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1. Introduction. When we are discussing the motion of a rigid body in

space, we often have occasion to consider the ruled surfaces which are des-

cribed in space and in the body by the same moving straight line, or, what

amounts to the same thing, the surface which a moving straight line actually

describes during its motion, and the surface which it appears to describe to

an observer who is moving at the same time in an assigned manner. Usually

the motions with which we are concerned are ordinary or one-parameter

motions, but an analogous idea presents itself at once when we consider

instead two-parameter motions. Thus, with each of the co2 positions of a

straight line / which has a two-parameter motion in space, we may associate

a position of a rectangular trihedral F, and we may imagine an observer

(whom also we shall call T) who shares the two-parameter motion of this

trihedral and uses it as his system of reference, estimating each position of

the straight line / by referring it to the corresponding trihedral T. We can

then consider two rectilinear congruences: that which the line / actually

describes in space during its two-parameter motion, and that which it appears

to describe to the observer T. t The second congruence is of course equivalent

to that which is described by a line V whose position relative to a trihedral

fixed in space is the same as the position of / relative to the corresponding tri-

hedral T.

Instead of a straight line which describes a congruence, we may, more

generally, consider a geometrical element e of any nature, and if, as before,

we associate a trihedral F with each of the co2 elements e and personify it

by an observer T, we can speak of the two-dimensional manifold of elements

which e really describes and that which it appears to describe to the observer

T. It is clearly not necessary, however, that each manifold should contain oo2

distinct elements; it may happen, for instance, that, while the element e

assumes oo2 distinct positions in space, the observer T may regard it as

assuming only co l distinct positions or even as being fixed.

* Presented to the Society, August 30, 1929; received by the editors in July, 1928.

t A pair of congruences which are related in this manner are considered by Darboux.  {Leçons

sur la Théorie Générale des Surfaces, vol. 4, p. 125.)

919



920 C. H. ROWE [October

I propose to prove in this paper that, under certain conditions, a straight

line which appears to the observer T to describe a normal congruence does so

in reality. I shall then show that certain known theorems on normal con-

gruences can be derived from this result in a simple manner without analysis

and that in some cases extensions which I believe to be new suggest them-

selves.

2. Kinematical preliminaries. When infinitesimal displacements are

given to a trihedral T and to a point P, there are three displacements as-

sociated with the point P:

(i) the actual displacement of the point P ;

(ii) the displacement which the observer T attributes to the point P,

or, more briefly, the apparent displacement of P;

(iii) the displacement of a point which is fixed with reference to T and

which coincides with P when T and P are in their initial positions, or, as we

shall call it, the displacement of the moving system at P.

We shall recall the familiar fact that the actual displacement of P is the

resultant of the apparent displacement of P and the displacement of the

moving system at P.

Let us now suppose that a two-parameter motion of a trihedral T has

been defined by associating a position of T with each pair of values of two

parameters u and v. Corresponding to each position (u, v) of the trihedral

there are certain straight lines which we shall call special lines, and which

we may define by saying that a line lis a special line if, in every infinitesimal

displacement of T from the position (u, v) to an adjacent position (u+du,

v+dv), the displacement of the moving system at each point on / is normal to /.

In order to determine these lines we shall make use of the fact that,

corresponding to any position (u, v) of T, there exists in general a pair of

straight lines, which we shall call the axes, such that T may be brought from

its initial position (u, v) to any adjacent position (u+du, v+dv) by a combi-

nation of rotations of suitable magnitudes about these two axes.* It is then

easy to see that the special lines are the oo2 common transversals of the

two axes. The axes may of course be imaginary or coincident, but there are

always <»2 real special lines forming a linear congruence.

There is one special case which we shall have to consider : that in which

the axes are indeterminate. When this happens every infinitesimal displace-

ment of the trihedral reduces to a rotation about some straight line passing

through a certain fixed point and lying in a certain fixed plane through this

* See Mannheim, Principes et Développements de Géométrie Cinématique, 1894, p.127, or Darboux,

Leçons, vol. 1, p. 91.
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point. The special lines then consist of all lines passing through the point

together with all lines lying in the plane. The point and the plane may be

both at infinity, and in this case every infinitesimal displacement is a trans-

lation parallel to a certain plane, and the special lines that are not wholly

at infinity are the lines which are perpendicular to this plane.

