AN EXTENSION OF PASCAL’S THEOREM*

BY
CHARLES A. RUPP

INTRODUCTION

In 1825 the Académie Royale de Bruxelles proposed as a prize topic the
extension of Pascal’s theorem to space of three dimensions. The prize was
won by Dandelin,f who showed that a skew hexagon formed of three lines
from each regulus of a hyperboloid of revolution has the Pascal property that
pairs of opposite planes meet on a plane, and the dual, or Brianchon pro-
perty, that the lines joining pairs of opposite vertices meet in a point.
Hesse} wrote several papers on the Dandelin skew hexagons, emphasizing
the polar properties of the Pascal plane and the Brianchon point with respect
to the quadric bearing the two reguli. Several of the older analytic geometries
of three dimensions devote some space to the problem of the skew hexagon,
as Salmon, and more notably Pliicker§, who offered much original material.
In a recent article, the present writer| has discussed the skew hexagon from
an elementary analytic approach.

The foregoing citations exhibit the idea that Pascal’s theorem deals
with six elements of a quadratic curve, and that the space extension offered
will deal with six elements of a quadric surface. It happens that an extension
of this sort is valid in space of three dimensions; but in S,, where >3, it is
clear that a skew hexagon of six rulings of a hyperquadric must lie in an
Ss if it is to possess the Brianchon property. It seems, therefore, that the
hexagon idea must be abandoned in the search for a valid extension of Pascal’s
theorem in S,.

In the plane, a variant of Pascal’s theorem affirms that if two triangles
are in homology, then the six points of intersection of the sides of the one
with the non-corresponding sides of the other lie upon a conic. From a
consideration of the converses of this theorem and its dual it occurred in-

* Presented to the Society, April 6, 1928; received by the editors in October, 1928, and (revised)
in April, 1929,

t Dandelin, Mémoire sur Uhyperboloide de révolution et sur les hexagones de Pascal et de M.
Brianchon, Nouvelles Mémoires de I’Académie Royale de Bruxelles, vol. 3 (1826), pp. 1-14.

1 Hesse, Werke, pp. 58, 651, 676.

§ Pliicker, System der Geometrie des Riumes, §§87-92.

|| Rupp, Stereographic projection of a quadric, American Mathematical Monthly, vol. 25 (1928),
Pp. 415-421.
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dependently to Chasles* and to Weddlet that the Pascal configuration might
conveniently be considered as a property of a pair of triangles whose sides
meet on a conic, and that the space extension would concern a pair of tetra-
hedra and a quadric; in the plane opposite sides of the triangles meet in a
triple of points on a line, and hence these geometers reasoned that in space
opposite faces of the tetrahedra would meet in a quadruple of lines on a
regulus. They readily devised synthetic proofs of the theorem. Chasles
made the pregnant observation that the twelve points common to the edges
of a given tetrahedron and quadric could be arranged in several ways to
define a second tetrahedron which would be effective in the theorem. Weddle
went on to study various properties possessed by a pair of effective tetra-
hedra, and thereby discovered several properties later used by Schlifli in
discussing Schlifli simplexes.

Closely allied to the theorem generalized by Chasles and by Weddle is
another stating that if two triangles are polar reciprocal with respect to a
conic, they are perspective, and hence the lines joining non-corresponding
vertices touch a conic, and dually. Schliflif discussed the analogous situation
in S.. His most important discovery was that two simplexes, or complete
(n+1)-points, of S, which are polar reciprocal with respect to a hyperquadric
have what is now called the Schlifli property, i.e., the n+1 S,_’s of intersec-
tion of corresponding S.—i’s (hyperplanes, faces) of the two simplexes lie in
such a position that the lines of S, which meet # of the S,_’s meet also the
other. Following the suggestion of Berzolari,§ one now speaks of Schlifli
simplexes, of a Schlifli set of lines or of S,_s’s, or of lines or S,_s’s in the
position of Schlifli. Other contributions to the knowledge of the Schlifli
situation are due to Brusotti|| and the present writer.Y The extension of
Pascal’s theorem which this paper presents has a close connection with the
Schlifli situation.

