
AN EXTENSION OF PASCAL'S THEOREM*

BY

CHARLES A. RUPP

Introduction

In 1825 the Académie Royale de Bruxelles proposed as a prize topic the

extension of Pascal's theorem to space of three dimensions. The prize was

won by Dandelin,f who showed that a skew hexagon formed of three lines

from each regulus of a hyperboloid of revolution has the Pascal property that

pairs of opposite planes meet on a plane, and the dual, or Brianchon pro-

perty, that the lines joining pairs of opposite vertices meet in a point.

Hesse| wrote several papers on the Dandelin skew hexagons, emphasizing

the polar properties of the Pascal plane and the Brianchon point with respect

to the quadric bearing the two reguli. Several of the older analytic geometries

of three dimensions devote some space to the problem of the skew hexagon,

as Salmon, and more notably Pliicker§, who offered much original material.

In a recent article, the present writer|| has discussed the skew hexagon from

an elementary analytic approach.

The foregoing citations exhibit the idea that Pascal's theorem deals

with six elements of a quadratic curve, and that the space extension offered

will deal with six elements of a quadric surface. It happens that an extension

of this sort is valid in space of three dimensions; but in Sn, where »>3, it is

clear that a skew hexagon of six rulings of a hyperquadric must lie in an

S3 if it is to possess the Brianchon property. It seems, therefore, that the

hexagon idea must be abandoned in the search for a valid extension of Pascal's

theorem in Sn-

In the plane, a variant of Pascal's theorem affirms that if two triangles

are in homology, then the six points of intersection of the sides of the one

with the non-corresponding sides of the other lie upon a conic. From a

consideration of the converses of this theorem and its dual it occurred in-

* Presented to the Society, April 6,1928; received by the editors in October, 1928, and (revised)

in April, 1929.

t Dandelin, Mémoire sur l'hyperboloide de révolution el sur les hexagones de Pascal et de M.

Brianchon, Nouvelles Mémoires de l'Académie Royale de Bruxelles, vol. 3 (1826), pp. 1-14.

t Hesse, Werke, pp. 58, 651, 676.

§ Plücker, System der Geometrie des Raumes, §§87-92.

Il Rupp, Stereographic projection of a quadric, American Mathematical Monthly, vol. 25 (1928),

pp. 415-421.
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dependently to Chasles* and to Weddle f that the Pascal configuration might

conveniently be considered as a property of a pair of triangles whose sides

meet on a conic, and that the space extension would concern a pair of tetra-

hedra and a quadric; in the plane opposite sides of the triangles meet in a

triple of points on a line, and hence these geometers reasoned that in space

opposite faces of the tetrahedra would meet in a quadruple of lines on a

regulus. They readily devised synthetic proofs of the theorem. Chasles

made the pregnant observation that the twelve points common to the edges

of a given tetrahedron and quadric could be arranged in several ways to

define a second tetrahedron which would be effective in the theorem. Weddle

went on to study various properties possessed by a pair of effective tetra-

hedra, and thereby discovered several properties later used by Schläfli in

discussing Schläfli simplexes.

Closely allied to the theorem generalized by Chasles and by Weddle is

another stating that if two triangles are polar reciprocal with respect to a

conic, they are perspective, and hence the lines joining non-corresponding

vertices touch a conic, and dually. SchläfliJ discussed the analogous situation

in Sn. His most important discovery was that two simplexes, or complete

(n+l)-points, of Sn which are polar reciprocal with respect to a hyperquadric

have what is now called the Schläfli property, i.e., the n+1 S„_2's of intersec-

tion of corresponding 5„_i's (hyperplanes, faces) of the two simplexes lie in

such a position that the lines of Sn which meet n of the S„_2's meet also the

other. Following the suggestion of Berzolari,§ one now speaks of Schläfli

simplexes, of a Schläfli set of lines or of S„_s's, or of lines or 5„_s's in the

position of Schläfli. Other contributions to the knowledge of the Schläfli

situation are due to Brusotti|| and the present writer.^f The extension of

Pascal's theorem which this paper presents has a close connection with the

Schläfli situation.

