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Introduction

The Vandermonde determinant, usually written in this way :

1      • • • 1

oi     • • ■ o„

I on"-1 • ■ • a.--1 I

is an alternant and is equal to the difference-product of its variables. Instead

of keeping the indices of the Vandermonde determinant fixed at 0, 1,2, • ■ • ,

n — 1, let us take any positive integers. This yields another alternant which

we shall call a generalized Vandermonde determinant. This determinant may

be expressed thus:

Ol'i • • • O.''

oi'» • • • o.'»

I  Oi'" • • • O.'"   I

in which íi<í2< • • • <tn- Since this alternant vanishes on equating any

two of its variables, we know that every generalized Vandermonde determin-

ant is divisible by the difference-product of its variables and hence by the

Vandermonde determinant of these variables. Let us now consider the quo-

tient of any generalized Vandermonde determinant by its Vandermonde

determinant. Since both change sign under a transposition, their quotient

will remain unchanged, putting it into the class of symmetric functions. A

general formula for finding this symmetric function has been the goal of

much research in the last half century.

Thus far two ways of treating this subject have been introduced. One

Oï these involves the determination of a general method for finding the

quotient of a generalized Vandermonde determinant by the Vandermonde

determinant of its variables in terms of symmetric functions.  This method

* Presented to the Society, September 9, 1927; received by the editors in February, 1929.
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has been used by W. Woolsey Johnson* and, in an entirely different manner,

by Thomas Muir.f The second method of approach, used by both MuirJ

and E. D. Roe, Jr.,§ consists of the multiplication of the Vandermonde

determinant by a symmetric function and the expression of this product as

an integral rational function of generalized Vandermonde determinants in

the same variables.

The object of this paper is to develop a new method of treating this prob-

lem, consisting in first expressing every generalized Vandermonde deter-

minant as an integral rational function of certain special Vandermonde

determinants. This leads to a solution of the problem mentioned above;

and it gives, in conjunction with a theorem of Muir's, a direct method for

expressing an integral symmetric function of n variables in terms of the

elementary symmetric functions. In this treatment of the subject, the deter-

minant

=  Ufo-«/) 0*=1,2, •••,»-!)
t-2

<>)

will be called the principal Vandermondian and will be represented by the

notation \n — \,n — 2, ■ ■ ■ ,1,0|. The matrix formed from this determinant

by adding the «th power of the variables as an extra row will be called the

Vandermonde matrix and will be represented by the symbol ||», w — 1, • • • ,

1, 0||. And the determinant formed from this matrix by omitting the

(« — & + l)th row, or the (¿ + l)th term in the symbol, will be represented

by |», »—1, • • • ,n — k + l,n — k — 1, • • • ,l,0|or briefly by V„k, in which

the first subscript, n, denotes the number of variables, and the second

subscript, k, indicates that the (¿ + l)th term has been omitted from the

symbol for the Vandermonde matrix, \\n, n — \, • • • , 1, 0||.H The special

case k = 0 gives the principal Vandermondian Fn0. The determinants

Vnk, where k ¿¿0, will be called secondary Vandermondians. The first section

of this paper is concerned with expressing any generalized Vandermonde

determinant in terms of the principal and secondary Vandermondians.

* American Journal of Mathematics, vol. 7, pp. 345-352, 380-388; Quarterly Journal of Mathe-

matics, vol. 21, pp. 217-224.

t Proceedings of the Royal Society of Edinburgh, vol. 14, pp. 433-445.

t Proceedings of the Royal Society of Edinburgh, vol. 22, pp. 539-542.

§ American Journal of Mathematics, vol. 25, pp. 97-106.

1 Where there is no danger of confusion, the subscript n will be omitted from the symbol F„*.
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1. Secondary Vandermondians and elementary symmetric functions.

Notations

Since the quotient of any generalized Vandermonde determinant by the

principal Vandermondian is always a symmetric function, we can express it

rationally in terms of elementary symmetric functions. We will now show

that every elementary symmetric function of «i, • • • , a„ is expressible ration-

ally in terms of the principal and secondary Vandermondians in these

variables.  Consider the equation

(1) pox" + pix"-1 + • • • + pn-ix + pn = 0.

whose roots are ai, a2, ■ ■ ■ , an. We then have

Pi
(2) — = (- l)<I>ia2 •■ -at (i = 1,2, • ■ • , n).

