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BY
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With the introduction of infinitesimal parallelism, by T. Levi-Civitaf in

1917, and independently by J. A. SchoutenJ in 1918, tangent spaces began

to play a leading rôle in differential geometry. The tangent space at a point,

x, is the totality of all contravariant vectors, or differentials, associated

with that point. By means of an affine connection§ the tangent spaces at

any two points on a curve are related by an affine transformation, which will

in general depend on the curve.

Linear connections of another kind were defined by R. König,|[ who as-

sociated with each point of a given «-dimensional manifold a space of m

dimensions. A linear connection arises in differential equations of the forint

(0.1) dZ" + Ztfßidx* = 0,

by means of which the associated spaces at different points are related to

each other, and which are said to define a linear displacement.

Even if m = n, a linear connection of the König type has nothing to do

with an affine connection** unless we require explicitly that the associated

space at each point is the tangent space of differentials at that point.

Schouten has proposed the use of linear connections in handling a schemeft

by which differential geometry is based on group theory, in the spirit of

Klein's Erlanger Program. The associated spaces are to be the spaces, ac-

cording to Klein, of some group, and are related through linear displacement

* Presented to the Society, December 30, 1930; received by the editors June 8,1930.

t Rendiconti del Circolo Matemático di Palermo, vol. 42 (1917), pp. 173-205.

Í Proceedings, Koninklijke Akademie van Wetenschappen, Amsterdam, vol. 21 (1918), pp.

607-613.

§ H. Weyl, Mathematische Zeitschrift, vol. 2 (1918), pp. 384-411. See also G. Hessenberg,

Mathematische Annalen, vol. 78 (1918), p. 199.

H Jahresbericht der Deutschen Mathematiker Vereinigung, vol. 28 (1919), pp. 213-228.

|| Greek letters, used as indices, will take on the values 1, • • • , m, and italic letters the values

\, • • • ,n(m >noi <«).

** I mean by an affine connection any invariant with the transformation law

_,•       / a dx*   dx*       S'x* \ ox4

V ** dx>  dxh      dx'dxk) dx°

ft Rendiconti del Circolo Matemático di Palermo, vol. 50 (1926), pp. 142-169. In particular

Schouten has applied linear connections to the non-holonomic projective {m = n-\-\) and conformai

(m = n-\-2) geometries.
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by transformations of this group.* The general problem of imposing con-

ditions upon the associated spaces, in order that they may be suitably re-

lated to the underlying manifold, has been discussed by Weylf who solved

the problem for the projective group.

Without touching on the questions which arise out of this scheme, there

is a definite field for research in studying invariant properties of the dif-

ferential equations (0.1) under transformations of the form (4.1). L. Schles-

ingerj has gone some distance in this direction, and we adopt this point of

view in the present paper. Though most of our results refer to linear con-

nections of the König type, they can all be interpreted in terms of affine

connections and arbitrary w-uples. Given any affine connection we take

m = n, and the associated spaces as the tangent spaces of differentials. In

order to have a theory in which transformations of the form (4.1) are allow-

able, where (4.1a) is indépendant of (4.1b), we take

(0.2) L   = yßau'

where u¡ are the covariant vectors of any w-uple, and y"ß„ are the scalar

functions! analogous to Ricci's coefficients of rotation. The equations (4.1a)

will define a change over from one w-uple to another.

In §1 we give a geometrical proof of a theorem established by B. V.

Williams|| and the author, in which we showed how to obtain an integrable

connection which osculates (see §1 of this paper) a given linear connection.

In §2 we prove a theorem about affine connections, which bears a formal re-

* This idea is mainly due to E. Cartan and is formulated by him in a paper (Bulletin de la Société

Physico-Mathématique de Kazan, (2), vol. 3 (1927)), where he discusses Schouten's plan.

f Bulletin of the American Mathematical Society, vol. 35 (1929), pp. 716-725. Immediately

preceding this, O. Veblen (Journal of the London Mathematical Society, vol. 4 (1929), pp. 140-160)

had dealt with projective displacement from a different point of view. He showed how the space of

projective vectors at any point, which plays the part of the associated space, is related to the space

of differentials.

Î Mathematische Annalen, vol. 99 (1928), pp. 413-434.