It will be shown that it is possible to construct, from the points common

to a hyperquadric and the edges of a simplex, a certain number of auxiliary

simplexes, each of which may be paired with the given simplex to make a

Schläfli pair; the <x>n~2 lines which meet the S„_2's of a Schläfli set thus

* Chasles, Aperçu Historique, Note 32.

t Weddle, On theorems in space analogous to those of Pascal and Brianchon in a plane, Cambridge

and Dublin Mathematical Journal, vol. 6 (1851), pp. 116-140.

X Schläfli, Erweiterung des Satzes, dass zwei polare Dreiecke perspektivisch liegen, auf eine beliebige

Zahl von Dimensionen, Journal für Mathematik, vol. 65 (1866), pp. 189-197.

§ Berzolari, Sistemi di rette in posizione di Schläfli, Rendiconti del Circolo Matemático di

Palermo, vol. 20 (1905), pp. 229-248.

|| Brusotti, Rendiconti del Circolo Matemático di Palermo, vol. 20 (1905), pp. 248-261.

IT Rupp, (unpublished) Chicago (1928) doctoral thesis.
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defined lie upon a variety of order and dimension » —1, denoted by the

symbol V„Z\. On each VnnZ\ there are (» — 1)! families of generators; since

in S3 the families are called reguli, we shall use the term hyperregulus to refer

to a set of oo »-* lines which are rulings of a VnZ\. The older literature about

the variety appears to be scanty; Segre* twice mentions it casually in the

Encyclopedia. Three papers on the variety have recently been published.!

I. The  notation

The figure in S„ consisting of «+1 points, which do not lie in the same

5„_i, the (»+l)«/2 lines joining the points in pairs, the («+1)»(» —1)/6

planes joining the points in triples, • ■ • , and the «+15„_i's joining the points

in »-tuples, is called a simplex. The points, lines, and hyperplanes (5„_i's)

of a simplex are called its vertices, edges, and faces, respectively. Choose a

given simplex F as the basis of a homogeneous coordinate system ; the coor-

dinates of the ¿th vertex Pi, where i runs from 0 to », are all zero save at the

¿th place. The face of F that does not contain P< is called the face opposite

to Pi, and will be denoted by p<; its equation is x< = 0.

A hypersurface (variety of dimension » — 1) of the second order is the locus

of points satisfying a quadratic equation; such a hypersurface is called a

hyperquadric. Let there be given a hyperquadric of equation

(1) Q :   £«*/*<*/■" 0 (¿J = 0,1, •••, »;a<;-= a}<).

The edges of the fundamental simplex F meet the given hyperquadric Q in

2m piercing points Pa, where 2m =»(»+1), and the points P¿,, P,< lie on the

line PiPj. To find the coordinates of these piercing points, solve the binary

quadratic

(2) aux? + 2aijXiXj + a^x) = 0.

It will be convenient to use the quantities defined by

Ay = a?j — ana,-,-,

(3) bu = au,     bu = an + A¿}- = 6,<,

Ca — an,     Cij = aij     A»; = Cji,

in exhibiting the coordinates of P„ and P,,- in the form

* Segre, Encycklopädie der Mathematischen Wissenschaften, vol. Ill C7, p. 815 and p. 832.

t Wong, On a certain system of » •"• lines in r-space, and On the loci of the lines incident with k

(r—2)-spaces in S„ Bulletin of the American Mathematical Society, vol. 34 (1928), pp. 553-554, and

pp. 715-717.
Rupp, The equation of the Vñ-l in S„, Bulletin of the American Mathematical Society, vol. 35

(1929), pp. 319-320.
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x< x,-   all other coordinates

Pii bu        -bu 0

Pa        - Cj,- dj 0
(4)

Pa        - bi{ bu 0

Pji Cij —ca 0     .

Note that the coordinates of either piercing point on an edge of F may be

expressed either in terms of &<,- or c<,. In handling the first effective simplex

which we shall set up, we shall use only the quantities &<,-; we shall find that

the other effective simplexes can be found from the first, or standard one, by

interchanging the elements in certain pairs of the points Pa and P,,-. The

corresponding change in the analytic work is accomplished by replacing the

appropriate £>,,- by c,,. If the hyperquadric Q is a general one, the quantities

bu and c,-,- will all be different from zero.