Po

By substituting each of the roots in equation (1), we obtain n identities:

n

(3) E/W-^0 (i= 1,2, • •• , n).

We look upon these identities as stating that po, pi, ■ ■ ■ , pn satisfy a system

of n equations in the p's. The matrix of this system of n equations in n+1 un-

knowns is the Vandermonde matrix \\n, n — l, ■ ■■ ■ , I, 0||. Hence we  have

(4) - = (-D^ (*= 1,2, •••,«).
Pu VnO

Equations (2) and (4) yield

Vni
(5) —- =   E«i«2   • • Oi (i = 1,2, • • • , n).

►nO

We may therefore state

Theorem I. The elementary symmetric function E,=.£aia2 ■ ■ ■ at of

the n variables ai, a2, ■ • ■ , an is equal to the quotient of the secondary Vander-

mondian V„i by the principal Vandermondian Vn0.

From this theorem follows

Corollary I. p¡ = ( — 1) 'Vnjp, where p is a proportionality factor.

Before proceeding farther, we will lay down the following definitions:

Definition I.   Dî will represent the following Ith order determinant,

formed from principal and secondary Vandermondians in n variables:
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D?

Vi V2 V3

V0 Vi v2

0  V0 Vi

Vn0

0 7,

Vn0

0

0

0

0   Vo V, V2

■    • O     Va   Vl

where I may be less than, equal to, or greater than ».

Definition II. Dr{h, h, ■ ■ ■ , ¿«-1, t,), where /¡gk^t2 = • • • =i,_i^/„

is defined to be the determinant obtainable from Z>¡n by increasing the sub-

scripts in the first t, rows by s, those in the next i,-i — t, rows by s — 1, • • • ,

those in the next h —12 rows by 1. In this connection V m is defined to be 0

if m is greater than w ; and a zero which precedes a Va should be replaced by

Vo whenever the subscripts in the row in which it stands are increased by 1.

For example

¿V{3,2,1,1}

V,

vt
Vo

0

0

v3

v,

0

0

Vi

v2

Vo

0

v&

Vz

Vi

2. The determinants \k,n — 2,» — 3, • ■ • ,1,0 |

We shall now attempt to develop a general formula for the generalized

Vandermonde determinant \k, » — 2, « — 3, • ■ • , 1, 0|, where k>n — 2.

To establish this general formula we will use mathematical induction.

Setting k =« — 1 yields the principal Vandermondian Vn0. Also, if k = », we,

have the secondary Vandermondian Vni. In comparing \k + l, n — 2, ■ ■ ■ ,

1, 0 |, where k>n, with \k, n — 2, ■ ■ • , 1, 0 |, we shall consider the » systems

of k—n+2 equations each:

M.*+1 + Piat +

paa? +

+ pnaï~n+l

+ />„_1fl*-"+1 + pnaï~n

= 0,

= 0,

M¿" + Pia?~l + ■ • • + A.-1Ö, + pn = 0,

where i takes the values 1 to « inclusive.   Eliminating the k — n+1 variables

af-1, fl*-2, • • • , a,"-1, from the ith. system, we have
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P%    p3

Pi h
P» Pi
0   A>

0

0

0

0

0

PnO      ■      ■

Pn  0       •

Pn   0

Pn   0

0    Pi

0   p

•    0 p„

0

0

0

0

Pn

Pn-1

Pn-X

O    p<¡    pi   pi

A    t+1    L >.    *

foo<    -r Pi«*

peat

0

0

0
*   n-2

n-2 n-3
Pn-lOi      + PnOi

+ ■ • ■ + PnOi

0       Pn   pi plOi      + ■ • • + pn-lOi + pn

= 0.