Another exceptional case is that in which the trihedral takes only oo1

distinct positions in spite of the fact that we have used two parameters to

specify each of its positions. If this happens, there are co » special lines cor-

responding to each position of the trihedral, and they form a linear complex.

We shall assume in what follows that this case does not arise.

3. Normal congruences. Considering again the two-parameter motion

of a straight line / and the associated trihedral F, we can state our funda-

mental result as follows:

If in each of its positions the line I is a special line with reference to the cor-

responding position of the trihedral T, then I will describe a normal congruence

in space during its two-parameter motion if, and only if, the observer T regards it

as describing a normal congruence. Further, when I does describe a normal con-

gruence, a point on I which appears to describe a surface cutting all the rays I

at right angles does so in reality.

We shall suppose that the straight line I assumes co2 distinct positions

both in reality and as viewed by T, and that the congruence which it appears

to describe is a normal congruence. We can then find on each ray I a point P

such that every apparent infinitesimal displacement of P is normal to /.

If we take any position of the ray / and consider the corresponding positions

of the trihedral T and the point P, it is clear that, in any infinitesimal dis-

placement from this position, the apparent displacement of P and the

displacement of the moving system at P are both normal to /. Hence the

actual displacement of P, which is their resultant, is also normal to /, or, in

other words, the locus of the point P in space is a surface which cuts all the

rays at right angles.

We may remark that, if we have constructed a normal surface S of the

congruence which / actually describes, and if F observes this surface from

each of his positions, he will believe that it moves with a two-parameter

motion and envelops a surface S', and S' will be for F a normal surface of

the congruence which he believes the ray / to describe. If F were to construct

this surface S' and to fix it in position in his trihedral, then, from the point

of view of a fixed observer, S' would move and would envelop S.

We have omitted from our proof the case in which one or other of the

two congruences under consideration reduces to a system of only co l distinct

lines or to a single line. If this happens, the other congruence will be a normal
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congruence without further conditions beyond the requirement that each

ray should be a special line. We have only to observe that, in the case of a

ruled surface or of a single straight line, we can always find a point P on

each line such that every displacement of P is normal to the line, remember-

ing that we are entitled to regard a displacement of zero magnitude as being

normal to any direction that we please. We shall therefore agree to say that

a line describes a normal congruence when it assumes at most oo l distinct

positions.

Our theorem admits the following converse, the proof of which will be

evident:

If a ray I describes a normal congruence both in reality and in appearance,

and if we can find a point P on the ray in each of its positions so that P both in

reality and in appearance describes a surface which cuts all the rays at right

angles, then each ray is a special line with reference to the corresponding tri-

hedral.

Our theorem and its converse may be thrown into an alternative form.

Let us associate with each position of the moving trihedral a plane element

formed by a point of a certain fixed surface and the tangent plane thereat.

This element will appear to T to describe a manifold of oo2 plane elements

which in general is not formed by the elements of any surface. 7re order that

this manifold should consist of the elements of some surface, it is necessary and

sufficient that the line drawn through the point of each plane element perpendi-

cular to its plane should be a special line with reference to the corresponding

position of T.

4. The theorems of Beltrami and Ribaucour. We shall now point out

that, when we take into account a certain elementary property of the

motion of a surface which rolls upon an applicable surface, the classical

theorems of Beltrami and of Ribaucour on the deformation of congruences

may be regarded as almost immediate consequences of our result.*

Consider a pair of applicable surfaces S and S' which are not both ruled

surfaces, and let S' be fixed in space while S rolls upon it so that each point

M of S is brought in turn into coincidence with the corresponding point

M' of S', the tangent planes, and corresponding directions in the tangent

planes, also coinciding. Let T be any trihedral invariably connected with the

rolling surface S, and, with each position of T, let us associate (a) a ray I

passing through the corresponding point of contact of the two surfaces,

(b) a ray m lying in the common tangent plane at the point of contact. Now,

* Proofs of these theorems depending on kinematical considerations are given by Darboux