§ L. P. Eisenhart, Non-Riemannian Geometry, p. 47. These scalars are given by

a a     i i

Ißt  =  Ui;jVßV,,

where the semi-colon denotes covariant differentiation with respect to the affine connection, and

Vß are the contra variant vectors of the «-uple. In his treatment of non-holonomic affine spaces

Cartan (Annales de l'Ecole Normale Supérieure, 1923) uses «2+» Pfaffian forms, a" and wß. The

former give the coordinates of a point in each tangent space, and the latter define the affine connec-

tion. According to (0.2) these forms are given by

a a . a    .    .
a   = mdx%, uß = Lßidx'.

II Annals of Mathematics, vol. 31 (1930), pp. 151-157. This paper will be referred to as T. L. C
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semblance to, but which differs essentially from either of those proved in T.

L. C. We define a family of coordinate systems, which, like normal co-

ordinate systems, have the property that each of them is uniquely determined

by an affine connection, a point, and a given coordinate system. In §3 we

show how the theorems of §§1 and 2 can be applied simultaneously to the

theory of a linear connection together with an affine connection. In §4 we

pass on to the study of invariants under transformations of the form (4.1).

We prove a theorem for linear connections, and show that a similar theorem is

true for symmetric affine connections. In the case of the latter this amounts

to expressing

Ti [/;*,; j,;-■•;*,;',,]

in terms of T\ and the curvature tensor. In §5 we return to the study of a

linear connection together with an affine connection, and show how a com-

plete set of invariants may be obtained which are closely analogous to affine

normal tensors. Dynamical systems with non-holonomic constraints provide

a field of application for this theory, as we show briefly in §6. In §7 we apply

the existing theory of Pfaffian forms to the equations for linear displacement,

and show how the theorem in §1 is relevant to the study of integral sub-

spaces.

As in T. L. C. we follow Schlesinger in his use of matrices.   Instead of

(0.1) we deal with the equations

d¿¡ + z'ßLndx' = 0,

which we write as one equation

dZ + ZLidxi = 0,

with a matrix for the unknown. This equation is completely integrable if,

and only if, it is satisfied by a non-singular (i.e., with non-zero determinant)

matrix V{x).  In this case we have

Li = - V~W,i,

where we use the comma to denote partial differentiation.

1. Osculating connections.  The necessary and sufficient conditions that

the equation

dZ + ZLidxi = 0

is completely integrable are that*

\Rii = £[.,,] + L[iLj] = 0.

* We follow J. A. Schouten in writing p\A\iX...ip] for the alternating sum of the quantities

Aii..,ip.
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In this case the connection ¿,and the displacement defined by this connection,

are said to be integrable.

Williams and I showed that, given any linear connection L, and a co-

ordinate system, x, there exists a unique integrable connection T such that

1 n   =  •i-'n,

r„_i = Ln-i  for    xn = 0,

(1.1) Tp — Lp for xp+1 = = x" = 0,

Ti = Li      for xn = 0.

We shall refer to this as Theorem C. Since the connection T is completely

determined by these conditions we shall say that it osculates the connection

L, in the manner described by (1.1). Notice that T is determined not by L

alone, but by L together with the series of subspaces, each contained in the

next, on which the components Ti, r2, • • • agree with Lx, L2, ■ • • .

We shall give another proof of this theorem. LetPx^x1, • • • , xB)beany

point in the neighborhood of the point P0 = (0, ■ ■ ■ , 0), and let

Pi be the point (x1, 0, • • • , 0),

P2 "    "       "     (x\ x2, 0, • • • , 0),

(1.2)
Pr   " (x1, ■ ■ ■ , x', 0, • • • , 0),

Pn   "       " "        P*=   (X1,  •■•,*»).

There is a unique curve, PoPx • • • Px, joining P0 to each point Px in the

neighborhood of P0- Each of these curves is analytic except at a finite num-

ber of points.

<¡P3

P,
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Let Vo be any non-singular matrix. Then at each point, x, is defined a

non-singular matrix, V{x), by the linear displacement of V0 from P0 to Px,

along the curve PoPx ■ ■ ■ Px- Along this curve we shall have

(1.3) dV + VLidxi = 0.