Multiplying the first row by (—Po) and adding to it pi times the second row

and developing according to the elements of the last column, we get

o*+Vo2

pi pt

po pi

Pn    0

•     pn   0

0 0 po   pi k-n+l

+ afpo

i _
Popi   Plp2 — Pop3 ■ ■ ■ Plpn-l — Popn   Plpn     0

0

Pi

Po

.0

Pn-2 Pn-l    Pn 0 •  • • 0

pn-3 pn-i    pn-1    pn    0 •  ■  • 0

0   po Pi I *-n+l

+ Miar2 + Msars + ■ • • + Mn-iai + Mn = 0,

where the ilf's represent polynomials in the ^'s. The second determinant,

which, multiplied by p0, is the coefficient of af in the above-mentioned

equation, may be looked upon as the sum of two determinants or as a single

determinant of order one higher, giving us

af+1p¿

pi pi

po pi

0 po

0 •

Pn     0      •

• Pn     0

• '    pn  0

•0

• 0

• 0

0 po pi I *-«+!
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+ afpo

pi pi

po pi

O po

O •

Pn      O       •

• Pn    O

• •      pn   O

O popí

+ M2a?-2 +

k—n+î

+ Mn = 0.

Using the corollary to Theorem I to change the p's to the V's, multiplying

the odd rows and the even columns of the two determinants through by — 1,

dividing through by V0 and by the proper power of the proportionality

factor p, and introducing the symbol D?, we obtain « equations which

may be considered as homogeneous equations in Dkn-n+2, Dkn-n+i, and « —1

other variables which differ from the M's by the factor Vo, multiplied by

some power of p. Solving these equations for the ratio of Z>4n_„+2 and Z>"_„+i,

we find

Vo\k + l,n-2, ■■ ■ ,1,0\   :  \ k, n - 2, ■ ■ ■ , 1,0|  = Z?*»_+2:FV_+i.

Writing this relation for k=n — \,n,n+\, ■ ■ ■ ,k — l,weget

VoViiVo = Di»:Don = Vi-A,

Vo\n+l,n-2, ■ ■ ■ , 1,0 [ : Vi = D2n:D?,

V0\n + 2,n-2, ■ ■ ■ , 1,0 |   :  | n + \,n - 2, • ■ • , 1,0| = £>3B:ö2n,

Vo\k,n-2, ■ ■ ■ , 1,0J  :   \k-l,n-2, 1,0   =ZV_+1 :Z?t».

Multiplying the terms of the first ratios in each of these equations by 1,

Vo, Vo2, ■ ■ • , Vf ~n, we get the continued proportion

Vok-n+1\k,n-2, ■■■ , 1,01 :Vok-"\k- l,»-2, •••, 1,0| : •••

:Vo21 n + \,n - 2, ■ ■ ■ , l.O^FoFxrFo = FV_+1 :£>*"_„: • • • :FV:LV:1.

Hence we find that

Fo*-»| k,n-2, ••• , 1,01 =FV_n+1.

We have therefore proved the following theorem :

Theorem II. The generalized Vandermonde determinant \k, n — 2, ■ ■ • ,

1, 0 | multiplied by the ik—n)th power of the principal V andermondian is equal

to the determinant Dkn-n+i isee Definition I).
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3.   The determinants \k,j, n — 3, ■ ■ ■ , 1, 0|

Our next task is to develop a formula for the determinant in which the

two highest exponents of the variables are allowed to vary. We shall attempt

to compare \k, j, n — 3, • • • , 1, 0|, where/>« — 2, with \k, n — 2, ■ ■ ■ ,

1, 0 |.  To do this we consider » systems of k—«+1 equations each:

poaf + pía*'1 +

poa*-1 +

+   pk-iaj   +

+ pk-j-iüi' +

+ pnat"-"      = 0,

+ pnaik-n+} = 0,

poa? +-V pn = 0,

where i takes the values 1 to » inclusive. Eliminating the k—n sets of vari-

ables fli*-1, • • • , a¿í+1, flj,_1, • • • , fl¡n_I, we get the following determinant of

order k—n+1:

Po    ■

0    pa

Pt-i-1 pk-j+i

Pk-i-2   pk-,

Pk-j-3   Pk-i-l

■ Pn   0        •        •

■ ■     Pn    0        ■

■ ■        ■     Pn   0

• 0

• 0

• 0

poOi + pk-¡a,

pk-j-xa,

Pk-j-lOi

0      pn     ■

•    0     Po A.-i

p2n-i-ia,

p2n-i-20i + pna.

0      pn   pi

■ o p,
■      0      pn

Pn-j+2  PlOi + pj-n+¡ai       +

pn-j+\  ptfii + Pl-n+lßi      + ■

•■+pnai

n—2 )—n—1

Pn-i       pj-n+iai       + • • • + PnOi

0   pn   Pi Pia,       +  ■  ■  ■  + pn-lOi + pn

= 0.