It will be shown that it is possible to construct, from the points common
to a hyperquadric and the edges of a simplex, a certain number of auxiliary
simplexes, each of which may be paired with the given simplex to make a
Schlifli pair; the oo -2 lines which meet the S._2’s of a Schlafli set thus

* Chasles, A per¢u Historigue, Note 32.

t Weddle, On theorems in space analogous to those of Pascal and Brianchon in a plane, Cambridge
and Dublin Mathematical Journal, vol. 6 (1851), pp. 116-140.

1 Schiafli, Erweiterung des Sitzes, dass zwei polare Dreiecke perspektivisch liegen, auf eine beliebige
Zahl von Dimensionen, Journal fiir Mathematik, vol. 65 (1866), pp. 189-197.

§ Berzolari, Sistemi di rette in posizione di Schlifii, Rendiconti del Circolo Matematico di
Palermo, vol. 20 (1905), pp. 229-248.

| Brusotti, Rendiconti del Circolo Matematico di Palermo, vol. 20 (1905), pp. 248-261.

Y Rupp, (unpublished) Chicago (1928) doctoral thesis.
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defined lie upon a variety of order and dimension #—1, denoted by the
symbol V3~}. On each V)| there are (n—1)! families of generators; since
in S; the families are called reguli, we shall use the term hyperregulus to refer
to a set of 2 lines which are rulings of a V2~}. The older literature about
the variety appears to be scanty; Segre* twice mentions it casually in the

Encyclopedia. Three papers on the variety have recently been published. {

I. THE NOTATION

The figure in S, consisting of #+1 points, which do not lie in the same
S.-1, the (n+1)n/2 lines joining the points in pairs, the (r+1)n(z—1)/6
planes joining the pointsin triples, - - - ,and the#+1S,_,’s joining the points
in n-tuples, is called a simplex. The points, lines, and hyperplanes (S.-1’s)
of a simplex are called its vertices, edges, and faces, respectively. Choose a
given simplex F as the basis of a homogeneous cosrdinate system; the coor-
dinates of the sth vertex P;, where ¢ runs from 0 to #, are all zero save at the
ith place. The faceof F that does not contain P; is called the face opposite
to P;, and will be denoted by p;; its equation is x; =0.

A hypersurface (variety of dimension #—1) of the second order is the locus
of points satisfying a quadratic equation; such a hypersurface is called a
hyperquadric. Let there be given a hyperquadric of equation

(1) Q: 2aixix; =0 (i, =0,1, - -+, njai; = aj).
The edges of the fundamental simplex F meet the given hyperquadric Q in
2m piercing points P;;, where 2m =n(n+1), and the points P;;, P;; lie on the
line P;P;. To find the cosrdinates of these piercing points, solve the binary
quadratic
(2) a;ixd + 2a.-,~x.~x,- -+ a,~,~x§ = 0.
It will be convenient to use the quantities defined by
A% = o — aiayj,

(3) bis = @is,  bij = aij + Aij = bysy

Cii = @isy  Cij = Qi — Dyj = Cji,

in exhibiting the coérdinates of P;; and Pj; in the form

* Segre, Encycklopidie der Mathematischen Wissenschaften, vol. III C7, p. 815 and p. 832.

t Wong, On a certain system of 7% lines in r-space, and On the loci of the lines incident with k
(r—2)-spaces in S,, Bulletin of the American Mathematical Society, vol. 34 (1928), pp. 553-554, and
pp. 715-717.

Rupp, The equation of the Va_j in S, Bulletin of the American Mathematical Society, vol. 35
(1929), pp. 319-320.
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% x; all other coordinates
P.',' - Cj; Cij 0
(4)
Py —bj; bij 0
P Cij —Cis 0

Note that the coérdinates of either piercing point on an edge of F may be
expressed either in terms of b;; or ¢;;. In handling the first effective simplex
which we shall set up, we shall use only the quantities ;;; we shall find that
the other effective simplexes can be found from the first, or standard one, by
interchanging the elements in certain pairs of the points P;; and P;;. The
corresponding change in the analytic work is accomplished by replacing the
appropriate b;; by c.;. If the hyperquadric Q is a general one, the quantities
bs;and ¢;; will all be different from zero.

