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1. Introduction and notation. If T = {t} denotes a closed set of points

and with each point t there is associated a unique bounded continuum

X(or Xt) in such away that (a) XtX't =0 if t^t', and (b) at each point

t=r of T the upper closed limit of Xt as t—> r is a part of XT, we say that

X=f(t) is an upper semi-continuous function in T. The collection of con-

tinua {X} is also known as an upper semi-continuous collection of continua.

We say that X=f(t) is a minimal upper semi-continuous function in T if

there exists no upper semi-continuous function ¥=g(t) such that at every

point t,Y c X and at some point Y^ X. Examples of this concept are given

elsewhere. Î

The following notation will be convenient. If X =f(t) in T and M =23 [X],

we write M = F(T). If T is a bounded continuum and/(¿) is upper semi-con-

tinuous, it is obvious that 717 is a bounded continuum; in this case we say

that X is an element of M. If T is a simple arc ab, M = F(ab) will be called

a generalized arc, or simply an arc if no confusion is caused. This may be

denoted by XaXb and the elements Xa and X¡, will be called the ends.

Likewise, M— (Xa + Xb) is called a (generalized) open arc and denoted by

X*X*. The meaning of XaX* and Xa*X b is apparent. The terms "upper limit"

and "limit" of a system of continua are used in the sense of the closed limits

of Hausdorff (Grundzüge der Mengenlehre, p. 236) as extended by L. S. Hill

(Properties of certain aggregate functions, American Journal of Mathematics,

vol. 49, pp. 420-421). If K is the upper limit of Xt as t—>t, we write K =

lim sup¡_T Xt; if the domain of definition T is a linear set and we restrict

t to points at the right or left of r, we write R lim supi_T Xt or L lim supí_rX(,

respectively.

In the article referred to above various properties of upper semi-continuous

functions were derived and in particular the following theorem was proved :

t Presented to the Society, February 23,1929; received by the editor of the Bulletin in January,

1929, accepted for publication in the Bulletin, and subsequently transferred to the Transactions.

X W. A. Wilson, Some properties of upper semi-continuous collections of bounded continua, Bulletin

of the American Mathematical Society, vol. 34, pp. 599-606.
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Let the aggregate [t\ be a simple arc ab, let X =f(t) be a minimal upper

semi-continuous function defined over ab, let M =^,[X] lie in a plane, and let

no element of M separate Xa from Xb. Then the continuum M is irreducible be-

tween Xa and Xb.

The last two hypotheses are needed in the particular proof of the theorem

that is given, but there is no evidence that they are essential for the validity

of the conclusion. It is the purpose of this article to discuss this particular

question and to give some properties of generalized arcs which lie in a plane

and have one or more elements separating! the ends.

2. Theorem. Let M = F(ab) be a generalized bounded arc in a plane Z.

Let ti, t, and U. be points of ab, let ti<T<h, and let XT separate Xi=f(h)

from X2=f(k).   Then, if t'<r<t", XT separates X'=f(t') from X"=f(t").

Let R and 5 be the components of Z — Xr containing Xi and X2, re-

spectively. Since XaX* is connected and contains Xi it lies in R. For a

like reason X*Xb lies in S. But I'd, X* and I"cïr*I, Hence the

theorem is proved.

Remarks. It should be noted that, if some sub-continuum K of M

separates Xa from Xb, at least one element X has this property. (See refer-

ence under §1, p. 601.) As will be seen later, however, X need not be a part

of K, nor K a part of X.

3. Theorem. Let M = F(ab) be a generalized bounded arc in a plane Z.

Let Xi =f(h) and X2 =f(t2) separate Xafrom Xb and hKh- Then Xi separates

Xa from X2, and X2 separates Xxfrom Xb.

Let the components Pi and Si of Z — Xi contain Xa and Xb, respectively.

Then Rx =>XaX* and Sx o X*Xb. Let R2 and S2 be likewise defined for X2.

Then R2?XaX2* and S2oX2*Xb. Since hKh, XiCXaX2*cR2 and X2c

X*Xbc Si.  This proves the theorem.

As a consequence of this theorem, it follows that, if the elements of M

which separate Xa and Xb are arranged in the order of the corresponding

values of t, each such element may be said to lie within all those which follow

it and to lie without all those which precede it, or vice versa.

