## THE TRANSFORMATION C OF NETS IN HYPERSPACE*

BY<br>V. G. GROVE

## 1. Introduction

It is the purpose of this paper to extend some of the ideas related to the transformation $\dagger C$ of nets in projective space of three dimensions to nets in hyperspace. In three dimensions two nets $N_{x}$ and $N_{y}$ are said to be in relation $C$ if the developables of the congruence $G$ of lines joining corresponding points $x$ and $y$ intersect the two sustaining surfaces in those nets, provided however that neither surface is a focal surface of the congruence. If $N_{x}$ and $N_{\nu}$ are in relation $C$, the tangents at $x$ and $y$ to corresponding curves of the nets intersect.

We shall say that two nets $N_{x}$ and $N_{y}$ in space $S_{n}$ of $n$ dimensions are in relation $C$ if the two sustaining surfaces $S_{x}$ and $S_{\nu}$ are such that corresponding tangent planes intersect in a line, and if the developable surfaces of the congruence $G$ of lines $g$ joining corresponding points $x$ and $y$ intersect the two surfaces in the nets. It is to be understood that the two sustaining surfaces are not the focal surfaces of $G$. Not all nets $N_{x}$ in $S_{n}$ for $n \geqq 4$ can have a $C$ transform $N_{y}$. A net in $S_{n}$ which permits of having a $C$ transform will be called $a C$ net.

We derive necessary and sufficient conditions that a non-conjugate net be a $C$ net. Another geometrical interpretation is given for two covariant points found by Bompiani. $\ddagger$

Let $S_{x}$ and $S_{y}$ be two surfaces in the same space $S_{n}$ of $n$ dimensions and with their points in one-to-one point correspondence. Let the parametric equations of these surfaces be

$$
x^{(i)}=x^{(i)}(u, v), \quad y^{(i)}=y^{(i)}(u, v) \quad(i=1,2,3, \cdots, n+1),
$$

the parameters being so chosen that corresponding points have the same curvilinear coördinates. Suppose furthermore that the tangent planes to $S_{x}$ and $S_{y}$ at corresponding points intersect in a line. There exist therefore scalar functions $m, s, f, A$, etc., such that

[^0]\[

$$
\begin{aligned}
& y_{u}=m x_{u}+s x_{v}+f x+A y, \\
& y_{v}=t x_{u}+n x_{v}+g x+B y .
\end{aligned}
$$
\]

Any point $z$ on the line $g$ joining corresponding points $x$ and $y$ is defined by an expression of the form

$$
z=y+\lambda x .
$$

Consider the surface $S_{z}$ generated by the point $z$, and a curve $C$ on $S_{z}$ with parametric equations

$$
u=u(t), v=v(t)
$$

The tangent line to $C$ at $z$ is determined by $z$ and $z^{\prime}=d z / d t$ where

$$
\begin{equation*}
z^{\prime}=\left[(m+\lambda) u^{\prime}+t v^{\prime}\right] x_{u}+\left[s u^{\prime}+(n+\lambda) v^{\prime}\right] x_{v}+() x+() y . \tag{2}
\end{equation*}
$$

Hence the line $g$ generates a congruence in the ordinary sense, that is, the lines of the two-parameter families of lines may be grouped into two oneparameter families of developable surfaces. The curves on $S_{x}$ corresponding to these developables are defined by

$$
\begin{equation*}
s d u^{2}-(m-n) d u d v-t d v^{2}=0 \tag{3}
\end{equation*}
$$

We shall assume that these curves are not indeterminate and are distinct. By a change of parameters we may make the curves determined by (3) parametric. Let us suppose that this transformation has been made. If two surfaces are such that their parametric nets are in relation $C$, the functions $x$ and $y$ determining the surfaces satisfy equations of the form

$$
\begin{align*}
& y_{u}=m x_{u}+f x+A y, \\
& y_{v}=n x_{v}+g x+B y, m n(m-n) \neq 0 . \tag{4}
\end{align*}
$$

From (2) we find that the focal points of $g$ are defined by

$$
\begin{equation*}
\tau=m x-y, \tau^{\prime}=n x-y \tag{5}
\end{equation*}
$$

The nets defined by $\tau$ and $\tau^{\prime}$ will be called the focal nets of $G$. The tangent to the curve $v=$ const. ( $u=$ const.) on the focal surface $S_{\tau^{\prime}}\left(S_{\tau}\right)$ will be called the minus first (first) derived line of $g$, and the congruences generated by them the minus first (first) derived congruences of $G$.