Writing this determinant as the sum of « + 1 determinants by splitting the

last column into the sum of w columns each of which has the same power of a

in all of its elements, we have

Uta? +

Pi

Po

Pk-j-l Pk-j+l

Pk-j-2  Pk-j

0 po

■ 0

•  0

P2

Po

Pn     0

•       Pn   0

Pk-i

Pk-i-1

Pi-n Pi

Pi-n-1 Po

pj-n-2   0

0 po Pi 0

di>

k-n+l
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a,""2 + «73af-3 + • • •

+ Un-iOi + Un = 0,

k—n+l

where the ¿7's are polynomials in the p's. If, in the determinant which is the

coefficient of a,3', we move the elements of the last column to their natural

position, the (k— j)th column, we obtain ( — 1)j'-»+i multiplying a deter-

minant the form of Dkn-n+i but having for its elements p's instead of Vs.

If, in the coefficient of a¡"-2 we interchange rows and columns and invert

the order of the rows and columns, we get a determinant differing from

Z>fcn_n+i {j—n+2} only in that we have p's for elements instead of Vs.

Now apply the corollary to Theorem I to both determinants to change the

p's to Vs. All of the elements-of the coefficient of a,-' will be positive if we

multiply the odd rows and even columns by —1. To accomplish the same

thing in the coefficient of a,"-2, we multiply the first/—re+2 rows by — 1 and

then multiply the odd rows and the even columns by —1.   This gives us

WQa* + (- iy—«(- 1)*—"W-hhW

+ (- l)i-»+2(- l)*-*HZ>AHMa{y - n + 2}cTi"-2

+ W3ar3 + • • • + Wn-iai + Wn = 0,

where the W's are polynomials in the Vs. Solving these equations for the

ratio of the two D's, we have

I k,j,n - 3, • • • , 1,01   :  | k,n - 2, • • • , 1,0|

= (_ l)i+*-i»+3D,?-n+i{j - n + 2} : - (- l)>'+*-2»+2Z>Ln+i.

Multiplying the left members of the proportion by V$ ~n, we get

Fo* —| k,j,n - 3, • • • , 1,0| :Fo*-n| k,n-2, ■ ■ ■ , 1,01

= -D*»_n+i{; - n + 2} :Dkn-n+i.

But V0k~n \k, n-2, ■ ■ ■ , 1, 0 | =Z?"_n+i, hence

F0*-"| k,j,n- 3, •• -, 1,0 | =Z>*"-n+iÜ- ra + 2}.

We may summarize this result in

+

Pl  •   •   •  Ph-i-l Pk-j+T.   ■   ■   ■  Pn    0 •   •   •  0

p0  ■   ■   ■  Pk-i-i pk-i       ■   ■   ■     •     Pn   0       ■   •   0

0 t>n £i        t>v
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Theorem III.    The generalized Vandermonde determinant  \k, j, n — 3,

• • • , 1, O | multiplied by the (k—n)th power of its principal is equal to the

determinant Dkn-n+i{j—n+2} (see Definition II).

4.  The general Vandermondian

By the use of mathematical induction we shall now prove the formula

for the determinant in which we vary any number of exponents of the

variables. We note the special case in Theorem III and then proceed to

compare  \h, k, ■ ■ ■ , t„ n—s — l, • • • , 1, 0| with  |/i, t2, ■ ■ ■ , /s_i, n—s,

• • • , 1, 0 |. Consider the ti—n systems of equations

n

J^PiOi1-' (I = h,h - 1, •••,«; i = 1,2, ■■ ■ , n).
i-o

We choose to eliminate all of the variables except «<**, a^, • • • , a«'*-1,

a/«, a?~', a,"-*-1, • • ■ , a<, 1, giving us the following (ti—n + l)th order

determinant:

py pi • • • pt,-t,-i pt,-t,+i.i<,-(,-i PtftryA • ■ •

po Pi • ■ • Pn-t,-i Ph-'i.Pit-t,-i Ph-t,   ■ ■ •

0.0 p0

0.0 Po

Pn 0    •   • • ■ 0       poa'i +pt¡-tla¡'-\-1- Ph-t,ai'