The standard effective grouping of the 2m piercing points will be defined
by the symbolic matrix

(5) G, = (Ps)) (1% 7).

The elements of the matrix (P;;) are the piercing points P;;; there are n+1
rows and columns, each containing # points. The points of the ith row
share the first subscript 7, and no pair of them share the second subscript.
Geometrically, the points of the 7th row lie one on each of the # edges of
F which pass through the vertex P;. Through the points of the sth row can
be passed a unique S,_;, which we call =; and make correspond to the hyper-
plane p; of F, which is the face of F opposite P;.

The standard grouping G, accordingly defines »+1 hyperplanes 7; which
constitute the faces of a simplex, Ty, said to be auxiliary to F, the fundamental
simplex. The vertices of T; may be called the points R;, R; being opposite to
m:. The points R; and P; are said to be corresponding points.

Consider the problem of determining all the groups of the 2m piercing
points which have the geometrical property of Gi. In choosing the points of
the first row, we may take either of the piercing points on each of the =
edges through the corresponding vertex, that is, there are 2" possible ways
to choose the first row. There are but 2*~! ways to choose the second row,
for on one of the edges there is but one available piercing point, the other
having been already used. Proceeding in this fashion, we see that there are
in all

2r X 2Ly 22 % .- X 22X 2 = 2m
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possible groupings of the 2m piercing points P;; which have the same geo-

metrical character that G, has.
In keeping account of the individual members of this set of 2™ effective

groupings it is convenient to use a multiple index system; the general
grouping of the set will be denoted by

Ga = Ga,a,a.- s can—1)

where the general subscript a, ranges through 1,2, 3, - - - | to 2r+*for all values
of r from 2 ton —1inclusive. The subscript o; ranges from 1 to'8. Each of the
subscripts controls a certain sub-set of the points P,;; the nature of this
control is indicated in the following display:

ay Q2 ag Qn-1
Py
1 Pgo P33 Pss Py Py Pys Psz  Pag Par - - Ppina
Pyy Py
Py
2 Pos P31 P3ss Poy Py Pys Pus Pop Ppy- - - Py
Py, Py
Py
3 P30 Pys Pss Py Piy Pyg Pyg Pug Prn- - - Ppopea
Py Py
g Fo Py Psy Psy Py Py Py P
30 81 23 40 41 24 43
Py Py
s fw Pos Pis Py Py Py Py P
0s Pz Psz 10 Pa Pe
Py Py ' “
6 o Py Psy Py Po Py P P
03 P31 Pas 04 P14 Paz Py
Pos Py ’
; o Pso Piy Psy  Poi Py Py P
30 Pia Pa o Pax Paq Puy
Py Py,
g o Py Piy Pys Po Py Py P
03 Pig Pas 04 Pay Pyz Py
Po2 Py
16 Poy Py Poy Py

2" POnPln"’Pn—l,n-
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To get the lower half of the matrix which is the complete display of
Gayay- - -a,_,, We adjoin the sets of points P;; controlled by the various indices,
and fill in the upper half of the matrix by inversive symmetry. Asan example
we give the upper left hand corner of the matrix Gss . . . :

* Py Poy Py
{ Py * Py Py

3 -
Py Py * Psy

oy = 8— Py Py Py * .

ay =

Each of these groupings G. will define, in the same manner that G, did,
a simplex, T., auxiliary to the fundamental simplex F. The 2™ simplexes
T, are called the auxiliary simplexes of the extended Pascal configuration in
S, or simply the simplexes of the Kf,. The 2™ pairs of simplexes composed of
the fundamental simplex F and one of the auxiliary simplexes will be called
the pairs of Kf.. It will be shown that the pairs of Kf, are Schlifli pairs of
simplexes, and hence each determines a hyperregulus; the 2™ hyperreguli will
be called the hyperreguli of Kf.; thus the symbol Kf, means the total con-
figuration of geometric elements associated with the extended Pascal theorem
in S,.