If we differentiate equations (4) with respect to $v$ and $u$ respectively, we find that $x$ and $y$ satisfy an equation of the form

$$
\begin{equation*}
x_{u v}=a x_{u}+b x_{v}+c x+M y \tag{6}
\end{equation*}
$$

wherein $a, b, c, M$ are defined by the formulas

$$
\begin{align*}
& (m-n) a=g+B m-m_{v}, \quad(m-n) c=B f-A g+g_{u}-f_{v},  \tag{7}\\
& (n-m) b=f+A n-n_{u}, \quad(m-n) M=B_{u}-A_{v} .
\end{align*}
$$

Since $y$ is not in the tangent plane to $S_{x}$ at $x$, the vanishing of $M$ is a necessary and sufficient condition that the net $N_{x}$ be conjugate.

If the coefficients of the equations corresponding to (4) and (6) with the rôles of $x$ and $y$ interchanged are denoted by $\bar{m}, \bar{f}$, etc., we find that

$$
\begin{aligned}
\bar{m} & =1 / m, \bar{n}=1 / n, \bar{f}=-A / m, \bar{g}=-B / n, \bar{A}=-f / m, \bar{B}=-g / n \\
\bar{a} & =a+m_{v} / m, \bar{b}=b+n_{u} / n \\
\bar{c} & =-m\left[a A / m+b B / n+f B /(m n)-M-(A / m)_{v}\right]
\end{aligned}
$$

$$
\begin{equation*}
\bar{M}=-m\left[a f / m+b g / n+f g /(m n)-c-(f / m)_{v}\right] \tag{8}
\end{equation*}
$$

## 2. The relation $R$ in $S_{n}$

Denote by $R^{(v)}$ the ruled surface formed by the tangents to the curves $v=$ const. at the points where they meet a fixed curve $u=$ const. A ruled surface $R^{(u)}$ may be defined similarly.

Let $l^{\prime}$ be any line lying in the tangent plane to $S_{x}$ at $x$, but not passing through $x$. Let $l$ be a line passing through $x$ but not lying in the tangent plane at $x$. The line $l^{\prime}$ intersects the tangent to the curves $v=$ const. and $u=$ const. in points $r$ and $s$ respectively. If the tangent planes to $R^{(v)}$ and $R^{(u)}$ at $r$ and $s$ respectively intersect in the line $l$ the given lines $l$. and $l^{\prime}$ will be said to be in relation* $R$ with respect to $N_{x}$.

The points $r$ and $s$ are defined by expressions of the form

$$
\begin{equation*}
r=x_{u}-\lambda x, s=x_{v}-\mu x . \tag{9}
\end{equation*}
$$

A point in the tangent plane to $R^{(v)}$ at $r$ is

$$
\begin{equation*}
r_{v}+\alpha r+\beta x=x_{u v}+\alpha x_{u}-\lambda x_{v}+\left(\beta-\alpha \lambda-\lambda_{v}\right) x . \tag{10}
\end{equation*}
$$

A point in the tangent plane to $R^{(u)}$ at $s$ is

$$
\begin{equation*}
S_{u}+\alpha^{\prime} s+\beta^{\prime} x=x_{u v}+\alpha^{\prime} x_{v}-\mu x_{u}+\left(\beta^{\prime}-\alpha^{\prime} \mu-\mu_{u}\right) x . \tag{11}
\end{equation*}
$$

From (10) and (11) we observe that the tangent planes to $R^{(v)}$ and $R^{(u)}$ at $r$ and $s$ intersect in a line joining $x$ to $z$ defined by

$$
\begin{equation*}
z=x_{u v}-\mu x_{u}-\lambda x_{v} . \tag{12}
\end{equation*}
$$

[^1]The line $l$ in relation $R$ to $l^{\prime}$ therefore joins $x$ to the point $z$ defined by (12).
If $M \neq 0$, we see readily from (6) that the line $g^{\prime}$ in relation $R$ to $g$ with respect to $N_{x}$ joins the points

$$
\begin{equation*}
\rho=x_{u}-b x, \sigma=x_{v}-a x \tag{13}
\end{equation*}
$$