■   p„ 0   • ■ • 0       pt,-H-\ai + ■ • • + pti-t,-ia'

Pn-l      •  • •  + pln-t-tfii    + PnOi

= o,

1,+n+lP>-\    Pn-tfii   + p.Oi      + • • •

where it is to be understood that Pk = 0, whenever k>n. Writing this de-

terminant as the sum of w+1 determinants by regarding the last column

as the sum of n columns each of which has the same power of a in all of its

elements, we obtain

M kh«i + M2ab + • • • + Mi-ia/*-1

Pi    P2.Ph-t,-l   K-Í.+1   ■   ■   ■   Pn     0 •   •    •   0     ph-t,

,     Po Pi.Pn-u-s pti-t,    - ■ ■      pn 0 ■ ■    0 ph-t,-i
+ ar

0 •   ■   •        0      po        ■   ■   ■   pn-t,-l    Pn-t.+l     ••••'■• •      p„_i pn-t, i,-n+l
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+

pi pi

Po Pi

piv.tr-l Ph-t.+l ■ •■ Pn 0 •  •  • 0     0

Pt,-t,-i   ph-t,       ■   ■   ■ pn   0   ■   •   •   0      0

ai"

. 0   po ■  ■  • P»-1   P,      I «,-n+l

+ N,+iar-l + A.+2Oi«—2 + • • • + Nn-iai +Nn = 0,

where the M's and the A's are polynomials in the p's. Let us consider the

determinants which are the coefficients of o¿'« and o¿n_*. Place the elements

of the last column of the coefficient of Oi'* in their natural position, the

iti — te—s+2)th column; then interchange rows and columns; then invert

the order of the rows and columns, giving us ( — l),,+*~n_1 multiplying a

determinant of the form of Dtl-n+i {t2—n+2,t3—n+3, • • • , i,_i—n+s— \),

but having for its elements p's in place of Vs. If, in the coefficient of a?-*,

we interchange rows and columns and then invert the order of rows and

columns, we get a determinant differing from Z>("_„+i{í2—»+2, t3—n+3,

• • • , t,—n+s} only in that the elements are p's instead of Vs. We now

apply the corollary to Theorem I to both determinants to change the p's

to Vs. All of the elements of the coefficient of a<'' will be positive if we mul-

tiply the first h—n+2 rows by — 1, the first t3—n+3 rows again by — 1, • • •

the first t,-i—n+s — 1 rows again by — 1 ; and then multiply the odd rows and

even columns by — 1. This requires Q^I2 '/""**+Í)+*i~"**+l"*£í-i*í

—n+j changes in sign. When this number is added to the t,—n+s — 1

changes mentioned above, we get —1+ ]£'=i¿,—n+j changes. We can

make all of the changes of the coefficient of a?~" positive by multiplying

the first h—n+2 rows by —1, the first t3—n+3 rows again by — 1, • • •

the first t,—n+s rows again by — 1 ; and then multiplying the odd rows and

the even columns by —1. This requires o-=]C*_ií,'—M+i changes in sign.

Our equation then takes the form

AW> + Xtß}* + ■ ■■ + AVjo/.-!

+ (- l)-l+'Dl_n+i{t2 + n + 2,t3 + n + 3, ■ • • , *_i - » + s-i}a^

+ i- \)°D?,-.n+i\h -n + 2,t3 -n + 3, ■ ■ ■ ,t,-n + s\a?~>

+ F.+jOi«-«-1 + Y^2ar'~2 + • • • + Fn-iOi + F„ = 0,
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where the X's and the F's are polynomials in the Vs.  We can then say

| h,h, • • • , t,,n - s - 1, ■ ■ ■ ,  1,01 : | h,t2, ■ ■ ■ , t,-i,n - s, ■ ■ ■ , 1,01

= Z),"_„+i{/2 - » - 2,t3 - n + 3, ■ ■ ■ , t.- n + s)

:Z>"-.+i{<2 - n + 2,t3 - n + 3, ■ ■ ■ , /,_i -n + s - l}.

Multiplying the left members of the proportion by Vntl~n and noting the

special case where 5 = 2, and t,-i = k, and t,=j in the preceding theorem, we

have

Vo'*-n\ti,t2, ■ ■ ■ , t„n- 5- 1, • • • , 1,0 |

= Dnh-n+i{t2 - n + 2,t3 -n + 3, ■ ■ ■ , t, - n + s}.