By repeated applications of the theorem that a solution of

dy"
-j- = 4>"(t; a\ ■ ■ ■ , a»),
dt

where <p" arc analytic in all their arguments, is itself analytic in t and

a1, ■ ■ ■ , aN, we see that V is an analytic function of x. We can, therefore,

define an integrable connection by the equations

(1.4) n=-V-W,i,

and, from (1.3) and (1.4), we have

(1.5) (r, - L,)dxi = 0

along each curve PoPx • • • Px- On the segment PV-XPP we have

(1.6) Tp = Lp for xp+1 = ••■ = *» = 0,

and by giving p the values* 1, • ■ • , n we have the relations (1.1), and the

theorem is established.

2. A theorem on affine connections. In this section we shall prove the

following

Theorem. Let D be any affine connection {not necessarily symmetric). Then

there exist coordinate systems in which the components, D)k, of D satisfy the

following conditions:

Din  = 0;

¿?p„_! = 0,   p = n - 1,     for     yn = 0;

2.1) i
D,p = 0,   o = p, for  yp+l = • • • - y» = 0;

D)i = 0,   j = 1, • • • , n, for      y2 = • • • = yn = 0.

^4»y such coordinate system is uniquely determined by a point and n independent

contravariant vectors associated with that point.

* When p = n we have simply T„ = Ln.
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By taking these as the unit vectors tangent to the coordinate lines, in

any coordinate system, we can associate, with each coordinate system and

each point, a unique coordinate system in which (2.1) are satisfied. We shall

thus have a class of coordinate systems, the totality of which will be an in-

variant of the affine connection D.

An essential difference between this theorem and those proved in T. L. C.

is that it is concerned with the affine connection itself, and not with the affine

connection together with a given system of curves and surfaces.

Let Po be any point in the space bearing the affine connection D. Let pa

be n independent contravariant vectors associated with P0. A coordinate

system may be constructed by the following procedure. The coordinates

of Po are to be (0, • • ■ , 0). Let G be the path which passes through P0 in

the direction determined by the vector px. Move the matrix (p'a) by parallel

displacement along G from P0 to a point Px. The coordinates of Px are to

be (y1, 0, • • • , 0). Let va(y1, 0, ■ -, 0) be the components of the vectors

thus obtained, and let C2 be the path through Px in the direction v2. Then

move the matrix v by parallel displacement along C2 from Px to a point P2,

whose coordinates are to be (y1, y2, 0, • • • , 0). Repeating* this process we

shall eventually reach a point P„ whose coordinates are to be (y1, ■ • • , y").

The proof that this process gives an allowable coordinate system (i.e., a

coordinate system obtained by an analytic transformation from a given

coordinate system) is of the same nature as that required in §1.

Let H)k be the components of D in a coordinate system x, in which the

equations to G are x*=<p*(y1). The components of the w-uple v\, at Pi, are

given by those sets of solutions to

dx* i  dd>k
(2.2) — + X'Htk— = 0

dy1 dy1

which reduce to p'a for y1 = 0.    The equations to the path G are given by

those solutions, <¡>\(yl, t), to the equations

d2x*        i dx' dxk
-+ Hjk-= 0.
dt2 dt    dt

which satisfy the initial conditions

<t>\(y\ 0) = 4>*(yi),
(2.3)

(^f)    =^(y\0,---,0).
\ at /¡_o

* At the rth step we shall move the matrix along the path C„ which passes through Pr-X in the

direction v„ from Pr..x to a point PT, whose coordinates are to be (y1, • • • , y, 0, • • • , 0).
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The components v\ at P2 are given by the sets of solutions to the equations

dXi i d<j>xk
— + XiHik—— - 0
dt dt

which reduce to »Ky1, 0, • • • , 0) for / = 0. If we put y2 = t the coordinates of

P2, and the components of v\ at this point, will be given by

x{ = 0ii(y, y2),

(2.4)
v¿ =vi(y\ y2, 0, •   -,0).

Since <p(yl) and H'jk are analytic functions of y1 and x respectively, <f>\ and va,

given by (2.4), will be analytic functions of y1 and y2. Proceeding in this way

we shall eventually obtain, for the coordinates of P„,

xl = x*(yl, ■ ■ ■, y),

and for the components of v\ at this point,

Vifyl}  .   .   .   j   y«^

where x*' and v'a are analytic functions of y.  The process given above in de-

scriptive terms does, therefore, give an allowable coordinate system, and an

»-uple of contravariant vectors whose components are analytic functions of y.