II. THEOREMS IN S,

THEOREM 1. The intersections of corresponding faces (and the lines joining
corresponding vertices) of the pairings of an extended Pascal configuration in S,
arelinearly dependent.

Consider first the pair of simplexes F and T}, corresponding to the group-
ing Gi. By the use of (4), it is seen that the equations of the faces of T} are
(6) 2bijx; =0 (4,5 = 0,1, -, m).

i

The equations of the #n+41S,_.’s of intersection with the corresponding faces
of F may be written as

(7) X; = Eb.-;xj = 0.
i

The Pliicker-Grassmann cosrdinates of these S,_.’s are the two-rowed deter-
minants formed from the matrices of coefficients in the equations (7). Each
set of cosrdinates has exactly # elements that are not zero; they are shown in
the following display:
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por Doz Doz Pon D1z Pz Pin P2z Pt Pa-im
xopo bor Doz bos - - bon
m1p1—b10 biz b1z - bin
(8) m2pq — bao — b2y bas - - - bon
T3p3 — bso — ba1 — b3z
bn-1,n
TnPn = bno — bn1 — bnz -+ - = bponm1

In each column there are two and only two elements, the sum of which is
zero since bi;=b;. The display shows that there is linear dependence be-
tween the sets of cosrdinates of the #n+1 S,_’s of intersection of correspond-
ing faces of the simplexes F and T, which is what is meant when it is said
that the S.—s’s themselves are linearly dependent.

By duality it follows that the lines joining corresponding vertices of the
two simplexes are also linearly dependent.

Suppose now the members of certain pairs of piercing points are inter-
changed. The effect will be to replace the standard grouping G, by some
particular one of the set G.; if we know which pairs of piercing points are
interchanged, we know which G, is represented by the modified G;. For
example, suppose that Py and Py are interchanged; the standard grouping
G, is replaced by Giien . . .1. If now we interchange bos and cos in the equations
(7) and display (8), we have converted the proof that G, is an effective group-
ing in Theorem 1into aproof that the modified grouping is also effective. Since
all of the 2™ groupings G. were obtained from the standard G, by such
inversions of subscripts among the points P;, it follows that all the groupings
G, are effective in the theorem.

THEOREM 2. The pairs of the extended Pascal configuration in S, are
pairs of Schlifli simplexes.

This follows at once from the theorem* that a set of #+1 linearly de-
pendent S,—2’s in S, are in the position of Schlafli. A quite different proof is
based on the fact that the simplexes of a pair are polar reciprocal with respect
to a hyperquadric, which, it will be remembered, was Schlifli’s original
point of departure. The form of equations (6) show that the hyperplanes
w; are the polar hyperplanes of the points P; with respect to the hyperquadric
of equation

9) D biizix;=0,

* Rupp, A geometrical interpretation of linear dependence in Sa, abstracted in the Bulletin
of the American Mathematical Society, vol. 35 (1929), p. 171.
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and accordingly that the points R; are the poles of the faces p;, that is, the
simplexes F and T are polar reciprocal with respect to the hyperquadric in
question.

It is a fundamental property of Schlifli simplexes that all the lines which
meet 7 of the S,_.’s of intersection of corresponding faces meet also the
remaining S,—_,. In the author’s note on the V2] previously cited is given a
method of obtaining the point equation of the variety made up of the lines
meeting # given S._.’s of S,. The use of that method here will give the
equations of the varieties bearing the 2™ hyperreguli of the extended Pascal
configuration.