4. Theorem. Let M = F(ab) be a generalized bounded arc in a plane.

Let t' be any point of ab for which X' =f(t') separates Xa from Xb. Then the

set of points {t'} together with a and bform a closed set.

Let this set be V and let r be a limiting point of V different from a

t Throughout this article the term "separate" has reference to the plane in which the aggregates

referred to lie.
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and b. Then there is a sequence {<„'} of points of T — ia+b) converging

tor. Let X/i =fÇtn). Since fit) is upper semi-continuous, Xro lim sup„_«,

Xn ■ By hypothesis each Xñ separates Xa from Xb. Since iXa+Xb)XT = 0,

lim sup „-,»!„' separates Xa from Xb.\ Hence t lies in T'. As a + b c F',

this shows T' is closed.

5. Theorem. Let Xt=fit) be a minimal upper semi-continuous function

defined over the interval ab. Let M=Fiab) be bounded and lie in a plane. Let

the set of points T" = {t'\ for which X' =/(/') separates Xafrom Xb be void or

totally disconnected.   Then M is irreducible between Xa and Xb.

The case that T" is void is merely the theorem cited in §1. In the altern-

ative case set T' = T"+a+b. Then T' is a nowhere dense closed set and

ab—T' is a finite or enumerable set of open intervals whose end points

are points of T'.

Let K be a sub-continuum of M irreducible between Xa and Xb. Let

c*d* be any one of the open intervals whose sum is ab — T'. Set git) = fit)

for c<t<d; g(c) =R lim sup(^c/(/); and gid) =L lim supt_d/(/). Then git)

is a minimal upper semi-continuous function in cd and it is clear that Gicd) =

XtX*. But for no / in c*d* does git) separate g(c) from gid) by the hypo-

thesis regarding cd and §2. Then the theorem quoted in §1 shows that

X?X* is irreducible between gÇc) and gid) and therefore between XaXc

and XdXb. But K contains a sub-continuum irreducible between these

arcs and KcM. Hence K3XfX*.

Now set Yt = K-Xi = kit). We have just seen that for any point / in

ab — T', Yt = Xt. Let /' be any point of T' except a or b. Since T' is nowhere

dense, there are two univariant sequences of points {sn\ and {/„} lying in

ab — T' and converging to t' such that s„<t'<tn; let Mn denote the arc of

M whose ends are/(5„) and/(/„). Since/(5„) =kisn) and/(¿„) =/fe(i„), it is

evident that KM„ is a continuum. Obviously Xr = T\1[Mn]. Then

Yf =KXf = Jl1 [KMn], and is therefore a continuum. Similar reasoning

shows that Ya and Yb are continua.

We now show that Y¡ = kÇt) is upper semi-continuous. This needs a proof

only for points t' of T', since kit) =/(<) in ab — T'. As YtcK and Y¡cXt,

lim supt_í'Fí c Klim supt^t>Xi c KXt>. But Yr=KXt- by definition.

Hence lim sup^-FiC Ft< everywhere.

Since fÇt) is a minimal upper semi-continuous function and kÇt)c/(/)

everywhere, it follows that for every /, Yt = kÇt) =/(í) =Xt. Hence K = M

and the theorem is proved.

t For, if A and B are bounded continua; {X„} is a sequence of bounded continua, each of which

separates A from B; X = lim sup„,«X„; and X■ (A+B)=0; then X separates A from B.
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Examples to which the theorem is applicable are to be found in the

literature. Here is another. Let a = 0 and 6 = 1, and 7" = {t'\ be any nowhere

dense closed set in ab. For each t' in T' let fit') be a circumference whose

center is X0 and whose radius is t'; let/(0) =X0 and /(l) be a circumference

with center X0 and radius 1. Let ti and t2' be any two points of T' which are

the end points of one of the open intervals whose sum is ab — T'. In the ring

bounded by fih') and Sik') place a spiral approaching the bounding circum-

ferences asymptotically and for any / between ti and t¿ meeting the circum-

ference of radius t and center XQ in a single point, which we take as /(f).