The standard effective grouping of the 2m piercing points will be defined

by the symbolic matrix

(5) Gi = (Pii) (i*j).

The elements of the matrix (Pi,) are the piercing points P„; there are w+1

rows and columns, each containing n points. The points of the ¿th row

share the first subscript i, and no pair of them share the second subscript.

Geometrically, the points of the ith row lie one on each of the n edges of

F which pass through the vertex P,-. Through the points of the ¿th row can

be passed a unique Sn-i, which we call tt, and make correspond to the hyper-

plane Pi of F, which is the face of F opposite P<.

The standard grouping & accordingly defines n+1 hyperplanes 7r, which

constitute the faces of a simplex, 7\, said to be auxiliary to F, the fundamental

simplex. The vertices of Ti may be called the points 2?,-, Ri being opposite to

7T¿. The points 7Ï, and P< are said to be corresponding points.

Consider the problem of determining all the groups of the 2m piercing

points which have the geometrical property of Gi. In choosing the points of

the first row, we may take either of the piercing points on each of the n

edges through the corresponding vertex, that is, there are 2" possible ways

to choose the first row. There are but 2n_1 ways to choose the second row,

for on one of the edges there is but one available piercing point, the other

having been already used. Proceeding in this fashion, we see that there are

in all

2" X 2"-1 X 2"-2 X • • • X 22 X 2 = 2m
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possible groupings of the 2m piercing points P„ which have the same geo-

metrical character that Gi has.

In keeping account of the individual members of this set of 2m effective

groupings it is convenient to use a multiple index system; the general

grouping of the set will be denoted by

where the general subscript ar ranges through 1,2,3, •• •, to 2r+1 for all values

of r from 2 to » — 1 inclusive. The subscript at ranges from 1 to 8. Each of the

subscripts controls a certain sub-set of the points Pa; the nature of this

control is indicated in the following display:

5

6

7

16

ai

Fio

F20   F21

Fio

Fo2   F2i

Fio

F2o   F12

Pio

Fou    F12

Foi

F2o  F21

P01

Poi     Pil

Poi

PiO    Pn

Poi

Poi   Pa

a2 «3 a«_i

F30    F31    F32 F40   F«   Pa   F43 PnoPnl  -   '   - Pn.n-1

F03    F31    F32 F04   F41   F42   F43 P(h» F„i FBrn-l

F30 F13 F32 F40   F14  F42   F43         Pn0 Pin "   -   " Pn,n-l

P30 Pil Pit F40   F41  F24   F43

F03 Fig Pa F40 F41 F42 F34

P03 Ai F23 Fo4  F14 F42  F43

F30 P13 Pa Pot P*i Pa P*t

P03 Pn Píz Pot P*i F42 F34

F04   Fi4  F24   F|4

2" F On   "in '      ' Fn—l,n
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To get the lower half of the matrix which is the complete display of

Gaia2-. .«„_,, we adjoin the sets of points Pi, controlled by the various indices,

and fill in the upper half of the matrix by inversive symmetry. As an example

we give the upper left hand corner of the matrix G3»... :

7*01      7*02      7>8o

(    7*10 7^1      7*3i
«i = 3 -» <

\       7*20 7*12 7>32

«2   =   8 —> 7*03 7*13 7*23

Each of these groupings Ga will define, in the same manner that Gx did,

a simplex, Ta, auxiliary to the fundamental simplex F. The 2™ simplexes

Ta are called the auxiliary simplexes of the extended Pascal configuration in

S„, or simply the simplexes of the Kfn. The 2™ pairs of simplexes composed of

the fundamental simplex F and one of the auxiliary simplexes will be called

the pairs of Kfn. It will be shown that the pairs of Kfn are Schläfli pairs of

simplexes, and hence each determines a hyperregulus; the 2m hyperreguli will

be called the hyperreguli of Kfn ; thus the symbol Kfn means the total con-

figuration of geometric elements associated with the extended Pascal theorem

inS„.

