FOUCAULT'S PENDULUM IN ELLIPTIC SPACE*

BY
JAMES PIERPONT

1. In the following for e - read euclidean, for E - read elliptic. Let x, y, z be ordinary rectangular coördinates of a point in e-space whose origin is O. Set $r^{2}=x^{2}+y^{2}+z^{2}, \lambda=4 R^{2}+r^{2}, \mu=4 R^{2}-r^{2}$, where R is an arbitrary positive constant. For all points of e-space

$$
d \sigma^{2}=d x^{2}+d y^{2}+d z^{2}
$$

For points within and on the e-sphere $\mu=0$ we establish an elliptic metric by means of

$$
\begin{equation*}
d s=\left(4 R^{2} / \lambda\right) d \sigma \tag{1}
\end{equation*}
$$

Points outside of $\mu=0$ do not exist in E-space while two diametral points on $\mu=0$ are regarded as identical.

An E-straight is an e-circle cutting $\mu=0$ in diametral points; an E-plane is an e-sphere cutting $\mu=0$ along a great circle. The e-sphere $\mu=0$ is regarded as an E-plane. Angles between E-straights and planes have the same measure in E - as in e-space.

The $4 E$-planes $x=0, y=0, z=0, \mu=0$ form an E-tetrahedron which we call τ. From a point $x y z$ drop E-perpendiculars on the 4 faces of τ and let $\delta_{i}, i=1,2,3,4$, be their E-lengths. We set

$$
z_{i}=R \sin \left(\delta_{i} / R\right)
$$

We find

$$
z_{1}=4 R^{2} x / \lambda, \quad z_{2}=4 R^{2} y / \lambda, \quad z_{3}=4 R^{2} z / \lambda, \quad z_{4}=R \mu / \lambda
$$

Also

$$
\begin{equation*}
z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}=R^{2}, \quad d s^{2}=d z_{1}^{2}+d z_{2}^{2}+d z_{3}^{2}+d z_{4}^{2} . \tag{2}
\end{equation*}
$$

In these coördinates the equation of an E-plane has the form

$$
a_{1} z_{1}+a_{2} z_{2}+a_{3} z_{3}+a_{4} z_{4}=0
$$

The distance δ between two points z, z^{\prime} is given by

$$
\cos (\delta / R)=\frac{z_{1} z_{1}^{\prime}+z_{2} z_{2}^{\prime}+z_{3} z_{3}^{\prime}+z_{4} z_{4}^{\prime}}{R^{2}}
$$

[^0]We may without loss of generality set $R=1$ and this will be done in the following.
2. Let c_{1}, \cdots, c_{4} be the coördinates of the point of suspension O^{\prime} whose latitude is ϕ and whose longitude is θ. Let $\overline{O O}^{\prime}=\rho$ in E-measure. For brevity we set

$$
r=\sin \rho, \quad r^{\prime}=\cos \rho, \quad r_{1}=\cot \rho ; \quad p=\sin \phi, \quad p^{\prime}=\cos \phi
$$

Then

$$
c_{1}=r p^{\prime} \cos \theta, \quad c_{2}=r p^{\prime} \sin \theta, \quad c_{3}=r p, \quad c_{4}=r^{\prime}
$$

Let us now displace the $x y z$ axes so that O moves to O^{\prime}. The new e-axes call ξ, η, ζ, where $+\xi,+\eta$ point south and east respectively, while $+\zeta$ points to the zenith. These axes define a new E-tetrahedron which we call τ^{\prime}.

The relation between the coördinates z_{1}, \cdots, z_{4} referred to τ and the coördinates $\zeta_{1}, \cdots, \zeta_{4}$ of the same point referred to τ^{\prime} is given by the table, read as in ordinary analytic geometry.
(3)

	z_{1}	z_{2}	z_{3}	z_{4}
ζ_{1}	$p \cos \theta$	$p \sin \theta$	$-p^{\prime}$	0
ζ_{2}	$-\sin \theta$	$\cos \theta$	0	0
ζ_{3}	$r^{\prime} p^{\prime} \cos \theta$	$r^{\prime} p^{\prime} \sin \theta$	$r^{\prime} p$	$-r$
ζ_{4}	$r p^{\prime} \cos \theta$	$r p^{\prime} \sin \theta$	$r p$	r^{\prime}

We now suppose that τ remains fixed in space, that the earth rotates about the z axis with a constant angular velocity $k=\dot{\theta}=d \theta / d t$ and that finally τ^{\prime} is rigidly attached to the earth.