{Leçons, vol. 3, pp. 348, 352), but they are of a different nature from ours.
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if we consider the congruence which the ray I really describes and subject it

to a deformation in Beltrami's sense corresponding to the deformation of

S' into S, we shall clearly obtain a congruence which is identical with that

which the ray / appears to describe to the observer T. This remark, together

with an analogous remark about the ray m, shows that, in order to prove the

theorems of Beltrami and Ribaucour, we need only assure ourselves that

the rays / and m are both special lines with reference to the corresponding

position of T. This, however, is evident when we remember that every

infinitesimal displacement of the rolling surface is a rotation about some

line touching both surfaces at their point of contact, so that, in virtue of a

remark which we have already made, the special lines consist of all lines

passing through the point of contact, together with all lines lying in the

common tangent plane at the point of contact.

It will be clear that the proposition given at the close of the preceding

section leads in a similar manner to a theorem due to Biançhi* which may be

stated as follows : Let us associate a plane element e with each point Mofa

surface S. Let 5 be deformed and, as it varies, let each of the plane elements

move so that it retains an invariable position with reference to the point M

and to elements of the surface issuing from M. If we suppose that these plane

elements were those of some surface 2 in their original positions, then, in

order that they should still be the plane elements of some surface after de-

formation, it is necessary and sufficient that each normal to 2 should either

pass through the corresponding point M of S, or else lie in the tangent plane

at M to S.

We may also remark that Ribaucour's theorem on the deformation of a

normal congruence of plane curves lying in the tangent planes of a surface

can be derived in like manner from our result.

5. Another theorem of Ribaucour. Our next application will yield a

result which, as we shall see, may be regarded as a generalisation of another

theorem of Ribaucour.

Consider any two surfaces S, S' between whose points M, M' a corre-

spondence of any nature has been established, and construct the surface 2

which is the locus of the extremity P of a vector OP drawn through a fixed

origin 0 equal and parallel to MM'. With the points M and M' of the two

surfaces associate rays m and m' respectively, both parallel to the normal

to 2 at the corresponding point P, and so situated that by subjecting them to

a common translation we could cause m to pass through M and m' to pass

through M'. We shall show that, as M and M' describe the surfaces on which

* Rendiconti dei Lincei, (5), vol 24 (1915), p. 4.
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they lie, neither of the two rays can describe a normal congruence unless the

other does so also.

We shall hold S' fixed in space, and we shall attach a trihedral to 5 and

allow S to move with a two-parameter motion, carrying its associated

system of rays invariably fixed to it, so that corresponding points of the two

surfaces are in turn brought into coincidence, and so that every position of

S may be derived from its original position by a translation. It is easy to see

that all infinitesimal displacements from the position in which M and M'

coincide are translations parallel to the tangent plane to 2 at the cor-

responding point P, so that any line parallel to the normal to 2 at P is a

special line. Now, when M and M' coincide, the corresponding rays m and

m' coincide in a single line which is a special line for the corresponding

position of the trihedral. If we identify this line with the line I of our funda-

mental result, the truth of our assertion will be evident.

We shall now particularise the nature of the correspondence between the

two surfaces and we shall suppose that it is a correspondence by parallel

tangent planes, so that we can find corresponding nets of curves on the two

surfaces such that corresponding curves have the same direction at cor-

responding points (and in general this can be done in one and only one way).

If, further, we note that the tangent planes at the points M, M', P to the

respective surfaces are now all parallel, it will be clear that our result may

be stated as follows:

If we have traced corresponding nets on two surfaces S and S' so that cor-

responding tangents to curves of the nets are parallel, and if with corresponding

points M, M' of the two surfaces we associate rays m, m' parallel to the common

direction of the normals at M and M' in such a way that the position of m in

relation to the tangents to the net at M is the same as the position of m' in relation

to the tangents to the net at M', then, if one of these rays describes a normal con-

gruence, the other does so also.

The theorem of Ribaucour* to which we have referred need not be enun-

ciated separately, for it is the particular case of what we have just stated

which arises when the surfaces have the same spherical representation of

their lines of curvature, the nets which we have introduced being identified

with the lines of curvature.