II. Theorems in Sn

Theorem 1. The intersections of corresponding faces iand the lines joining

corresponding vertices) of the pairings of an extended Pascal configuration in Sn

are linearly dependent.

Consider first the pair of simplexes F and 7\, corresponding to the group-

ing Gi. By the use of (4), it is seen that the equations of the faces of 7\ are

(6) UbiiX,■= 0 ii,j = 0,1, • • • , n).
i

The equations of the «+1 Sn-2s of intersection with the corresponding faces

of F may be written as

(7) Xi =  J2àijXj = 0.
i

The Plücker-Grassmann coordinates of these Sn-2s are the two-rowed deter-

minants formed from the matrices of coefficients in the equations (7). Each

set of coordinates has exactly « elements that are not zero ; they are shown in

the following display :
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Poi        p0i        p03  ■       "  Pon        Pli        Pl3  '       •  Pin        pi3  '   '   '  pin  -   -   * pn-l,n

Topo   bai     boi     bo3 •    • bon

TlPl — blO bu      bi3 ■ ■ ■ bin

(8) ir2p2        — bio — b2i b23 ■ ■ • bin

ir3pî                 — b3o                       — b3i              — b3i • • •

• " • " - ' • " "        bn-l,n

TTnpn ~ bn0 —  Ônl — but   • • •  — ¿n.n-1

In each column there are two and only two elements, the sum of which is

zero since ¿>y = 6,<. The display shows that there is linear dependence be-

tween the sets of coordinates of the »+1 5„_2's of intersection of correspond-

ing faces of the simplexes F and Tu which is what is meant when it is said

that the A„_2's themselves are linearly dependent.

By duality it follows that the lines joining corresponding vertices of the

two simplexes are also linearly dependent.

Suppose now the members of certain pairs of piercing points are inter-

changed. The effect will be to replace the standard grouping Gi by some

particular one of the set Ga; if we know which pairs of piercing points are

interchanged, we know which Ga is represented by the modified G\. For

example, suppose that Po4 and P4o are interchanged; the standard grouping

Gi is replaced by Amu... i. If now we interchange ¿>04 and cM in the equations

(7) and display (8), we have converted the proof that A is an effective group-

ing in Theorem 1 into a proof that the modified grouping is also effective. Since

all of the 2m groupings Ga were obtained from the standard G\ by such

inversions of subscripts among the points Py, it follows that all the groupings

Ga are effective in the theorem.

Theorem 2. The pairs of the extended Pascal configuration in Sn are

pairs ofSchläfli simplexes.

This follows at once from the theorem* that a set of »+1 linearly de-

pendent 5„_2's in Sn are in the position of Schläfli. A quite different proof is

based on the fact that the simplexes of a pair are polar reciprocal with respect

to a hyperquadric, which, it will be remembered, was Schläfli's original

point of departure. The form of equations (6) show that the hyperplanes

ir i are the polar hyperplanes of the points P< with respect to the hyperquadric

of equation

(9) £$«*<*/-0,

* Rupp, A geometrical interpretation of linear dependence in Sn, abstracted in the  Bulletin

of the American Mathematical Society, vol. 35 (1929), p. 171.



1929] AN EXTENSION OF PASCAL'S THEOREM 587

and accordingly that the points Ri are the poles of the faces p¿, that is, the

simplexes F and Ti are polar reciprocal with respect to the hyperquadric in

question.

It is a fundamental property of Schläfli simplexes that all the lines which

meet n of the 5„_2's of intersection of corresponding faces meet also the

remaining 5„_2. In the author's note on the VnZ\ previously cited is given a

method of obtaining the point equation of the variety made up of the lines

meeting n given S„_2's of Sn. The use of that method here will give the

equations of the varieties bearing the 2m hyperreguli of the extended Pascal

configuration.