By the use of the incidence criterion for line and S,-2, as expressed by
Grassmann-Pliicker coérdinates, the condition that x be the coérdinates
of a point such that the line joining x to a point of the S.—2 mopo meets also
the n—1 S,_2’s mip;, where ¢ runs from 1 to n—1, is found to be the equation

ba1 bo2 bos - - - bo,n-1 bon
i1
— 2bijx; b19%1 bisxy - - - bim1%1 bia%1
i i%2
barxs — D baj%; basxs - - - bam_1%2  baas
(10) d i3 =0.
ba1xs basxs — Ebs;’xi s b3,n—1%s  D3n%s
1
j%n—1 )
bno1,1%n—1 bn-1,2%a1" T Ebn—l.ixi bn1,m%a1
?

It should be observed that two options were exercised in writing the foregoing
equation, one in choosing the variable line through x to pass through a point
of mopo, and one in considering 7.p, as the last S,_; of the Schléfli set. The
consequence of the first choice is the absence of a variable in the top row of
the determinant, and the consequence of the second choice is that the cosr-
dinate x, appears only in the summations. A different ordering of the
Schlifli set gives rise to a superficially different form of equation (10), but it
is easy to prove the two forms are equivalent.

If we replace, in equation (10), certain of the symbols b;; by the corres-
ponding c;;, the resulting equation will be that of the V-] bearing the
hyperregulus associated with one of the groupings G..

THEOREM 3. The section of the extended Pascal configuration associated
with a given hyperquadric Q and fundamental simplex F by a space of the
simplex F is itself an extended Pascal configuration plus certain residual flat
spaces.
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Consider first the nature of the intersection of a hyperplane of F, say pa,
with the V2Z} given by equation (10); we shall call the V_}’s of the Kf,
simply the V., in which case the one given by equation (10) is V1, for it corre-
sponds to Gi. The equation of p, is x, =0; part of its intersection with ¥, is the
Spn—2 pPaTrs, as We may see by a manipulation of the equation of V,. If the top
row of the determinant in (10) is multiplied by #,, and the other rows added
to it, the new top row has the form

b1n%n Bonn ban%a -+ Dn—1m®n bon¥o + b1n¥1i - c ¢ ¢+ bao1,a%n-1,
whose elements are identically zero if x satisfies the restrictions

Xn = Zb,-,,x.- = 0,

that is, if x lies on p,m.. We remark that this incidentally furnishes an
analytic proof of the theorem of Wong that the S,_,’s defining a V_} lie on
it; in this connection it may be said that the same theorem follows at once
from the present writer’s geometric interpretation of linear dependence in
S4, for, just as n+2 points which are linearly dependent lie in, and determine,
a flat space, an .S, so do #+1 linearly dependent S,_,’s lie in, and determine,
a curved manifold, a V221

To return to the discussion of Theorem 3, we have seen that one factor
of the intersection of V; and p, is an S,_z; it remains to find the residual
portion. Suppose a point of p, is such that its cosrdinates annul the determin-
ant which is the cofactor of b,_;, ,%,_; in the left member of (10); it will lie
on a V22 for it satisfies an equation of the same form as (10). We do not
mean to say that the V3_3 and the S,_, of intersection of V; with a hyper-
plane of F have no common points; they actually meetina V7?_;. For our
present purposes, nevertheless, it is the V,_; and the S,_, which are the
important spaces of intersection.

We have seen that an S,_; of F meets Vyin a V?_2. Consider now the
intersection of the 2" ¥,~}’s whose symbols are

Vllu-lla,.—; (an—l = 1)2’ tt 2"))

with the S._; pn. They all share the V25 whose equation, in p,, is obtained
by setting the cofactor of b,_1, %, in the determinant in the left member of
(10) equal to zero, because the index ., by definition controls only the sym-
bols b,;, where 7 runs from 0, 1, to »— 1, which appear exclusively, if we keep
to the S,._1 pn, in the last column of the determinant of (10). Varying the
first n—2 indices of V, is equivalent to replacing certain of the b;; by the
corresponding c;;. Thus p, meets the 2™ Vi_}’s which bear the Kf, in
2++1V2~2s, and these Vi)'s bear the Kf,_; of the simplex PoP; - - - P,_,
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set up by means of the hyperquadric which is the intersection of Q with p,.
The Sn_1 pa also meets the V,_{’s of the Kf, in the S,_s’s in which it meets
its corresponding faces among the auxiliary simplexes Th...11,,. We may
clearly reduce the Kf,_; to a Kf,_;in a similar manner. Had we desired to as-
certain the nature of the intersections of the Kf, with another S, of F,
we could clearly have chosen the appropriate form of equation (10) and
proceeded as above.