Do this for each open interval of ab — T'. Then/(¿) is a minimal upper semi-

continuous function  and M=F(01)  is irreducible between  X0 and Xv

Let us now turn to the hypothesis that T' is totally disconnected. It

is clear that, if /(i) is merely upper semi-continuous in ab, there may be a

sub-interval cd such that for every t in cd, Xt separates Xa from Xb. A set

of concentric circumferences is an example, but in this case/(f) would not be

a minimal function. If it is impossible for/(f) to have this quality and for

T' at the same time to contain an interval, the hypothesis is redundant;

on the other hand, the conclusion of the theorem may be true even if the

hypothesis is not satisfied. Two examples bearing on these points will be

given.

6. Example I.f Let K{ and Z¿ denote two simple closed plane curves

having one common point Xi and let Ki — Xi lie within 7,-. The union of

Ki+Li and the complementary domain whose frontier is this continuum

we call a crescent and we denote it by C¡. The point x¡ will be called a cut

point.

Let R be a circular ring bounded by two concentric circumferences K

and L, K being the smaller. It is easy to show that, if n is any integer, we can

construct n crescents C„ C2, ■ ■ ■ , C„ in R which satisfy the following require-

ments. No two of the sets G have common points. R— £[G] consists

of n+1 rings (not necessarily circular) R0, Rlt ■ ■ • , Rn whose frontiers are

K+K„ L,+K2, • • ■ , Ln-i+Kn, Ln+L, respectively, and each of these

rings has in common with every radius from the common center E of K

and L a segment of uniform length w, which may be called the width of the

ring. If E is taken for the pole of a system of polar coordinates, the vectorial

angle 0 of each cut point x{ is 2wi/n. Finally this construction can be

repeated in each of the rings {J?¿}.

Set up a system of polar coordinates (?,0), where 0 is measured in terms

j This is a modification of a continuum previously described by the author: A curious irreducible

continuum, Bulletin of the American Mathematical Society, vol. 32, pp. 679-681.
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of 2tt as a unit. Let Og/gl. Let X0=/(0) and Xx=/(1) be the circum-

ferences r — 1 and r = 2, respectively, and let R0 be the ring bounded by these.

As described in the previous paragraph, construct in R0 two crescents C,

and Ct, whose frontiers are X0,i = K1+L1 and Xo,t = K2+L2 and which divide

Ro into three rings F0,o, Ro.i, and 7t0,2, each of which has the width ev Set

-X^,i=/(l/3) and X0,i=fÇ2/3) and let the cut points of C1 and Ct have 0

equal to 1/2 and 1, respectively.

In F0,o construct four crescents Co.i, C0,2, C0,3, and C0,4, which divide

F0,o into five rings F0,o,o, F0,o,i, F0,o,2, F0,o,3, F0,o,4, each of width e2, and whose

cut points have 0 equal to 1/4, 1/2, 3/4, and 1, respectively. Let their

frontiers be Xo.o.j^I/IS), A\0,2=/(2/15), X0,0,3=/(3/15), and X0,oa =

/(4/15). In the same way treat F0,i and R0,2, getting /(6/15), /(7/15),

/(8/15),/(9/15),/(ll/15),/(12/15),/(13/15),and/(14/15).
In each of the 15 rings thus formed construct 8 crescents whose frontiers

are /(1/135), /(2/135), • • • , /(8/135); /(10/135), • • • , /(17/135); • • • ,
/(134/135). In each of these 15 rings let the cut points have 0 equal to

1/8,1/4, 3/8, 1/2, 5/8, 3/4, 7/8, and 1.
Let this process be continued indefinitely; it is clear that the sequence

€„ e2, • • • converges to zero. This defines X=fÇt) for any rational t<l

of the form p/q, where p is relatively prime to q and q is one of the integers

3, 3-5, 3-5-9, 3-5-9-17, etc. Any other t is the divisor of a decreasing se-

quence of intervals di; d2, • ■ ■ , of lengths 1/3, 1/15, 1/135, etc., and to

each of these corresponds a definite ring of width e, lying between the crescents

corresponding to the end points of the interval. Let the divisor of such a

sequence of rings be/(f); it is obviously a simple closed curve.

The construction insures that/(/) is upper semi-continuous. It is obvious

that any continuum P joining X0 to Xi contains all the cut points.

As these are everywhere dense with respect to 0 ¿» each ring, they are every-

where dense in M =2~^[X]. Hence P = M and M is irreducible between X0

and Xi.  Hence also fit) is a minimal function.