By the use of the incidence criterion for line and S»_2, as expressed by

Grassmann-Pliicker coordinates, the condition that x be the coordinates

of a point such that the line joining itoa point of the 5„_2 7r0po meets also

the n — 1 Sn-ü's 7r¿p,-, where i runs from 1 to n — 1, is found to be the equation

(10)

?oi ¿>02

JVI

E&ijZj       &12Z1

1+1

b2ix2 — 2_ib2jXj
i

b3ix3 b32x3

003

bi3Xi

b23x3

E*»J*J

J*3

0n-l,l*n-l     0n-l,2*n-l

;<>,n-l

6l .»-1*1

-1*2

03,n-l*S

j>n-l

—    E^n-l.i*)'

OOn

bmXi

¿>2n*2

6371*3

On—1 ,n*n—1

= 0.

It should be observed that two options were exercised in writing the foregoing

equation, one in choosing the variable line through x to pass through a point

of 7ToPo, and one in considering Tr„p„ as the last 5„_2 of the Schläfli set. The

consequence of the first choice is the absence of a variable in the top row of

the determinant, and the consequence of the second choice is that the coor-

dinate xn appears only in the summations. A different ordering of the

Schläfli set gives rise to a superficially different form of equation (10), but it

is easy to prove the two forms are equivalent.

If we replace, in equation (10), certain of the symbols bu by the corres-

ponding en, the resulting equation will be that of the V^Zi bearing the

hyperregulus associated with one of the groupings Ga.

Theorem 3. The section of the extended Pascal configuration associated

with a given hyperquadric Q and fundamental simplex F by a space of the

simplex F is itself an extended Pascal configuration plus certain residual flat

spaces.
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Consider first the nature of the intersection of a hyperplane of F, say p„,

with the VnnZ\ given by equation (10); we shall call the Fall's of the A/„

simply the Va, in which case the one given by equation (10) is Vi, for it corre-

sponds to Gi. The equation of p„ is x„ = 0; part of its intersection with Vi is the

Sn-i pnTn, as we may see by a manipulation of the equation of V\. If the top

row of the determinant in (10) is multiplied by x0, and the other rows added

to it, the new top row has the form

blnXn    binXn     b3nXn    '  '  '    bn-l,nXn    bonXo + blnXi +•••+■ bn-l,nXn-l,

whose elements are identically zero if x satisfies the restrictions

Xn  =     7 .OinXj =  U,

i

that is, if x lies on p„7rn. We remark that this incidentally furnishes an

analytic proof of the theorem of Wong that the 5„_2's defining a V„Z\ lie on

it; in this connection it may be said that the same theorem follows at once

from the present writer's geometric interpretation of linear dependence in

Sn, for, just as «+2 points which are linearly dependent lie in, and determine,

a flat space, an Sn, so do »+1 linearly dependent A_2's lie in, and determine,

a curved manifold, a V„Z\.

To return to the discussion of Theorem 3, we have seen that one factor

of the intersection of Vi and p„ is an S„-2; it remains to find the residual

portion. Suppose a point of p„ is such that its coordinates annul the determin-

ant which is the cofactor of bn-i, „x„_i in the left member of (10); it will lie

on a V„Z22, for it satisfies an equation of the same form as (10). We do not

mean to say that the VnnZ\ and the Sn-i of intersection of Vi with a hyper-

plane of F have no common points ; they actually meet in a V"Z3. For our

present purposes, nevertheless, it is the V„Z2 and the Sn-i which are the

important spaces of intersection.

We have seen that an Sn-i of F meets Vi in a VnZ\. Consider now the

intersection of the 2" VnHZ\'s whose symbols are

Vu...uan-i ian-i = 1,2, • • ■ , 2"),

with the 5„_i p„. They all share the V„Z\ whose equation, in p„, is obtained

by setting the cofactor of bn-i, nxn-i in the determinant in the left member of

(10) equal to zero, because the index an-i by definition controls only the sym-

bols bni, where i runs from 0, 1, to » — 1, which appear exclusively, if we keep

to the Sn-i Pn, in the last column of the determinant of (10). Varying the

first » — 2 indices of Va is equivalent to replacing certain of the ¿>y by the

corresponding ctj. Thus p„ meets the 2m Fjjlî's which bear the A/„ in

2n+i VlZl's, and these Veil's bear the A/„_i of the simplex P<Pi • • • ?„.,
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set up by means of the hyperquadric which is the intersection of Q with p„.