From the construction for v\ it follows that

On*   = W ,

»Li = 5*n_i for     yn = 0,

(2.5)
vp* = 5p*    for  yp+1 = ■ • ■ = yn = 0,

v{ = 5i*"    for      y2 = ■ ■ ■ = y" = 0.

These equations may be concentrated into

flp* = 5;, p = /», for y"4-1 = • • • = yn = 0, /> = 1, • • • , n.

Let at a

w»»i> = Sb.

Then from (2.5) we have

(2.6) u„ = hi, p = /> for y+1 = • • • = yn = 0    (/> = !,•••,»).
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By an argument used in §1 we have

n*    - F*U jn ■C/7'nj

(2.7) D)p = E)p for yp+l = • • • = y» - 0,

DJi = ÊÎi for y2 = • • • = y» = 0,

where Ej¿ = zy<¿¿, and .Dj¿ are the components, in y, of the given connection.

From (2.6) we have

(2.8) EU = 0, p = /», y*+>-y» - 0     (/» = 1, • • • , n),

which, combined with (2.7), give (2.1). The coordinate system is uniquely

determined by the point P0 and the matrix (p'a). The theorem is therefore

established.

We shall give another proof that (2.1) hold, which will bring out their

geometrical significance. The curves of the congruence defined by v„( = 8n)

are paths.  Hence

Dnn = 0.

The curves of the congruence defined by vn~i, which lie in the hypersurface

yn = 0, are paths.  Since v'n-i = S*„_i for y" = 0, we have

z£-i.„_, = 0 for y" = 0.

But the vectors vn are parallel at different points of these curves.  Hence

Dn,n-i = 0 for y" = 0.

The remaining conditions may be obtained by a repetition of this argument.

In case D is symmetric all its components figure in the equations

D\p = 0, p è P, for y"+1 = • • • = y" = 0   (p = 1, • • • , »),

which may be written

(2.9) Dp? = 0 for ys+1 = ■ • • = y» = 0, s = min (p, q)    (p, q = 1, • • • , n).

3. Linear connections together with affine connections. The theorem

proved in §1 belongs to the combined theory of a linear connection and an

affine connection, for it refers to the connection L and the sub-spaces given

in the coordinate system x by x2 = • • ■ =x" = 0, x3= • • • =x" = 0, and so on.
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These loci are flat sub-spaces, defined by a flat affine connection for which x

is a cartesian coordinate system. If we are concerned with the general theory

of a linear connection L, and an affine connection D, we can construct a co-

ordinate system y and an «-uple va by the process given in §2. Theorem C,

referred to the coordinate system y, will belong to the combined theory of L

and D. In place of (1.1) we can write the relations

(3.1) (r< - L,)vj = 0 for yp+l = • • • = yn = 0 (p = 1, ■ ■ ■ , n).

The methods of §1 can be used to give other osculating integrable con-

nections. The simplest of these is constructed by taking normal coordinates,

y, for D at any point P0, and considering the matrix function, V, given by

the linear displacement of a non-singular matrix, V0, from P0 to any point

y along the path joining these points.   The equations giving V are

(3.2) dV + VLidxi = 0,

or

(3.3) (A, - Lady* - 0,

where A is the integrable connection given by

(3.4) V,í + VAí = 0.

Since y* are normal coordinates, and (3.3) refer to displacement along

paths through the origin, we have

(3.5) (Ai-Li)f = 0.

As in §1 the connection A is uniquely determined by this condition.

4. Invariant theory. In this section we take up the invariant theory of

a linear connection under transformations of the form

(a) Z"=Zßp?,
(4.1)

(b) x* = x{(x),

where ||$j|| is a non-singular matrix depending on x only. A coordinate

system for the underlying manifold, together with a frame of reference in

each of the associated spaces, will be called a representation; and a transforma-

tion of the form (4.1) will be called a change of representation. On this basis

an invariant may be defined in terms of its transformation law* under changes

of representation. We shall deal only with linear connections, and with

tensors having m2np components which obey the transformation law

* Schlesinger, loc. cit., p. 423.
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-x       « x   -     dx«"
Tßa)P\ — PßTxia)-——>

dx'-1'

where the symbol (i) stands for any number of italic indices, and Pßp\ = 5£.