6. The moving trihedral of Darboux. The remainder of our work arises

out of two theorems which were given by Caronnet, and, in order to establish

and to extend these theorems, it will be necessary to make some remarks on

the circumstances which arise when we identify the trihedral T of our initial

* Journal de Mathématiques, (4), vol. 7 (1891), p. 40.
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result with the moving trihedral of Darboux. We shall thus associate with

each point M of a given surface a trihedral formed by three mutually per-

pendicular straight lines intersecting in M, one of which coincides with the

normal to the surface at M. The position of the other two edges of the tri-

hedral in the tangent plane may conveniently be specified by tracing on the

surface a singly infinite family of curves T and stipulating that the tangent

at a point M to the curve T that passes through it has an assigned fixed

position in relation to the moving trihedral. Since for our purposes two tri-

hedrals are equivalent if one is fixed in relation to the other, we shall not need

to know how this assigned fixed position is situated in relation to the trihedral,

the fact that it is fixed being all that is relevant. We see, then, that in order

to complete the determination of the motion of the trihedral, it is a matter

of indifference whether we use a family of curves T or a family of curves

which cut the curves T at an arbitrary constant angle.

The axes ax and a^ of a Darboux trihedral are always real: ai is a line

in the normal plane of the line of curvature Ci at M passing through the

corresponding center of principal curvature Pi, and a? is a line in the normal

plane of the line of curvature C2 at M passing through the corresponding

center of principal curvature P2.* We can easily complete the statement

of the position of these axes when the indeterminateness in the motion of the

trihedral has been removed by tracing a family of curves T ; and to make this

clear we shall first show that the center of geodesic curvature of the curve Y

which passes through M lies on the straight line which joins the points A\

and A2 where the axes «i and a2 cut the tangent plane.

Draw through M the straight line in the tangent plane which is normal

to the curve T and let it cut the straight line AiA2 in G. Consider that

infinitesimal displacement of the moving trihedral T in which M moves along

T. The displacement of the moving system at G is parallel to the normal

to the surface at M, for it is perpendicular to AiA2, which is a special line,

and it is also perpendicular to MG because at M, and hence at every point

on MG, the displacement of the moving system is perpendicular to MG.

Combining this with the displacement along MG which the observer T

attributes to the point G, we see that the actual displacement of G lies in

the normal plane of the curve T at M.

This fact suffices to show that G is the center of geodesic curvature of the

curve r,f for it implies that G lies on the characteristic of the normal plane

of T corresponding to a displacement of M along V, and this characteristic

* Darboux, Leçons, vol. 2, p. 365.

t Cf. Darboux, Leçons, vol. 3, p. 117.
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is the polar line of the curve, so that the point G where it meets the tangent

plane is the center of geodesic curvature of the curve.

If we trace any system of isogonal trajectories V of the curves T, it

follows similarly that the center of geodesic curvature of the curve V which

passes through M also lies in the line AiAt. We may thus construct the line

AiAt by joining the centers of geodesic curvature of the curves T and T'

which pass through M. The axes of the trihedral are then found by joining

the points where this line cuts the normal planes of the lines of curvature

to the corresponding centers of principal curvature. In other words, the axes

are the polar lines of those isogonal trajectories of the curves T which touch

the lines of curvature at M.

Incidentally, we have proved a theorem which is due to Lipka.* We

have shown that, if we construct the oo2 isogonal trajectories of a singly

infinite family of curves on a surface, the locus of the centers of geodesic

curvature of the trajectories passing through a point is a straight line.

7. The theorems of Caronnet.f The first of these states that the neces-

sary and sufficient condition that the line joining the centers of geodesic

curvature of the curves of an orthogonal net on a surface should describe a

normal congruence is that the corresponding radii of geodesic curvature

should be connected by some functional relation.

This theorem was extended by Beal,t who proved that we may replace

the orthogonal net by any net the curves of which cut at a constant angle,

and showed that the result remains true in the limiting case in which one of

the two centers of geodesic curvature is constantly at infinity.