An example of the successive reduction of the Kf, is given below where we
show that the planes of a tetrahedron meet the 64 V>’s bearing the Kfsin a
Kf, and certain residual spaces.

III. THE EXTENDED PASCAL CONFIGURATION IN THE PLANE

For the case that #is 2, we consider a fundamental triangle F and conic Q.
Paired with F are the triangles

T, (x=1,2,---,8),

each pairing of triangles possessing the property that the points of inter-
section of corresponding sides are linearly dependent, i.e., collinear. The line
of collinearity is an axis of perspectivity for the pair of triangles, and also the
ordinary Pascal line of the Pascal hexagon whose sides are the sides of the two
triangles, arranged in proper order. The 2™ V%Z’s here reduce to the eight
lines V.,; the line V,, associated with an effective grouping G., constitutes
the entire class of lines meeting any two of the three linearly dependent
Schlifli points of the pair of triangles, and as a member of such a class it has
the Schlifli property of meeting the third point. The Kf, consists of these eight
Va,; the reciprocals of the line cosrdinates of these are shown in the array
below:
V1 Vz V3 V4 Vs Vo V7 Vs

1/ur bz b1z c12 ¢z b1z bia 12 cn
(11) 1/us b0 ca0 bao c0 b2 a0 b c20

l/us bn bar bon b 1 c  co1  cor.

We notice that the pairs of lines whose indices sum to nine intersect upon
the line of equation

1 1
(12) Z(b—+—)x,, =0 (1,4, a permutation of 0,1,2),
k ij Cij
an equation which may be rewritten, by the use of (3), in the form
a;j
(12') —

Kk Qiiljj5
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This line is a Steiner-Pliicker line of the Pascal hexagon whose vertices are
the six points P;;; the three hexagons formed of the triangle pairs FT1,
T:Ts, and TsF, are readily seen to be three hexagons in the Steinerian rela-
tion, i.e., three vertices are fixed, and the remaining three permuted cyclically.
It follows that the lines V; and Vs meet in a Steiner point; since the same
argument applies to all pairs of the Kf; whose indices sum to nine, the four
points which define the line of equation (12) must be Steiner points,and hence
their line of collinearity is a Steiner-Pliicker line.

An independent check is found by using a table due to Cayley* which
shows the nature of the intersection of the pairs of the 60 Pascal lines. In
correlating the two notations, let the triangles F and T, be the hexagon
denoted by the Cayley letters AE. The sides are arranged in the order
pamopimepomy, and the vertices in the order Po; Poy Pag P2y Piz Py, or, for brevity,
in the order 123456. If the symbols p, 4, and g denote Pascal, Kirkman, and
Steiner points respectively, Cayley’s table can be correlated with the present
paper as below:

Group Hexagon Cayley Letters Nature of Intersection
1 123456 AE Vi Vo V3 Vi Vs Vg Vi
2 132456 EL Ve p
3 123546 EF Vs p h
4 132546 EG Vi B p 9
5 162345 DE Vs k kg
6 163245 EI Ve b p g h b
7 162354 EM Vi h g p k p h
8 163254 EH Ve ¢ h h p h p P

This display shows that the pairs V1V, VoV, VsVs, and V,Vs meet in Steiner
points, but it does not show that the Steiner points thus garnered lie on a line.

THEOREM 4. The Kf, determines a Steiner-Pliicker line.