We suppose the bob B of the pendulum to be a particle of mass m, and attached to the point of suspension c or O^{\prime} by a weightless rod of length L in E-measure. Set $l=\sin L, l^{\prime}=\cos L$; let the plane through B and the ζ axis make the angle ω with the $\xi \cdot \zeta$ plane, let the $\operatorname{rod} O^{\prime} B$ make with the negative ζ axis the angle ψ. Then the coördinates of B relative to τ^{\prime} are

$$
\begin{equation*}
\zeta_{1}=l \sin \psi \cos \omega, \quad \zeta_{2}=l \sin \psi \sin \omega, \quad \zeta_{3}=-l \cos \psi, \quad \zeta_{4}=l^{\prime} \tag{4}
\end{equation*}
$$

3. Let the force F act on a particle; if the particle is displaced along an elementary segment of length $d s$ as defined by (1) or by (2) and if θ is the angle between F and $d s$ we assume with Killing* that the work done is $d W=F \cos \theta d s$. We ask now what is $d W$ when ψ receives the increment $d \psi$. In the triangle $O O^{\prime} B$ we have setting $\overrightarrow{O B}=\beta$ in E-measure

[^1]$$
\sin B=\frac{\sin \rho}{\sin \beta} ; \sin \psi=-\cos \theta
$$

As $d s=\sin L d \psi$ we have

$$
\begin{equation*}
d W=-F \frac{\sin \rho}{\sin \beta} \sin L \sin \psi d \psi=-F \frac{\sin \rho}{\sin \beta} d \zeta_{3} \tag{5}
\end{equation*}
$$

Since the length of the pendulum L is negligible compared with $\rho, \sin \beta=\sin \rho$ with a high degree of exactitude. We may therefore write

$$
\begin{equation*}
d W=-F d \zeta_{3}=-F \sin L \sin \psi d \psi \tag{6}
\end{equation*}
$$

which is what we would expect at once.
We note that the work done when ω receives an increment is 0 , since in this case $\theta=\pi / 2$, hence $\partial W / \partial \omega=0$.
4. We now wish to calculate the velocity v of the bob B. We have

$$
v^{2}=\dot{s}^{2}=\dot{z}_{1}{ }^{2}+\dot{z}_{2}^{2}+\dot{z}_{3}{ }^{2}+\dot{z}_{4}^{2}
$$

From the table (3) we express the z 's in terms of the ζ 's and these by means of (4) in terms of ψ, ω. We then differentiate the z 's, squared, and add. We find, setting as before $k=\dot{\theta}$,

$$
\begin{align*}
v^{2}= & k^{2}\left[l^{2} \sin ^{2} \psi \sin ^{2} \omega+\left(p l \sin \psi \cos \omega-r^{\prime} p^{\prime} l \cos \psi+l^{\prime} p^{\prime} r\right)^{2}\right] \\
& +l^{2} \psi^{2}+l^{2} \sin ^{2} \psi \dot{\omega}^{2} \\
& +2 k \psi\left[r p^{\prime} l l^{\prime} \cos \psi \sin \omega-l^{2} r^{\prime} p^{\prime} \sin \omega\right] \tag{7}\\
& +2 k \dot{\omega}\left[l^{2} p \sin ^{2} \psi-r^{\prime} p^{\prime} l^{2} \sin \psi \cos \psi \cos \omega+r p^{\prime} l l^{\prime} \sin \psi \cos \omega\right]
\end{align*}
$$

The kinetic energy of the bob B we define by

$$
T=\frac{1}{2} m v^{2}
$$

5. We assume now that the motion of the bob B takes place according to Hamilton's principle

$$
\int(\delta T+\delta W) d t=0
$$

On performing the variation we get as usual Lagrange's equation

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial T}{\partial \dot{\omega}}-\frac{\partial T}{\partial \omega}=0, \quad \frac{d}{d t} \frac{\partial T}{\partial \psi}-\frac{\partial T}{\partial \psi}=\frac{\partial W}{\partial \psi} \tag{8}
\end{equation*}
$$