Caronnet's second theorem states that if, corresponding to each point

on a surface, we construct the line joining the center of principal curvature

of the line of curvature of the first system at the point to the center of

geodesic curvature of the line of curvature of the second system at the point,

this line will describe a normal congruence if, and only if, the corresponding

radii of principal and geodesic curvature satisfy some functional relation.§

To prove Beal's extension of Caronnet's first theorem, we shall suppose

that we are given a net of curves formed by a family of curves T together with

their trajectories r' at some constant angle. The line / joining the centers of

geodesic curvature at a point M on the surface of the curves T and I" is

then a special line for the trihedral whose motion has been determined by

* These Transactions, vol. 13 (1912), p. 94.

t Comptes Rendus, vol. 115 (1892), p. 589.

X American Journal of Mathematics, vol. 35 (1913), p. 24.

§ A proof of this theorem is given by Pell, American Journal of Mathematics, vol. 20 (1898),

p. 112.
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means of the curves T or the curves V in the manner which we have

explained. In order that / should describe a normal congruence, it is therefore

necessary and sufficient that the observer T should regard it as doing so.

Now, for the observer T, I lies in a fixed plane, and he can therefore regard

I as describing a normal congruence only if it assumes at most =° ' distinct

positions in relation to his trihedral. The condition that this should be so is

clearly the existence of a functional relation between the radii of geodesic

curvature of the curves Y and Y', for these radii are the intercepts which the

line / makes on two lines which are fixed in one of the faces of the trihedral.

We may notice that, if we are given the functional relation, we can at

once derive the normal surfaces of the congruence which I describes from the

involutes of the curve which / appears to envelop. For instance, we can see

immediately the truth of a theorem given by Beal which asserts that the

foot of the perpendicular from M on I describes a normal surface of the

congruence if, and only if, the functional relation between the radii of geo-

desic curvature is that which expresses the constancy of their ratio.

In order to discuss Caronnet's second theorem, we shall identify the

curves T which we use to define the motion of the trihedral with one of the

families of lines of curvature. The axes ai and Oi of the trihedral are now the

polar lines of the lines of curvature,* so that ai is the line PiGi in the normal

plane of the line of curvature Ci which joins the center of geodesic curvature

Gi of Ci to the center of principal curvature Pi corresponding to Ci, and a2

is the line P2G2 which is similarly related to the line of curvature C2.

The theorem in question follows at once, for PiG2 is a special line and, as

in the preceding theorem, it appears to lie in a fixed plane. The condition

that it should describe a normal congruence is therefore the existence of

a functional relation between the radii of principal and geodesic curvature

MPi and MG2.

8. Extensions of Caronnet's second theorem. Caronnet's second theorem

leads to the construction of a normal congruence associated with the lines

of curvature of a surface only when the surface is of a special type. Our

methods, however, suggest the following propositions which are of a similar

nature, but which lead to the construction of a normal congruence whatever

be the nature of the surface:

The line GiQ joining the center of geodesic curvature of Ci at M to a point

Q on the polar line ofC2 describes a normal congruence if Q is so chosen that there

exists a functional relation between the length MQ and the radius of geodesic

curvature MGi.

* Darboux, Leçons, vol. 3, p. 345.
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The line PiR joining the center of principal curvature Pi to a point R on the

tangent to the corresponding line of curvature Ci describes a normal congruence

if R is so chosen that there exists a functional relation between the length MR and

the radius of principal curvature MPi.

The truth of these propositions will be sufficiently evident if we remark

that in each case the straight line under consideration is a special line which

appears to the observer F to intersect constantly a fixed straight line, and

that the only normal congruences in which every ray intersects a fixed

straight line are those whose rays are generators of a system of oo » right

circular cones which have this straight line as their common axis.

The second of these two results, however, is equivalent to a theorem of

Beltrami,* for, if we look at the matter from the standpoint of the sheet Si

of the surface of centers on which Pi lies, and remember that the curves

which the normals to the original surface touch on Si form a family of geo-

desies, along whose orthogonal trajectories MPi is constant, we see that our

result is equivalent to the statement that, if on any surface Si we trace a

family of geodesic parallels and draw through each point of the surface a ray

normal to the parallel and cutting the surface at an angle which is constant

along each of the parallels, these rays will form a normal congruence.