The 5„_i p„ also meets the F'lJ's of the Kfn in the Sn-2's in which it meets

its corresponding faces among the auxiliary simplexes Tn...!!«^. We may

clearly reduce the Kfn-i to a Kfn-2 in a similar manner. Had we desired to as-

certain the nature of the intersections of the Kfn with another Sn-i of F,

we could clearly have chosen the appropriate form of equation (10) and

proceeded as above.

An example of the successive reduction of the Kfn is given below where we

show that the planes of a tetrahedron meet the 64 V2's bearing the Kf3 in a

Kf2 and certain residual spaces.

III. The extended Pascal configuration in the plane

For the case that «is 2, we consider a fundamental triangle F and conic Q.

Paired with F are the triangles

Tai («i = 1,2, • • • , 8),

each pairing of triangles possessing the property that the points of inter-

section of corresponding sides are linearly dependent, i.e., collinear. The line

of collinearity is an axis of perspectivity for the pair of triangles, and also the

ordinary Pascal line of the Pascal hexagon whose sides are the sides of the two

triangles, arranged in proper order. The 2m V„l\'s here reduce to the eight

lines Vai; the line Vai associated with an effective grouping Gai constitutes

the entire class of lines meeting any two of the three linearly dependent

Schläfli points of the pair of triangles, and as a member of such a class it has

the Schläfli property of meeting the third point. The Kf2 consists of these eight

Vai; the reciprocals of the line coordinates of these are shown in the array

below:

Vi     V2     V3     V4     Vt,     V,     V7     Vs

l/«i      bu     Ô12     cu     cu     bi2     bu     ci2     en

(11) l/w2      bio     Cm     bio     c2o     b2o     c2o     b2o     c2o

l/«3      boi     boi     601     boi     Coi     Coi     Coi      Coi.

We notice that the pairs of lines whose indices sum to nine intersect upon

the line of equation

2(f+~)ik   \ Oij Cij /

(12) 23 (-1-)x* = 0 (i,j,k a permutation of 0,1,2),

an equation which may be rewritten, by the use of (3), in the form

(12') £ -^-x* = 0.
*    auaa
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This line is a Steiner-Plücker line of the Pascal hexagon whose vertices are

the six points Pf); the three hexagons formed of the triangle pairs FTh

TiTs, and TeF, are readily seen to be three hexagons in the Steinerian rela-

tion, i.e., three vertices are fixed, and the remaining three permuted cyclically.

It follows that the lines Vi and Vs meet in a Steiner point; since the same

argument applies to all pairs of the Kf2 whose indices sum to nine, the four

points which define the line of equation (12) must be Steiner points, and hence

their line of collinearity is a Steiner-Plücker line.

An independent check is found by using a table due to Cayley* which

shows the nature of the intersection of the pairs of the 60 Pascal lines. In

correlating the two notations, let the triangles F and 7\ be the hexagon

denoted by the Cayley letters AE. The sides are arranged in the order

P27roPi7T2Poiri, and the vertices in the order P01P02P20P21P12P10, or, for brevity,

in the order 123456. If the symbols p, h, and g denote Pascal, Kirkman, and

Steiner points respectively, Cayley's table can be correlated with the present

paper as below:

Group Hexagon    Cayley Letters Nature of Intersection

1 123456 AE Vi   V2   V3   Vi   Vb   Vs   V-i

2 132456 EL V2 p

3 123546 EF V3 p     h

4 132546 EG Vi h     p     p

5 162345 DE Vt p     h     h     g

6 163245 EI V6 h     p     g      h     p

7 162354 EM V7 h     g      p     h     p     h

8 163254 EH Vsghhphpp

This display shows that the pairs ViVs, V2V7, V3Ve, and V4Vi meet in Steiner

points, but it does not show that the Steiner points thus garnered lie on a line.

Theorem 4. The Kf2 determines a Steiner-Plücker line.