The line $\bar{g}^{\prime}$ in relation $R$ to $g$ with respect to $N_{y}$ is determined by the points $\bar{\rho}, \bar{\sigma}$ defined by

$$
\begin{equation*}
\bar{\rho}=y_{u}-\bar{b} y, \bar{\sigma}=y_{v}-\bar{a} y . \tag{14}
\end{equation*}
$$

An examination of equations (5) readily shows that the derived lines of $g$ intersect the tangents to the curves of $N_{x}$ and $N_{y}$ in the points determining the lines $g^{\prime}$ and $\bar{g}^{\prime}$ in relation $R$ to $N_{x}$ and $N_{\nu}$. If $N_{x}$ and $N_{\nu}$ are in relation* $F$, that is, if they are in relation $C$ and are both conjugate nets, the derived lines intersect the tangents to the curves of the nets in the focal points of these tangents.

The tangent to the curve $u=$ const. at $\rho$ on the surface generated by that point intersects $g$ in the point

$$
\begin{equation*}
\left(a b+c-b_{v}\right) x+M y . \tag{15}
\end{equation*}
$$

Similarly the tangent to $v=$ const. at $\sigma$ intersects $g$ in the point

$$
\begin{equation*}
\left(a b+c-a_{u}\right) x+M y \tag{16}
\end{equation*}
$$

The points defined by (15) and (16) coincide if $N_{x}$ is conjugate, or if

$$
\begin{equation*}
a_{u}-b_{v}=0 \tag{17}
\end{equation*}
$$

## 3. The third-order differential equations of the problem

Let us assume that the nets $N_{x}$ and $N_{y}$ are not conjugate. If we differentiate equation (6) with respect to $u$ and $v$, and use (4) and (6), we find that the functions $x$ must satisfy two differential equations of the form

$$
\begin{align*}
& x_{u u v}=a x_{u u}+E x_{u v}+G x_{u}+H x_{v}+J x,  \tag{18}\\
& x_{u v v}=E^{\prime} x_{u v}+b x_{v v}+G^{\prime} x_{u}+H^{\prime} x_{v}+J^{\prime} x,
\end{align*}
$$

wherein

$$
\begin{align*}
E & =b+A+M_{u} / M, & & E^{\prime}=a+B+M_{v} / M \\
G & =a_{u}+c+m M-a(E-b), & H^{\prime} & =b_{v}+c+n M-b\left(E^{\prime}-a\right),  \tag{19}\\
H & =b_{u}-b(E-b), & G^{\prime} & =a_{v}-a\left(E^{\prime}-a\right), \\
J & =c_{u}+f M-c(E-b), & J^{\prime} & =c_{v}+g M-c\left(E^{\prime}-a\right)
\end{align*}
$$

[^2]Similar third-order differential equations are satisfied by the functions $y$. Hence if two surfaces $S_{x}$ and $S_{y}$ are in one-to-one point correspondence with corresponding tangent planes intersecting in a line, and if the nets on $S_{x}$ and $S_{y}$ which are in relation $C$ are parametric, the functions $x$ (and $y$ ) satisfy two thirdorder differential equations of the type (18). Differential equations of this type have been studied by Bompiani* and Lane. $\dagger$

Conversely suppose the coördinates $x$ defining a surface $S_{x}$ satisfy a pair of differential equations of the form (18). In case the two-osculating space $S(2,0)$ of $S_{x}$ at $x$ determined by the points $x_{u u}, x_{u v}, x_{v v}, x_{u}, x_{v}, x$ is an $S_{5}$, the integrability conditions $\ddagger$ of system (18) are

$$
\begin{align*}
a E^{\prime}+G^{\prime}-a^{2}-a_{v} & =0, b E+H-b^{2}-b_{u}=0, \\
b E^{\prime}+E_{u}^{\prime}+H^{\prime} & =a E+E_{v}+G, \\
E^{\prime} G+b G^{\prime}+G_{u}^{\prime}+J^{\prime} & =E G^{\prime}+a G+G_{v}, \\
E H^{\prime}+a H+H_{v}+J & =E^{\prime} H+b H^{\prime}+H_{u}^{\prime},  \tag{20}\\
E^{\prime} J+b J^{\prime}+J_{u}^{\prime} & =E J^{\prime}+a J+J_{v} .
\end{align*}
$$