Thus we have an example where fit) is a minimal upper semi-continuous

function defined over an interval ab and for every t between a and b the

corresponding element separates/(a) from/(&). That is, the hypothesis in

the theorem of §5 that the set of points T' be totally disconnected is not

redundant and the conclusion of this theorem may be valid with this hypo-

thesis omitted. We now proceed to construct an example which shows that

this last situation does not always happen.

7. Example II. As a preliminary we state several facts regarding bounded

continua which are either well known or easily demonstrated from known

theorems.
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(a) For the sake of brevity later a bounded plane continuum F which

has precisely two complementary domains R and 5 and is the frontier of

both of them will be called a continuum of type a. For such a continuum

and for any t >0, there exist simple polygons P andP' in Tí and S, respectively,

which have these properties: R+F lies in the interior of P'; P+P' c Vt(F),

Fc V,(P), Fc V,(P')', the rings between P and F and between F and P'

contain no circle of diameter e; and the ring between P and P' contains no

circle of diameter 2e. (The notation Vt(F) means the set of all points whose

distances from F are less than e.)

(b) It is possible to construct an indecomposable continuum K of type

a such that there is no continuum C joining a point of R to one of S such

that C- K is a proper sub-continuum of K. In other words CK is always

disconnected or identical with K. Such continua will be referred to later as

of type ß.f
(c) Let {F i} and {G,} be two sequences of continua of type a having

the following properties. If i<i', let F, lie in the interior of F,<, i.e., in the

bounded complementary domain. Let every F, be in the interior of every

Gi. If i<i', let Gi> lie in the interior of G,. For every €>0 let there be an i0

such that for every i>io, F,c Fe(G<), G.c Ft(F,), and the ring 77,- whose

frontier is Fi+d contains no circle of diameter e. Then, if 77 = LT °i [77,],

77 is a continuum of type a separating every F, from every G, and 77 =

lim,,« Fl = limi,00 Gi.

(d) Let P and P' be simple polygons, íet P be in the interior of P', and

let R be the ring between them. Then, for every e>0, there is an integer

re, such that there are n polygons {P,} dividing R into re+1 rings, such

that no ring contains a circle of diameter e, each ring is contained in an

e-vicinity of each of the polygons which bound it, and, if we set P0 =P and

Pn+i=P', every P¿c V((Pi+i) and every Pi+iC Vt(P,), ¿ = 0, 1, 2, • ■ -, re.

We are now ready to proceed with our construction. Let K be a continuum

of type ß, let P' and P" be simple polygons, let P' be in the interior of K

and K in the interior of P", and let r be the ring between P' and P".

Let C be a circumference of center Fand radius 1. Let 0<€X<l/4.

Let Co = 7? and G, C2, ■ ■ ■ , Cni = C be a set of concentric circumferences,

f It is natural to infer that any indecomposable continuum of type a is necessarily of type ß.

That this is not true may be seen from the following modification of the continua of Wada, the idea

for which is due to a suggestion by H. M. Gehman. Let C and C" be two circumferences, C being

within C", and let L be a segment joining C and C". Let the simply connected region whose frontier

is C'+C"+L be the "island" of K. Yoneyama (Tôhoku Mathematical Journal, vol. 12, pp. 60-62),

the interior of C be the "lake of fresh water," and the exterior of C" be the "sea." If "canals" are

constructed as described by Yoneyama, the resulting indecomposable continuum is of type a, but

not of type ß. For the constituent containing Lis accessible from both of the complementary domains.
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each within the following and having a distance from the two adjacent ones

less than «i. Put T in a homeomorphism with each of the »i —1 circular

rings thus determined and let Ki, i = l, 2, ■ • • , ni — 1, be the image of K.

Set Ko = E and Kni = C. For each i<nh K{cV^iKi+i) and KwcV^(Kt),

where rji = 2tx. Moreover, the point K0 = E and the continua Kh K2, ■ ■ ■,

Kni-i divide the interior of C into «i rings R0, Ri, R2, ■ ■ ■ , Rni-i no one of

which contains a circle of diameter iji. At the same time divide the interval

0^f = l into «i equal intervals Do, A, D2, ■ ■ ■ , Dni-i by the points ci, c2, ■ • • ,

Cni-i and set Co = 0 and cB1 = l. For each point t=ci} set/(c¡) —Ki. We note

that this also establishes a correspondence between the intervals [Di\ and

the rings {Ri}.