We may now state our general theorem :

Theorem IV. The generalized Vandermonde determinant \h, t2, ■ ■ ■ , t„

n—s — l,--,l,0\ multiplied by the ih — n)th power of the principal Vander-

mondian is equal to the determinant Z>"-»+i {h—n+2, t3—n+3, ■ ■ ■ , t,—n

+s}.

5. Symmetric functions

We shall now use the preceding results to devise a method for expressing

any integral rational symmetric function in terms of elementary symmetric

functions. To accomplish this, we make use of the following theorem of

Muir's: The product of a simple alternant and a single symmetric function

of its variables is expressible by a sum of simple alternants, whose indices

are got by arranging the variables in every term of the symmetric function

in the same order, and adding the indices of each term to the indices of the

original alternant, the first to the first, the second to the second, and so on.*

For example

| aWc* |  2>36 = | a3b2c2 \ + | oW | + | alb*c* \ + \ a°b4c3 \

+ | aWc* | + | aWc* | = | a«b2c* \ - \ aWc* \ - \ alb2c* \.

Using this theorem, we can express as a function of generalized Vandermon-

dians the product of any integral rational symmetric function by the prin-

cipal Vandermondian in the same number or larger number of variables.

Since every generalized Vandermondian is expressible in terms of principal

and secondary Vandermondians, and these in turn are expressible in terms

of elementary symmetric functions, we can express every integral rational

symmetric function in terms of elementary symmetric functions.     For

* Muir's Theory of Determinants, vol. IV, p. 151.
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example, to compute £a2Z>c in four variables, we multiply the principal

Vandermondian in four variables by the given function:

| a°¿W | • £a26c = | aWa"41 + | aWcH* \ + | aWcW1

+ | a°A W1 = | aWcW | - 3 | alb2cW \ .

Using the notation used in the preceding sections,

Vo Za26c =  |5302|-3|432l|

Vz   Vi

Vo   Vi=-3Vi
Vo

v- .,        VlV^ - V°V*      3V*
2_,a2bc =-

Vo2 Vo

= EiEs - AEi.

We shall now prove that the result for » variables, where n>r, can be

obtained if a symmetric function of degree r is multiplied by the principal

Vandermondian in r variables. That is to say, when we express £a0m°flri

• • • öi"1! for »variables, where Wo = Wi= • • • =w( and £;=0w¡ = r, in terms

of elementary symmetric functions, none of the subscripts of the E's can

exceed r. To show this, we multiply Ido0^1 ■ ■ ■ a„Z\ | by^a™0«™1 • • • a"'.

The product will consist of a number of generalized Vandermondians. The

highest exponent which can occur in the symbols for any of these general

Vandermondians is m0+n — l and the number of exponents in these symbols

which are increased above what they are for the principal Vandermondian is

at most /, since there are only t exponents in the given symmetric function.

Hence the highest subscript in any of the D's is ma+n — l — n + l and no D

followed by a brace can have more than t elements in the brace. Hence the

highest subscript in any V can not exceed m0+t, but since mhm2, ■ ■ ■, mt are

all greater than or equal to 1, it follows that r = w0+£í=tw¿ = Wo+/, so

that no subscript of any V can exceed r.

Before concluding the paper, it may not be amiss to present another ex-

ample. In order to express£a362 in terms of elementary symmetric functions,

we multiply it by the principal Vandermondian in 5 variables:

| aPbWdte* |   £>362 = | aWcHH* \ + \ a"b4c2d3e6 \

+ | fl261c5a'3e41 + | a%lcH*e* \ + \ aWcWe* | + | a°blcW \ + | aWcHW \  .
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Changing notation, we get

Vo E«'*1 = I 7521° I - I 743101 - | 65310 | + 2 | 643201 - 2

V2 V3 V4

Vi V2 V3

0   Vo Vi

V3 V* Vb

Vo Vi F2

0   FoFi

VsVi

ViV2
+ 2-

F4F6

FoFx

Fo2 Fo2 Vo Vo

ViV22 - 2VÍV3 - VoV2V3 + 5FoF!F4 - 5F0aF6

Or

Ea3*2 = FiE22 - 2Ei2E3 - EtE3 + 5£i£4 - 5£6.
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