of the pendulum L is negligible compared with p, sin 8 =sin p
with a high degree of exactitude. We may therefore write
(6) dW = — Fdt3 = — Fsin L sin ydy,

which is what we would expect at once.
We note that the work done when w receives an increment is 0, since in

this case §=m/2, hence W /9w =0.
4. We now wish to calculate the velocity v of the bob B. We have
v? =5 = 3% + 2f + 38 + 3l
From the table (3) we express the z’s in terms of the {’s and these by means

of (4) in terms of ¥, w. We then differentiate the 3’s, squared, and add. We
find, setting as before k=4,

12 = E2[I?sin? ¢ sin? w + (plsin ¢ cos w — #'p'l cos ¢ + V'p'r)?]

+ %2 4 12 sin? g

+ 2kY[rp'll cos ¥ sinw — I%'p’ sin w]

+ 2k&[I2p sin? Y — #'p'l% sin ¢ cos ¥ cos w + rp'll’ sin Y cos w].
The kinetic energy of the bob B we define by

Y,

T = im2.

5. We assume now that the motion of the bob B takes place according to
Hamilton’s principle

f(&T + 6W)dt = 0.
On performing the variation we get as usual Lagrange’s equation
® S, LT
Let us calculate the w equation. From (7)

oT
Y PP(sin?y)-@ + k[i2p sin? ¢ — #'p'I2 sin ¢ cos ¢ cos w + rp'l’ sin ¢ cos w],
w
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oT
o = E2[12sin? ¢ sin w cos w — plsin ¢ sin w(plsiny cos w — #'p'l cos ¥ + I'p'r)]
w
+ kY[rp'll’ cos ¥ cos w — %'’ cos w]
+ kalr'p'12 siny cos ¢ sin w — 7p/ll’ sin ¢ sin w].

Thus the first equation (8) gives
l’i(o} sin? ¢) + kl’—(i(sin2 ¥) — k' p’ﬁ —d—(sin 2y cosw) + krp’ll’i(sin¢ COS w)
dt dt 2 dt dt

© = E%2sin? ¢ sin w cos w — k2plsin ¢ sin w(plsiny cosw — r'p'l cos ¢ + U'p’r)
+ krp'll’((cos w cos Y)Y — (sin ¢ sin w)w)
— k' p'((cos w)¢ — (sin ¢ cos ¥ sin w)a).

We will now suppose that ¢ is so small that we may set sin Y =y without
sensible error; then (9) becomes

d d d d
2 :i;(o'.n/ﬂ) + ki?p E(M) — kr'p'l? 5(‘# cos w) + krp’ll’E(np COS w)
= kA% sin w cos w — E2plY sin w{ply cos w + (I'r — rI)p’}
d d
+ krp’ll'z@ cos w) — ki*' P,E(‘I/ Cos w) ;

or as I'r—r'l=cos L sin p—cos p sin L=sin (p—L)=sin p=r very nearly,
we get

Hog? + 29 + 2kpYy)
= k%fY? sin w cos w — k2plY? sin w cos w — k2pp'ny sin w.
Hence
20(w + kp) + Yo = k2p'% sinw cos w — (k2pp'r/l)sin w.

These are entirely analogous to the equations of classical mechanics. Under
similar conditions we may say therefore that in first approximation the
angular velocity of the plane of vibration is

w = — ksin¢.
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