We shall show that every net $N_{x}$ whose defining functions $x$ satisfy differential equations of the form (18) is a $C$ net. Since $x$ and $y$ must satisfy equations of the form (4) it follows that the point $y$ is defined by an expression of the form

$$
\begin{equation*}
y=x_{u v}-\lambda x_{u}-\mu x_{v}+h x . \tag{21}
\end{equation*}
$$

Case I. Suppose that $S(2,0)$ is an $S_{5}$. Differentiating (21) with respect to $u$ and $v$ we find readily that

$$
\begin{align*}
y_{u}=(a-\lambda) x_{u u} & +\left[G+h-\lambda_{u}+\lambda(E-\mu)\right] x_{u}+\left[H+\mu(E-\mu)-\mu_{u}\right] x_{v} \\
& +\left[J-h(E-\mu)+h_{u}\right] x+(E-\mu) y, \\
y_{v}=(b-\mu) x_{v v} & +\left[G^{\prime}+\lambda\left(E^{\prime}-\lambda\right)-\lambda_{v}\right] x_{u}+\left[H^{\prime}+h-\mu_{v}+\mu\left(E^{\prime}-\lambda\right)\right] x_{v}  \tag{22}\\
& +\left[J^{\prime}-h\left(E^{\prime}-\lambda\right)+h_{v}\right] x+\left(E^{\prime}-\lambda\right) y .
\end{align*}
$$

Hence $N_{y}$ will be in relation $C$ to $N_{x}$ if and only if $\lambda=a, \mu=b, h$ arbitrary. The functions $x$ and $y$ satisfy equations of the form (4) with

$$
\begin{align*}
m & =a A+G-a_{u}+h, & n & =b B+H^{\prime}-b_{v}+h, \\
f & =J-A h+h_{u}, & g & =J^{\prime}-B h+h_{v},  \tag{23}\\
A & =E-b, & B & =E^{\prime}-a .
\end{align*}
$$

* Bompiani, Surfaces, p. 632.
$\dagger$ E. P. Lane, Integral surfaces of pairs of partial differential equations of the third order, these Transactions, vol. 32 (1930), pp. 782-793.
$\ddagger$ Bompiani, Surfaces, p. 632.

There exists, therefore, in this case one and only one line passing through $x$ and not lying in the tangent plane to $S_{x}$ at $x$, such that every point $y$ on the line, not a focal point of the line, generates a net $N_{\nu}$ in relation $C$ to $N_{x}$. The space $S_{n}$ is such that $n \geqq 5$.

Case II. Suppose that $S(2,0)$ is an $S_{4}$. It follows that the functions $x$ satisfy an equation of the form

$$
P^{\prime} x_{u u}+Q^{\prime} x_{u v}+R^{\prime} x_{v v}+L^{\prime} x_{u}+N^{\prime} x_{v}+K^{\prime} x=0
$$

such that not both $P^{\prime}$ and $R^{\prime}$ are zero. To fix the notation, suppose that $R^{\prime} \neq 0$. The functions $x$ therefore satisfy a system of differential equations of the form

$$
\begin{align*}
x_{v v} & =P x_{u u}+Q x_{u v}+L x_{u}+N x_{v}+K x, \\
x_{u u v} & =a x_{u u}+E x_{u v}+G x_{u}+H x_{v}+J x,  \tag{24}\\
x_{u v v} & =D^{\prime} x_{u u}+E^{\prime} x_{u v}+G^{\prime} x_{u}+H^{\prime} x_{v}+J^{\prime} x .
\end{align*}
$$

Subcase (a). Suppose that $x$ does not satisfy a differential equation of the form

$$
\begin{equation*}
x_{u u u}=\alpha x_{u u}+\beta x_{v v}+\delta x_{u}+\epsilon x_{v}+\phi x . \tag{25}
\end{equation*}
$$