The transformation law for a linear connection is given by

-—Ct X fl      X tX    @ "S

Lßj= (Pß,i + PßLn)px-;»
dx'

and we shall write these formulas*

_ ÖXCo)

(a) TWP = PT
dx™

(4.2)

(b) L,P = (P,i + PLi)— ■
dx'

From (4.2b) we see that there exist representations in which all the com-

ponents of an integrable connection vanish. For if T is an integrable connec-

tion, there will be a non-singular matrix-function V, such that

V,i + VTi = 0,

and the components of T will vanish in the representation given by

Z" = Z»U",

x* — x*,

where U=V~1. All representations in which the components of the con-

nection vanish are related by equations of the form (4.1), where p is a con-

stant matrix.

An operation analogous to covariant differentiation arises from the fol-

lowing considerations.  Let F be a matrix which satisfies the equation

(4.3) dV + VLidx* = 0

* Since the transformations (4.1a) and (4.1b) are independent, it might, for some purposes, be

desirable to borrow from group-theory the notion of conjugacy. Two tensors K and H may be de-

scribed as conjugate if there exists a non-singular matrix, V, such that

KmV = VHm.

The set of all tensors conjugate to a given tensor may be called the class of that tensor.  Similarly

two linear connections are in the same class if there exists a non-singular matrix, V, such that

MiV =V{ + VU.

All tensors or linear connections belonging to the same class are seen to be equivalent under trans-

formations of the form (4.1a).
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along a curve C.  It follows that

(4.4) dV-1 - LiV-Hx1 = 0.

Let r(i) be a given tensor and let

A(i) = ytwv-\

Differentiating along C we have, from (4.3) and (4.4),

dA(i) = VTwlkV-\

where*

(4.5) ¿\«)/* = ¿\i),* + T(i)Lk — LkTa).

Direct calculation shows that

(4.6) 2r(o/[,7*] = T(i)Rjk — RjkT(i).

Let

(4.7) (TR), = Rjikl ■ ■ ■ Rj^k^TwRjs, • • • Rjrkr,

and let an operator, a, be defined by the equation

a(TR), = (TR).+X.

We can describe a as an operator which moves T one place to the right in

any expression such as (4.7), without respect to particular values of 5 and p

{p>s). We can write (4.6) as

T(i)ium = è(l — a)T(i)Rjk.

In T. L. C. (p. 154) it was shown that

Ri,k/i] = 0.
Hence

¿\o/[jV*i/j"2/*j] = ï(l "~ a)2^«»-^!,»!^^],

and, in general,

1
(4.8) Twiuili'l/---/jp/kpi = —(1 — a)pTii)Rihkl • • ■ Rjfkri.

* We cannot derive tensors from a given tensor by repeated applications of this operation, as

there is no way of eliminating the second derivatives

dx>dxk
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Similar identities will occur in the theory of a symmetric affine connection.

For if m = n and L is an affine connection such that

a a

Lßi = Liß,
we have

Tßli;j]  =  Ißli/j],

where the semi-colon denotes ordinary covariant differentiation, and T^m

means the same as before. The relation (4.8) was obtained by purely formal

methods, and we have, therefore,

1
(4.9)        Tu^-.ky. ..;*;*„] = — (1 - a)>TltRilkl ■ ■ ■ R,rkp].

5. Normal representations. In the theory of a linear connection together

with an affine connection, the comma on the right hand side of (4.5) can be

taken to define covariant differentiation with respect to the latter. If, for

example, Cjk are the components of the affine connection, we shall have*

_ dTj
1 i/j —        ■       1 jCj,- + 1 iL¡      Ljl j.

dx'

It will then be possible to obtain successive tensor invariants from a given

tensor.

Let y be the normal coordinate system at a point q for the affine connec-

tion and the coordinate system, x, in some given representation. There will

be representations in which the components of the integrable connection A,

defined by (3.4) and (3.5), are zero. There is just one of these representations,

the normal coordinate system, y, being retained throughout, which deter-

mines in the associated space at q the same frame of reference as the given

representation.   This is obtained by imposing the initial conditions

in the equations (3.4), and may be called the normal representation at q for

the linear connection together with the affine connection, and for the given

representation. In this representation we have

(5.1) Liy* = 0,

and

* This is a simple application of a scheme introduced by A. W. Tucker in a paper which will

shortly appear in the Annals of Mathematics.
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(5.2) Li= 2Z-Hik,...kvyki---yk>,

where

/       âpLi       \
(5-3) Hik,...kr=   —-—-)      .