In the plane, the Kf; is apparently a less rich configuration than the
Hexagrammaticum Mysticum, for it has but 8 lines where the other has 60.
Consider, however, a different approach to the general situation in S, by
taking, as did Schlifli, two simplexes polar reciprocal with respect to a
hyperquadric. We have already observed that F and T, are polar reciprocal

* Cayley, A notation for Pascal’s theorem, Quarterly Journal of Mathematics, vol. 9 (1868), pp.
268-274.
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with respect to the hyperquadric given by equation (9). Let us take this
hyperquadric as basic, and try to determine the hyperquadric Q whose matrix
involves the numbers a;;. We now define the set of 2" points P;; as the inter-
section of P;P; with =;, and an analogous set of 2™ points R;; as the inter-
section of R;R; with p,; it is an easily proved property of Schlifli simplexes
that the points P;; and R;; lie upon hyperquadrics, which are in general
different, coinciding only when # is 2. In the plane there is associated with a
fundamental triangle F by means of a conic Q a set of eight auxiliary triangles;
associated with any one of these auxiliary triangles by means of the same
conic Q is a set of eight more auxiliary triangles, which set partially overlaps
the first. Indeed, the six points P;; where the sides of F meet Q determine 15
lines, which may be grouped, by triples, into 15 distinct triangles. Any one of
these 15 triangles pairs with eight others to make a Pascal hexagon; there are
(15%8)/(1X2) =60 different Pascal hexagons. It is because the points R;;
coincide with the pointsP;; in the plane case that there exists a configuration
of more than 2™ lines. The richness of the usual Pascal configuration is from
this point of view due to the coincidence of the hyperquadrics (in the plane
case, conics) determined by the sets of points P;; and R;;.

The body of theorems about the Pascal configuration can be established
from a consideration of the 15 triangles instead of the more usual approach
by way of the 60 Pascal hexagons.

IV. THE EXTENDED PASCAL CONFIGURATION IN SPACE

The edges of a fundamental tetrahedron F pierce a given quadric (1)
in the 12 points P,;, which are grouped in the 64 effective groupings Ga,a,
(naz=1,2, - - - ,8), each of which groupings defines an auxiliary tetrahedron
Teya,. The lines of intersection of corresponding faces of the fundamental
tetrahedron F and an auxiliary tetrahedron T.,., are linearly dependent,
hence these four lines lie on a regulus. The Kf;is made up of the 64 conjugate
reguli, that is, of the 64 one-parameter families of lines which meet the 64
sets of linearly dependent lines. A pairing of the Kfs, as F and Ta,a,, is a
Schlifli pair of tetrahedra, that is, such that all the lines meeting three of
the lines of intersection of corresponding faces meet also the fourth.

The theorem of Chasles and Weddle asserts that the four lines of inter-
section of corresponding faces lie on a regulus. Chasles further remarked that
there are several effective groupings of the 12 piercing points, but apparently
he did not consider how many effective groupings there are, nor what inci-
dence relations exist among the various reguli.
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The V7| defined by a pairing is here a V,?, or quadric; it contains the
regulus of lines which meet the four linearly dependent lines, and also the
lines themselves.

TeEOREM 5. The fundamental tetrahedron F circumscribes each of the
quadrics Va,a,.

In the derivation of V,,., it appears that it contains the lines pr; (:=0,
1,2, 3), that is, it has a generator in each of the planes p;, hence it is tangent
to each of these planes.

THEOREM 6. The 128 lines common to a face of F and the 64 quadrics Va,a,
consist of two Kfy’s, each line being counted eight times.

The face ps has the equation x;=0. It meets V1, in a conic of equation

012 012
(13) 0=1x3= ( Ebijbikxi)< D bis xe),
i 13

where 1,7, kis a permutation of 0, 1, 2. The eight quadrics V1., have equations
differing from that of V1, only in the coefficients controlled by as, i.e., the
coeflicients bos, b1, and b2 5, which appear segregated in one factor of (13). It
follows that the eight quadrics V1., share the ruling of equations

012

(14) 0= X3 = Zb.‘,’bn‘xs.
In like manner the eight quadrics V.., share the ruling of equations

0 = x3 = bo1co2xo + d10b12%1 + C20ba12.