Some of the integrability conditions of system (24) are

$$
P=D^{\prime}=0, \quad a E^{\prime}+G^{\prime}-a^{2}-a_{v}=0, \quad a Q+L=0
$$

From (21) we find that

$$
\begin{align*}
& y_{u}=(a-\lambda) x_{u u}+\left[G+h-\lambda_{u}+\lambda(E-\mu)\right] x_{u}+\left[H+\mu(E-\mu)-\mu_{u}\right] x_{v} \\
&+\left[J-h(E-\mu)+h_{u}\right] x+(E-\mu) y, \\
& y_{v}=\left[G^{\prime}-\lambda_{v}-\mu L+\lambda\left(E^{\prime}-\lambda-\mu Q\right)\right] x_{u}+\left[H^{\prime}-\mu N-\mu_{v}+h\right.  \tag{26}\\
&\left.+\mu\left(E^{\prime}-\lambda-\mu Q\right)\right] x_{v}+\left[J^{\prime}-\mu K+h_{v}-h\left(E^{\prime}-\lambda-\mu Q\right)\right] x \\
&+\left(E^{\prime}-\lambda-\mu Q\right) y .
\end{align*}
$$

Hence $N_{\nu}$ will be in relation $C$ to $N_{x}$ if and only if

$$
\lambda=a, \quad \mu_{u .}+\mu^{2}-E \mu-H=0, \quad h \text { arbitrary } .
$$

The functions $x$ and $y$ satisfy equations of the form (4) with

$$
\begin{align*}
m & =a A+G-a_{u}+h, & & n=H^{\prime}-\mu B-\mu N-\mu_{v}+h, \\
f & =J-A h+h_{u}, & g & =J^{\prime}-\mu K+h_{v}-B h,  \tag{27}\\
A & =E-\mu, & B & =E^{\prime}-a-\mu Q .
\end{align*}
$$

Hence, in this case, there exist lines $g$ through $x$ such that any point $y$ on any one of the lines generates a net $N_{\nu}$ in relation $C$ to $N_{x}$. These lines $g$ belong to a pencil
of lines with center at $x$ and in the plane determined by the points $x, x_{v}, x_{u v}-a x_{u}$. The lines $g$ at a point $x$ are projectively related to the lines $g$ through any other point of the curve $v=$ const. through $x$. The space $S_{n}$ is such that $n \geqq 5$.

Subcase (b). Suppose that $x$ satisfies a system of differential equations of the form

$$
\begin{align*}
x_{v v} & =P x_{u u}+Q x_{u v}+L x_{u}+N x_{v}+K x, \\
x_{u u v} & =a x_{u u}+E x_{u v}+G x_{u}+H x_{v}+J x,  \tag{28}\\
x_{u v v} & =D^{\prime} x_{u u}+E^{\prime} x_{u v}+G^{\prime} x_{u}+H^{\prime} x_{v}+J^{\prime} x, \\
x_{u u u} & =\alpha x_{u u}+\beta x_{u v}+\delta x_{u}+\epsilon x_{v}+\phi x .
\end{align*}
$$

Some of the integrability conditions of system (28) are

$$
\begin{gather*}
a^{2}+a_{v}+E D^{\prime}+H P=\alpha D^{\prime}+D_{u}^{\prime}+a E^{\prime}+G  \tag{29}\\
D^{\prime}=L+a Q+\alpha P+P_{u}
\end{gather*}
$$

We may show from (21) that the net $N_{y}$ is in relation $C$ to $N_{x}$ if and only if

$$
\begin{gather*}
\lambda=a, D^{\prime}-\mu P=0, \mu_{u}+\mu^{2}-E \mu-H=0 \\
G^{\prime}-a_{v}-a^{2}+a E^{\prime}-\mu(L+a Q)=0 \tag{30}
\end{gather*}
$$

The value of $\mu$ determined by the second of (30), if substituted in the last two of (30), gives two conditions on the coefficients of system (28). These conditions are however a result of the integrability conditions (29). Hence, in this case, there is a unique line joining $x$ to

$$
y=x_{u v}-a x_{u}-D^{\prime} x_{v} / P+h x
$$

any point of which generates a net in relation $C$ to $N_{x}$. The space $S_{n}$ is an $S_{4}$.
The functions $x$ and $y$ satisfy equations of the form (4) with

$$
\begin{aligned}
m & =a A+G_{u}-a_{u}+h, & n & =H^{\prime}-D^{\prime} N / P-\left(D^{\prime} / P\right)_{v}+D^{\prime} B / P+h, \\
f & =J-A h+h_{u}, & & g=J^{\prime}-D^{\prime} K / P-B h-h_{v}, \\
A & =E-D^{\prime} / P, & B & =E^{\prime}-a-D^{\prime} Q / P .
\end{aligned}
$$