From (5.1) and (5.2) it follows that

(5.4) Hi *,+...+*, 4- Hk,i...kp +■■■ + Hk,...kpi = 0.

Let Hik, Hiklk2, • • • , Hi(k)p, • • • be the quantities obtained in the same way

as Hi( k)p, at the same point, but starting with a different representation. Just

as in the affine theory, it follows that ¿7« «p and ¿7i( k)p are related by the trans-

formation law for a tensor.  Hence a sequence of tensors,

Hi k, • ■ ■ , Hi *,...*„, • • • ,

analogous to affine normal tensors, is defined by the condition that the com-

ponents of Hnk)„, at each point q, shall be given by (5.3). These, together

with the normal tensors for the affine connection, constitute a complete set

of invariants for the linear connection together with the affine connection.

This may be proved by methods similar to those used in proving the analo-

gous theorem for affine connections.*

6. Application to dynamics. The mathematical machinery used by G.

Vranceanuf in his treatment of dynamical systems with non-holonomic con-

straints, may be regarded as the combined theory of a linear connection'and

a Riemannian metric. The metric gijdxidxi represents the kinetic energy, and

the constraints can be represented by m unit orthogonal vectors &,•••,&»

{m^n).  If t& are the rotation functions, given by

y»tr  =  %aaß\<,,

where &; „ is the intrinsic derivative of &, a linear connection is defined by

Lßi — yßaKoi-

We should limit (4.1a) to orthogonal transformations by imposing the con-

dition

PaPß   =  Oaß.

* T. Y. Thomas, Mathematische Zeitschrift, vol. 25 (1926), pp. 723-733. Thomas was consider-

ing a special type of affine connection, but the method is general,

t Comptes Rendus, vol. 183 (1926), p. 852, also p. 1083.
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The associated space at each point can be identified with the sub-space

spanned in the tangent space by the vectors £„, but the essential feature

which distinguishes the theory of a linear connection from that of an affine

connection is retained: namely that the frame of reference may be changed

in each associated space independently of coordinate transformations.

7. Integral sub-spaces. In this section we shall show how some of the

general ideas in the theory of Pfaffian forms* can be interpreted in terms of

linear displacement, when considering the equations

(7.1) dZ" + Z^Laßidx* = 0.

It will be convenient to say that a set of numbers (x1, • • • , x"; Zl, ■ ■ ■ , Zm)

determine, on the one hand a point x in the underlying manifold F„, together

with a point Z in the linear space associated with x, and on the other hand a

point in a space oim+n dimensions, which we shall denote by S„+m. We shall

discuss some of the simpler properties of the integral sub-spaces, in Sn+m, of

the equations (7.1).

Let Ru be the curvature tensor derived from the linear connection L. We

shall say that any two vectors £ and 17 which satisfy the condition

(7.2) F<3£V = 0

are in involutionf with respect to L. Any two vectors linearly dependent on

£ and 77 will also satisfy (5.2). Let a set of vectors £1, • • • , £P, such that

(7-3) £x,,-£„ - £„,í£x = ciU* (" = 1» • ■ • , P),

be mutually in involution with respect to L. In virtue of (7.3) we can find a

set of vectors Xx, ■ ■ • , Xp, linearly dependent on £1( • • • , £„, and such that

the equations

(7.4) TT = X)i (X = l, •••,/»)
or

are completely integrable. The vectors Xx, ■ ■ • , XP will, therefore, define a

congruence! of ¿»-spaces given by

* All these ideas are to be found in Goursat's Leçons sur le Problème de Pfaff, especially in

chapters VI and VIII. The latter chapter is mainly an exposition of Cartan's work.

t This is not the same as saying that £ and r¡ are in involution with respect to the equations

(7.1), the conditions for which are

■Z%«îy = 0.

We require that £' and ij* shall not depend on Z, in which case these equations imply (7.2).