The following is another result of a similar character:

If a ray I meets the polar lines of the lines of curvature at Ri and R2 and

makes a constant angle with the normal to the surface, the condition that it should

describe a normal congruence is the existence of a functional relation between

the perpendicular distances of Ri and R2 from the normal to the surface.

The proof of this proposition will be sufficiently clear if we remark that

the only normal congruences in which each ray makes the same angle with

a fixed straight line are those whose rays all touch a cylinder having its

generators parallel to the fixed straight line.

We may note that this result may be enunciated in a form which involves

a reference only to the congruence formed by the normals PiP2 and not to

a particular normal surface of this congruence. We could, in fact, have

equally well described the polar lines of the lines of curvature as the tangent

lines to the sheets of the focal surface of the congruence of normals which

are conjugate to the ray PiP2 of this congruence, t We might also have

described them as the rectifying lines of the curves which the rays PiP2

touch on the sheets of the focal surface, and, with this alteration in the

enunciation, the particular case of our result in which the constant angle

* See Darboux, Leçons, vol. 3, p. 349.

f Darboux, Leçons, vol. 3, p. 335.
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between I and PiP2 is a right angle can be extended to congruences which are

not normal, but are subject to the condition that the angle between the focal

planes is constant.   We have in fact the following theorem:

If with each ray m of a congruence in which the angle between the focal planes

is constant we associate another ray I which is perpendicular to m and meets the

rectifying lines of the curves which the rays m touch on the sheets of the focal

surface, the necessary and sufficient condition that the ray I should describe a

normal congruence is the existence of a functional relation between the perpen-

dicular distances from m of the points where I cuts the rectifying lines.

Let Pi, P2 be the foci of the ray m, lying respectively on the sheets Si,

S2 of the focal surface, and let the rays touch the curves Ti on Si and the

curves T2 on S2. With each ray m associate a trihedral T whose motion we

shall not specify completely but shall subject only to the condition that the

focal planes of the ray m are fixed planes with reference to T. The focal planes

are the osculating planes of the curves Ti, T2, so that the rectifying planes

are the planes through the ray m perpendicular to the focal planes, and are

therefore fixed planes with reference to T.

We shall show that the special lines which lie in planes perpendicular to

m intersect the two rectifying lines. Take any point M on m and through

it draw a plane at right angles to m. Consider the special line which lies in

this plane, and let it cut the rectifying planes of the curves Tx and r2 in G

and G respectively. If we give to T that infinitesimal displacement in which

the focus Pi moves along Ti and notice that both the actual and apparent

displacements of M lie in that focal plane which osculates Ti at Pi, we see

that the displacement of the moving system at M also lies in this plane and

is therefore normal to MGX. Arguing as we did in our discussion of the Dar-

boux trihedral, we see that the displacement of the moving system at G is

parallel to the ray m, for it is perpendicular to GG which is a special line,

and it is perpendicular to MGi because at M, and hence at every point on

MGi, the displacement Of the moving system is perpendicular to MG-

Combining this displacement of the moving system with the displacement in

the rectifying plane which the observer F attributes to the point G, we see

that the actual displacement of G also lies in this rectifying plane, so that

G is a point on the rectifying line of the curve IV Similarly, G is a point on

the rectifying line of the curve T2. Hence those special lines which are

perpendicular to the ray m are transversals of the two rectifying lines. It

follows then that the line I of our theorem is a special line, and therefore / will

describe a normal congruence if, and only if, the observer T regards it as

doing so. The truth of our theorem will then be evident if we remember that

the condition that a straight line which always remains parallel to a fixed
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plane should describe a normal congruence is that its projection on this plane

should have only one degree of freedom.

We may remark in conclusion that, in the course of the foregoing argu-

ment, we have incidentally shown that the axes of any trihedral in relation to

which the ray m and its focal planes are fixed lie on the paraboloid formed by

those transversals of the two rectifying lines which are perpendicular to the ray m.

When the congruence formed by the rays m is a normal congruence, this

paraboloid becomes identical with the paraboloide des huit droites of Mann-

heim.*

* Comptes Rendus, vol. 84 (1877), p. 645.
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