The eight lines obtained by varying the first index constitute the Kf, of
P,P,P, with respect to the conic cut from Q by x;=0, as may be seen by
comparing their equations with the display (11).

Octuples of quadrics sharing a common second index likewise have a
common generator. The cosrdinates, in x;=0, of the eight lines thus ob-
tained are shown below:

Ll Lz Ls L4 L5 L‘c L7 Ls
uy bos Cos bos bos cos Cos bos Cos
(15) U b1z bia c13 b1z 13 bis ¢z cis

%  bes bas b2z Ces b2z Cas Cas Cos

The general similarity of (11) and (15) suggests that the second set of eight
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lines is the Kf, of PoP,P, with respect to some conic. To find this conic, solve
(3) for a;;in terms of b;;, obtaining
@i = bii, 2biia:; = b + bibjj.

We next consider how we might pass from the lines of (11) to the conic whose
matrix involves the numbers a;;, and vse the same method to obtain the conic
of matrix

2a00 Bas + aoo11b2s  Bis + Good22b1s
(16) ( B2s + @00011b23 2a11 Bos + @11822b25 >,
B13 + GooB22b1s  PBos + @11829D0s 2a9,

where 8;;b:; =1, by means of which the lines of cosrdinates (15) are the Kf; of
P,P,P,. This conic appears to have no simple geometrical relation to the
original quadric Q, whereas the corresponding conic associated with the first
set of eight lines is the intersection of Q by x3=0.

Itis clear that p;isin no wise an exceptional face of F, hence the situation
on it is duplicated on the other planes of the tetrahedron. This completes
the proof of Theorem 6.

THEOREM 7. A tetrahedron and a quadric determine two sets of Steiner-
Pliicker lines, each set lying on a regulus.

On each face of the fundamental tetrahedron there are two Steiner-
Pliicker lines, one deriving from each of the Kfy’s. One Kf; consists of lines
belonging to the reguli which form the Kf; of the tetrahedron and quadric;
the four associated Steiner-Pliicker lines have the equations

i
th) 0=x;= 2
i QkkCmm

Qkm

xj (jkm a permutation of 0123),

equations which show by their symmetry that the four lines in question lie
on a regulus. The same is true of the equations of the four Steiner-Pliicker
lines deriving from the Kf,’s whose lines lie on the conjugate reguli of the
Kfs; the equations are

=i

17) 0 == D (bji+ cii)x;.
i

V. THE EXTENDED PASCAL CONFIGURATION IN .S,

Here we have 1024 two-parameter families of lines meeting the quintuples
of planes of intersection of corresponding hyperplanes in the pairings of a
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fundamental simplex F with the auxiliary simplexes Ta,a a4 (21, 22=1,2, - - -,
8, as=1,--., 16), these auxiliary simplexes being defined by the 1024
effective groupings Ga,aqq4 Of the 20 points in which the edges of F pierce
a given hyperquadric Q. The two-parameter families of lines, or hyperreguli,
lie on a set of V ¥’s; the V32 is a V}_; which has been thoroughly studied by
Segre* and Castelnuovo,t its co-discoverers, Berzolari,} and many others.

The 16 V ¥’s denoted by V114, meet the S; whose equation is ,=0 in the
same quadric; its equation in p, is that of V1, in three-space. It follows that
the 1024 V ;s meet p, in 64V,%’s, each counted 16 times;this is a special case
of Theorem 3.

* Segre, Atti, Accademia delle Scienze di Torino, vol. 22 (1887), pp. 791-801; Memorie, Acca-
demia delle Scienze di Torino, (2), vol. 39 (1888), pp. 3-32.

t Castelnuovo, Atti, Istituto Veneto, (6), vol. 5 (1887), p. 1249, and vol. 6 (1888), p. 525.

1 Berzolari, Rendiconti, Accademia dei Lincei, (5), vol. 25, (1917), pp. 29 and 102.
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