J By a congruence we mean a family of ^-spaces such that one and only one passes through each

point of some given »-cell in V».
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(7.5) xi - xo* = x*(t\ ■ ■ ■ ,tp; xo),

where x((tl, ■ • ■ , tp; x0) satisfy (7.4).    Since the vectors Xx, ■ ■ ■ , Xp are

mutually in involution with respect to L, we shall have

ox* dx'
(7.6) ¿c,,—-= 0,

dix   dt»

and so the equations

dZ" ß a dx*
(7.7) _ + Z^- = 0 (X = l,...,,)

will be completely integrable. On each /»-space of the congruence given by

(7.5) the connection L determines, therefore, an integrable displacement.

Any solution to (7.7) is of the form

Z" = zWß(t\ ■ • • , tp; xo),

where Z^ are arbitrary constants.

In terms of the space Sn+m we say that the equations

Z" = Zo<h(t; xo),
('.°)

x* = xo* 4- xl(t; Xo)

define a congruence of integral ^-spaces (in Sn+m) with respect to the equa-

tions (7.1). Such a family of integrals is called generic, since (7.4) and (7.7)

are completely integrable at a "typical point" of Sn+m-

It may happen that there are singular* integral sub-spaces in Sn+m.

Singular integrals arise in any of the three following cases :

(1) The equations (7.6) are satisfied by a complete system of vectors

Xx, • • • , Xp, but only on some sub-space of F„ (i.e. subject to certain con-

ditions, <p(x) = 0, ^(x)=0, • • • )•

(2) The equations (7.4) admit solutions, but are not completely inte-

grable.

(3) The equations (7.7) admit solutions, but are not completely inte-

grable. In the third case let (7.7) admit a complete set of q independent

solutions U\, ■ ■ ■ , Uq, q<m. Then a"Us, s = l, • • • , q, where a' are con-

stants, will also be a solution, and so, for x = const., the totality of solutions

to (7.7) will be the linear space spanned by Ux, • ■ ■ , Uq. In terms of the

linear connection L we have an integrable displacement of linear g-spaces in

* An integral sub-space is called singular if it does not belong to a congruence, but to a family

which is entirely contained in some sub-space of higher dimensionality.
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the associated spaces.* Since the matrix (U^), a = l, ■ ■ ■ , m, s = l, ■ ■ ■ , q,

is of rank q we may assume that the determinant | U's \, s, t = 1, • • • , q, does

not vanish.  Apply the change of representation given by

a _s     a — p a

Z   = Z U,+ Zh„    (s = 1, • • • , q, p = q + 1, • • • , m),

x* = x*.

Then the linear ç-spaces in question are given, in the new representation, by

Z" = 0. Since the equations (7.1) are invariant in form under all changes of

representation, it follows that

(7.9) É.idx* = 0

for values of dx tangent to any sub-space on which (7.7) admit the solutions

Ux, ■ ■ ■ , Uq.
In the remainder of this section we shall suppose that (7.7) either admit

no solutions, or else are completely integrable, in which case the vectors

Xx, • ■ ■ , Xp are mutually in involution with respect to L. Singular integrals

will occur, therefore, only in the event of (1) or (2) arising, and we shall

combine these into the case where Vn admits a family of sub-spaces, on each

of which L defines an integrable displacement, and which, in a suitable co-

ordinate system, are defined by equations of the form

(7.10) x"+1 = cp+l, ■ ■ ■ , x« = c", x«+1 = • • • = x" = 0, n> q > p,

where cp+1, • • • , C are arbitrary constants. If q = n this family is a con-

gruence, and the corresponding integrals generic. We shall show how Theo-

rem C is relevant to this simplified theory of integral sub-spaces, and to the

study of the characteristics. A vector £'will be described as a characteristic of

the connection L if it is in involution, with respect to L, with every other

vector. The necessary and sufficient conditions for this to be the case are

thatf

(7.11) /?<,£> = 0.

Let £„, p = p +1, ■ ■ ■ , n, be a complete set of solutions to these equations.

Differentiating

Rid = o,

* If L were an affine connection U¡, ■ • ■ ,U, would be parallel fields of contravariant vectors,

defined on some sub-space in Vn.

t A vector f is a characteristic for the Pfaffian system (7.1) if

ZPRßlil? = 0,

and we can only deduce (7.11) from these equations when {* are independent of Z.
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we can write the result in the forms

Riilk£i>  + Rißp.k  = 0,
k

Rik/0 + Rikit.i— 0,

Rjk/i£i>   + Rjk^p.i = 0,

Riki& + Rjh£¿ = 0.