In the plane, the Kf2 is apparently a less rich configuration than the

Hexagrammaticum Mysticum, for it has but 8 lines where the other has 60.

Consider, however, a different approach to the general situation in Sn by

taking, as did Schläfli, two simplexes polar reciprocal with respect to a

hyperquadric. We have already observed that F and 7\ are polar reciprocal

* Cayley, A notation for Pascal's theorem, Quarterly Journal of Mathematics, vol. 9 (1868), pp.

268-274.
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with respect to the hyperquadric given by equation (9). Let us take this

hyperquadric as basic, and try to determine the hyperquadric Q whose matrix

involves the numbers «y. We now define the set of 2m points Pn as the inter-

section of PiP, with in, and an analogous set of 2™ points Ai, as the inter-

section of AfA,- with pí; it is an easily proved property of Schläfli simplexes

that the points P,-, and Ai; lie upon hyperquadrics, which are in general

different, coinciding only when » is 2. In the plane there is associated with a

fundamental triangle F by means of a conic Q a set of eight auxiliary triangles ;

associated with any one of these auxiliary triangles by means of the same

conic Q is a set of eight more auxiliary triangles, which set partially overlaps

the first. Indeed, the six points P<, where the sides of F meet Q determine 15

lines, which may be grouped, by triples, into 15 distinct triangles. Any one of

these 15 triangles pairs with eight others to make a Pascal hexagon ; there are

(15 X8)/(l X2) =60 different Pascal hexagons. It is because the points A<,-

coincide with the pointsPy in the plane case that there exists a configuration

of more than 2m lines. The richness of the usual Pascal configuration is from

this point of view due to the coincidence of the hyperquadrics (in the plane

case, conies) determined by the sets of points P¿, and A<;.

The body of theorems about the Pascal configuration can be established

from a consideration of the 15 triangles instead of the more usual approach

by way of the 60 Pascal hexagons.

IV.   The extended Pascal configuration in space

The edges of a fundamental tetrahedron F pierce a given quadric (1)

in the 12 points Pn, which are grouped in the 64 effective groupings Gaiat

(«102 = 1,2, • • • , 8), each of which groupings defines an auxiliary tetrahedron

Taia2- The lines of intersection of corresponding faces of the fundamental

tetrahedron F and an auxiliary tetrahedron Taiai are linearly dependent,

hence these four lines lie on a regulus. The A/3 is made up of the 64 conjugate

reguli, that is, of the 64 one-parameter families of lines which meet the 64

sets of linearly dependent lines. A pairing of the A/3, as F and Taiat, is a

Schläfli pair of tetrahedra, that is, such that all the lines meeting three of

the lines of intersection of corresponding faces meet also the fourth.

The theorem of Chasles and Weddle asserts that the four lines of inter-

section of corresponding faces lie on a regulus. Chasles further remarked that

there are several effective groupings of the 12 piercing points, but apparently

he did not consider how many effective groupings there are, nor what inci-

dence relations exist among the various reguli.
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The Fui} defined by a pairing is here a V22, or quadric; it contains the

regulus of lines which meet the four linearly dependent lines, and also the

lines themselves.

Theorem 5. The fundamental tetrahedron F circumscribes each of the

quadrics Vaiat.

In the derivation of Vai<Xi it appears that it contains the lines píití (i=0,

I, 2, 3), that is, it has a generator in each of the planes p<, hence it is tangent

to each of these planes.

Theorem 6. The 128 lines common to a face of F and the 64 quadrics Vai«,

consist of two Kf2's, each line being counted eight times.

The face p3 has the equation *3 = 0. It meets Vu in a conic of equation

/      012 \  /      012 \

(13) 0 = x3 = I    J^biibikxAl    E°<3*i),

where *,/, k is a permutation of 0,1,2. The eight quadrics Fiaa have equations

differing from that of Fu only in the coefficients controlled by a2, i.e., the

coefficients b03, bi3, and ¿>23, which appear segregated in one factor of (13). It

follows that the eight quadrics Viai share the ruling of equations

012

(14) 0 = x3 =  E°»í°«**<-

In like manner the eight quadrics V2at share the ruling of equations

0 = x3 = boiCo2Xo + biobi2Xi + c2ob2iX2.