Let us calculate the ω equation. From (7)

$$
\frac{\partial T}{\partial \dot{\omega}}=l^{2}\left(\sin ^{2} \psi\right) \cdot \dot{\omega}+k\left[l^{2} p \sin ^{2} \psi-r^{\prime} p^{\prime} l^{2} \sin \psi \cos \psi \cos \omega+r p^{\prime} l l^{\prime} \sin \psi \cos \omega\right]
$$

$$
\begin{gathered}
\frac{\partial T}{\partial \omega}=k^{2}\left[l^{2} \sin ^{2} \psi \sin \omega \cos \omega-p l \sin \psi \sin \omega\left(p l \sin \psi \cos \omega-r^{\prime} p^{\prime} l \cos \psi+l^{\prime} p^{\prime} r\right)\right] \\
+k \psi\left[r p^{\prime} l l^{\prime} \cos \psi \cos \omega-l^{2} r^{\prime} p^{\prime} \cos \omega\right] \\
+k \dot{\omega}\left[r^{\prime} p^{\prime} l^{2} \sin \psi \cos \psi \sin \omega-r p^{\prime} l l^{\prime} \sin \psi \sin \omega\right]
\end{gathered}
$$

Thus the first equation (8) gives

$$
\begin{aligned}
& l^{2} \frac{d}{d t}\left(\dot{\omega} \sin ^{2} \psi\right)+k l^{2} \frac{d}{d t}\left(\sin ^{2} \psi\right)-k r^{\prime} p^{\prime} \frac{l^{2}}{2} \frac{d}{d t}(\sin 2 \psi \cos \omega)+k r p^{\prime} l l^{\prime} \frac{d}{d t}(\sin \psi \cos \omega) \\
& = \\
& \begin{aligned}
(9) & k^{2} l^{2} \sin ^{2} \psi \sin \omega \cos \omega-k^{2} p l \sin \psi \sin \omega\left(p l \sin \psi \cos \omega-r^{\prime} p^{\prime} l \cos \psi+l^{\prime} p^{\prime} r\right) \\
& +k r p^{\prime} l l^{\prime}((\cos \omega \cos \psi) \psi-(\sin \psi \sin \omega) \dot{\omega}) \\
& -k l^{2} r^{\prime} p^{\prime}((\cos \omega) \psi-(\sin \psi \cos \psi \sin \omega) \dot{\omega}) .
\end{aligned}
\end{aligned}
$$

We will now suppose that ψ is so small that we may set $\sin \psi=\psi$ without sensible error; then (9) becomes

$$
\begin{gathered}
l^{2} \frac{d}{d t}\left(\dot{\omega} \psi^{2}\right)+k l^{2} p \frac{d}{d t}\left(\psi^{2}\right)-k r^{\prime} p^{\prime} l^{2} \frac{d}{d t}(\psi \cos \omega)+k r p^{\prime} l l^{\prime} \frac{d}{d t}(\psi \cos \omega) \\
=k^{2} l^{2} \psi^{2} \sin \omega \cos \omega-k^{2} p l \psi \sin \omega\left\{p l \psi \cos \omega+\left(l^{\prime} r-r^{\prime} l\right) p^{\prime}\right\} \\
+k r p^{\prime} l l^{\prime} \frac{d}{d t}(\psi \cos \omega)-k l^{2} r^{\prime} p^{\prime} \frac{d}{d t}(\psi \cos \omega) ;
\end{gathered}
$$

or as $l^{\prime} r-r^{\prime} l=\cos L \sin \rho-\cos \rho \sin L=\sin (\rho-L)=\sin \rho=r$ very nearly, we get
$l\left(\ddot{\omega} \psi^{2}+2 \psi \dot{\omega} \psi+2 k p \psi \psi\right)$
$=k^{2} l \psi^{2} \sin \omega \cos \omega-k^{2} p^{2} l \psi^{2} \sin \omega \cos \omega-k^{2} p p^{\prime} r \psi \sin \omega$.
Hence

$$
2 \psi(\dot{\omega}+k p)+\psi \ddot{\omega}=k^{2} p^{\prime 2} \psi \sin \omega \cos \omega-\left(k^{2} p p^{\prime} r / l\right) \sin \omega .
$$

These are entirely analogous to the equations of classical mechanics. Under similar conditions we may say therefore that in first approximation the angular velocity of the plane of vibration is

$$
\dot{\omega}=-k \sin \phi .
$$

Yale University,
New Haven, Conn.

[^0]: * Presented to the Society, February 23, 1929; received by the editors February 1, 1929.

[^1]: * W. Killing, Die Mechanik in den nicht-euklidischen Raumformen, Crelle's Journal, vol. 98 (1885), p. 1.