Multiplying these equations by £„, — £¿, ££,, and %£p respectively, adding

them together, and taking into account the relations ¿?[i,y*]=0 and (7.11),

we obtain

where
Ri£[/>■»] - °>

s/>,» Çp, j?» •

Since £„ form a complete set of solutions to (7.11) we have,* from these equa-

tions,

(7.12) fí,„i=cUr (t = p + 1, •••,»).

There exists, therefore, a coordinate system x, in which ô'p form a complete

set of solutions to (7.11), and in this coordinate system,

(7.13) Rip = 0.

The vectors 5'p define the congruence of {n—p) -spaces given by

X1 = c\ ■ ■ ■ , xp = cp,

where c1, • • • , cp are arbitrary constants. This will be called the congruence

of characteristic sub-spaces for the connection L. Applying Theorem C to

the connection L, in the coordinate system x, and choosing a representation

in which the components of the integrable connection T vanish, we have

(an) Ln = 0;

(an-x)    Ln-i = 0    for       xn = 0;

(7.14)
(ap) Lp = 0   for    *"+' = • • •

(ax) Li = 0   for        x2 = • • • = x" = 0.

* The linear elements, in S„+m, given by (£¿ , —ZßLßi^), do not necessarily define the charac-

teristic manifolds (in 5n+m) for the equations (7.1). The relations (7.12) do not, therefore, follow

from the general theory of Pfaffian systems.
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From (7.13) and (7.14a„) we have, if p<n,

Li.n = 0.

The condition x„ = 0 may, therefore, be discarded in all the relations (7.14).

We have, therefore, L„_i = 0, and from (7.13), if p<n — \,

Li.n-1 = 0.

Hence the condition xn_1 = 0 may also be discarded in (7.14). Repeating this

argument we can replace (7.14) by the relations

I? = 0, p = p + 1, • ■ • , »;

LP = 0;

(7.15) £p_i = 0   for    x" = 0;

Li = 0   for    x2 = • • ■ = xp = 0,

with the condition Li,„ = 0, p = p+l, •••,«. The study of the connection L

may, therefore, be confined to its behavior on the sub-space Vp, of F„, given

by xp+1= • • • =xn = 0. The number p may be called the class of the con-

nection* L.

Let us suppose the class to be n, and consider the equations (7.14). The

equations (7.14a„) assert that the connection L defines an integrable displace-

ment along the curves of parameter xn. If L defines an integrable dis-

placement on each surface of the congruence given by

x" = ca (a = 1, • • • , n — 2),

where C are arbitrary constants, we can discard the condition xn=0 in

(7.14an_i), and conversely.  In this case the surfaces in S„+m, given by

x1 = c\ ■ ■ ■ , x"-2 = c"-2, Z1 = A1, ■ ■ ■ ,Zm = Am,

where c and A are arbitrary constants, belong to a generic family of integrals

with respect to the equations (7.1).

In order that the surfaces in Sn+m given by

x1 = c1, • • • , x*-1 = c"-1, Za = Aa

* If p is the class of a linear connection /, the tensor (see §4) whose components are

•R[/,t, • • • £;„*«,!

will vanish for 2q>p.  This follows from the existence of coordinate systems in which Rt,, = 0, for

P>P.
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shall be a generic family of integrals, it is necessary and sufficient that

Zp= • • ■ =Z,„ = 0.
Starting from the other end, the sub-space in Sn+m, given by

zp+i = . . . = x» = o,     Z" = A",

will be a singular integral if, and only if, Lx= • ■ • =LP = 0 for xp+1= • • •

=x„ = 0. The connection L will then define an integrable displacement over

the /»-space in Vn, given by xp+1= • • ■ =xn = 0.

In general let apq,n^q>p, stand for the condition x« = 0 which is imposed

in (7.14a,,). If the connection L is such that any given set of these conditions,

aql> " ' " » aq',t can De discarded, there will be a family of integrals, whose

equations will be apparent from (7.14). If, for example, the conditions

ann12, a*_2 are unnecessary, the surfaces in Sn+m given by

x1 = c1, • • ■ , xn~3 = g"-1, xB_1 = cn~l, Z" = A",

will be generic integrals, and those given by

x1 = c1, ■ • • , xn~3 = c"-3, xB = 0, Z" = A"

singular integrals.
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