For some positive e2<%ei and some integer «2 there can be constructed,

in each ring Ri, n? simple polygons dividing it into n2+l rings in such a

manner that, if all the »i«2 polygons and the continua {Ki} are taken in

order starting from K0 = E, each polygon or continuum is contained in an

«2-vicinity of the one preceding and the one following and no ring contains

a circle of diameter e2. This is a consequence of (a) and (d), above. Each

ring Ri contains n2 — 1 rings bounded by polygons. Put r in a homeomorphism

with each of these and let the images of if be {7Tii,-},/ = l, 2, • • • , »2 —1.

Set Ki,o = Ki and Ki,nt = Ki+i = Ki+i,o. If r]2 = 2e2, each Ti",-,,- is in an 772-

vicinity of Ki¡j+i and of iC«,y_i. Moreover, the «i«2 continua {#,-,,}, i = 0,

1, 2, • • • , «i—l, / = 0, 1, 2, • ■ ■ , »2 — l divide the interior of C into «1M2

rings Ro,o, R0.1, • • ■, R^-i.m-i no one of which contains a circle of diameter

172, and the frontier of each !?<,, is Ki,j+Ki,j+i. At the same time divide

each of the intervals D( into n2 equal intervals {7>¿,,}, j =0, 1, 2, •• • ,

»2 — 1, by the points c<,i, d,2, ■ ■ ■ , c,,n2-i. For each point c,,,- set/(c<r,) =

Ki,j, i = 0, 1, 2, • •■ , «i — l, / = 0, 1, 2, • • ■ , »2 — I. This also establishes a

correspondence between the intervals {Z?*,,-} and the rings {72f,,-}.

Now take e3<5€2 and continue this process indefinitely. If f is one of

the division points <;<,,,*, c,-,,-,*,;, etc. set /(f) equal to the corresponding

Ki.j.k, Kiijtk,i, etc. Any other point f is the divisor of a decreasing sequence

of intervals 7>¡, Di,,-, 7),,,,*, etc., to which corresponds a decreasing sequence

of rings Ri, i?,,„ 7?,,,,*, etc., whose divisor is a continuum. This continuum

we set equal to /(f). It is clea^ from the construction that, if M =£[/(f)] =

F(01) and C denotes the sum of C and its interior, M = C'.

Let us now consider the nature oí Sit)- Since e„—>0, it follows from the

construction and (c) above that /(f) is not only upper semi-continuous, but

continuous for each f not a division point c„ c¿,,, c,-,,-,*, etc. This is also true

at the division points, for any such point, as <;<,,-,*, can be regarded as the

divisor of the sequence of intervals CíO+i, c¿,,-c<,,+i, c,-,,-,*_iC<,,-,*+i, c,-,,-,*_i,Bl_i
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• Ci,j,k,i, etc., and the sequence of rings bounded by the pairs of continua

corresponding to the end points of these intervals with their frontiers satisfy

the hypotheses of (c). It also follows from (c) that, if t is different from

0 and l,f(t) separates/(0) from/(l).

Let g(t) cf(t) and be upper semi-continuous in (01) and let N =~^2[g(t)].

The sets of continua Kit Kitj, Ki,jik, etc. were constructed so as to be every-

where dense in M. Hence, if M?¿ N, there is some K containing points not

in N. Let this K be/(r) ; then g(r) ^ /(r). This gives us a continuum N joining

the interior of f(r) to the exterior and having in common with /(r) a proper

sub-continuum g(r) oif(r). This is impossible by (b) above since each K

is of type ß. Therefore M = N; i.e., g(t)=f(t) at every point and f(t) is a

minimal upper semi-continuous function. As M fills a part of the plane, it is

not an irreducible continuum.

8. Remarks. As already stated, the construction of Example II shows

that, if f(t) is a minimal upper semi-continuous function defined over an in-

terval ab, M = F(ab) need not be irreducible between Xa and Xb, even though

M is a plane continuum. The example can be easily modified to give a similar

construction in space. Whether such an example can be constructed

in space without the use of cyclic continua is an open question. An example

of a continuous decomposition of an irreducible continuum into elements

none of which are points, communicated to the author by Dr. Bronislaw

Knaster, makes it seem probable that a decomposition similar to that in

Example II can be arrived at without the use of indecomposable continua.

Finally, this example justifies the last sentence in §2.

Yale University,

New Haven, Conn.