The eight lines obtained by varying the first index constitute the Kft of

PoPiP2 with respect to the conic cut from Q by * 3 = 0, as may be seen by

comparing their equations with the display (11).

Óctuples of quadrics sharing a common second index likewise have a

common generator. The coordinates, in x 3 = 0, of the eight lines thus ob-

tained are shown below:

Li   L2   L3   Li   Lf,   Lo   Li   Li

«1      003     C03     003     bo3     Co3     Co3     »03     C0I

(15) «2       ¿>13      013     Cl3      013     Cl3      Ôl3     C13      C13

«3       0Ü3     023      023     C23      623     C23      C23      C23

The general similarity of (11) and (15) suggests that the second set of eight
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lines is the A/2 oiPoPiPi with respect to some conic. To find this conic, solve

(3) for an in terms of &<,-, obtaining

an = bn, 2bijOij = b?j + babjj.

We next consider how we might pass from the lines of (11) to the conic whose

matrix involves the numbers an, and use the same method to obtain the conic

of matrix

(2aoo /323 + ao0anbi3    ßi3 + aooa22bi3 \

ß23 + a0oanb23 2aii ß03 + aua22b23  J,

013 + aooa22bi3    ßo3 + aua22bo3 2a22 '

where ßnbn = 1, by means of which the lines of coordinates (15) are the A/2 of

PoPiPi. This conic appears to have no simple geometrical relation to the

original quadric Q, whereas the corresponding conic associated with the first

set of eight lines is the intersection of Q by x 3 = 0.

It is clear that p 3 is in no wise an exceptional face of F, hence the situation

on it is duplicated on the other planes of the tetrahedron. This completes

the proof of Theorem 6.

Theorem 7. A tetrahedron and a quadric determine two sets of Steiner-

Plücker lines, each set lying on a regulus.

On each face of the fundamental tetrahedron there are two Steiner-

Pliicker lines, one deriving from each of the A/2's. One A/2 consists of lines

belonging to the reguli which form the A/3 of the tetrahedron and quadric;

the four associated Steiner-Plücker lines' have the equations

"* *     ak
(17) 0 = Xi = ^ -Xj iijkm a permutation of 0123),

i    akkamm

equations which show by their symmetry that the four lines in question lie

on a regulus. The same is true of the equations of the four Steiner-Plücker

lines deriving from the A/2's whose lines lie on the conjugate reguli of the

A/3; the equations are

(17') 0 = Xi =  2>í{ + c¡i)Xj.
j

V.   The extended Pascal configuration in A4

Here we have 1024 two-parameter families of lines meeting the quintuples

of planes of intersection of corresponding hyperplanes in the pairings of a



594 C. A. RUPP

fundamental simplex F with the auxiliary simplexes Taia¡a,(oti,a2 = 1,2, ■ ■ • ,

8, «3 = 1, • • • , 16), these auxiliary simplexes being defined by the 1024

effective groupings Gaic¡ias of the 20 points in which the edges of F pierce

a given hyperquadric Q. The two-parameter families of lines, or hyperreguli,

lie on a set of V33's; the V 33 is a V„Z\ which has been thoroughly studied by

Segre* and Castelnuovo,f its co-discoverers, Berzolari,^ and many others.

The 16 V33's denoted by Vna3 meet the S3 whose equation is ac4 = 0 in the

same quadric ; its equation in p4 is that of Vn in three-space. It follows that

the 1024 V33's meet p4 in 64F22's, each counted 16 times;this is a special case

of Theorem 3.

* Segre, Atti, Accademia delle Scienze di Torino, vol. 22 (1887), pp. 791-801; Memorie, Acca-

demia delle Scienze di Torino, (2), vol. 39 (1888), pp. 3-32.

t Castelnuovo, Atti, Istituto Véneto, (6), vol. 5 (1887), p. 1249, and vol. 6 (1888), p. 525.
i Berzolari, Rendiconti, Accademia dei Lincei, (5), vol. 25, (1917), pp. 29 and 102.
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