We may state the results of this section as follows: A non-conjugate net is a $C$ net if and only if the functions $x$ defining the net satisfy a pair of equations of the form (18).
4. The Bompiani transforms of a $C$ net

Suppose the functions $x$ determining a net $N_{x}$ satisfy differential equations of the form (18). Bompiani* has shown that there exist two covariant points,

[^3]one on each tangent line to the curves of the net, characterized in the following way: The point
$$
\rho=x_{u}-b x
$$
is the only point on the tangent to $v=$ const. on $S_{x}$ generating a surface for which the osculating plane to the curve $u=$ const. at $\rho$ lies in the $S_{3}$ determined by the points $x, x_{u}, x_{v}, x_{u v}$ and tangent to the ruled surface $R^{(v)}$ along the generator through $x$. The point
$$
\sigma=x_{v}-a x
$$
has a similar characterization. We shall call the point $\rho(\sigma)$ the minus first (first) Bompiani transform of $x$, and the nets described by $\rho(\sigma)$ the minus first (first) Bompiani transform of $N_{x}$.

Suppose that the functions $x$ satisfy a system of differential equations of the form (24), but no equation of the form (25). We find that the point $\rho$, defined by

$$
\rho=x_{u}-\mu x,
$$

generates a surface of the type described above for every value of $\mu$. The point $\sigma$ defined by

$$
\sigma=x_{v}-a \dot{x}
$$

is the only point on the tangent to the curve $u=$ const. at $x$ generating a surface of the desired type. We shall say in this case that the minus first Bompiani transform of $x\left(N_{x}\right)$ is indeterminate. The first Bompiani transform of $x\left(N_{x}\right)$ is the point $\sigma$ (net $N_{\sigma}$ ). Hence a necessary and sufficient condition that a net permit of having Bompiani transforms is that the given net be a $C$ net.

We may state some of the results of this and the preceding section in the following theorem:

Let there be given a net $N_{x}$ in $S_{n}$ whose sustaining surface $S_{x}$ is such that its two-osculating space $S(2,0)$ is an $S_{4}$ or an $S_{5}$. There exists a unique line $g$ through $x$ lying in the $S(2,0)$ of $S_{x}$ at $x$ such that every point $y$ on $g$ generates a net $N_{y}$ in relation $C$ to $N_{x}$ if and only if the given net admits of having uniquely determined Bompiani transforms. If one of the Bompiani transforms is indeterminate there exists a pencil of lines $g$ through $x$ with the above property. The line $g$ is the line in relation $R$ with respect to $N_{x}$ to the line joining the Bompiani transforms of $x$. Moreover the minus first (first) derived line of $g$ intersects the tangent plane of the sustaining surface in the minus first (first) Bompiani transform of $x$.

The Bompiani transforms of a $C$ net are $C$ nets. The functions $\rho$ and $\sigma$ satisfy differential equations of the form (18). As may readily be verified the first Bompiani transform of $\rho$ is the point $\bar{\sigma}$ defined by

$$
\bar{\sigma}=\rho_{v}-a \rho,
$$

and the minus first Bompiani transform of $\sigma$ is the point $\bar{\rho}$ defined by

$$
\bar{\rho}=\sigma_{u}-b \sigma .
$$

The points $\bar{\rho}$ and $\bar{\sigma}$ lie on the line $g$, and coincide with the points (15) and (16) respectively. From (17) we see that these points coincide* if and only if (17bis)

$$
a_{u}-b_{v}=0
$$

[^4]
[^0]:    * Presented to the Society, June 13, 1931; received by the editors March 1, 1931.
    $\dagger$ V. G. Grove, Transformations of nets, these Transactions, vol. 30 (1928), p. 483.
    $\ddagger$ E. Bompiani, Determinazione delle superficie integrali d'un sistema di equasioni a derivate parziali lineari ed omogenee, Rendiconti del Reale Istituto Lombardo di Scienze e Lettere, vol. 52 (1919), pp. 610-636. In particular see p. 634. Hereafter referred to as Bompiani, Surfaces.

[^1]:    * In a footnote on p .86 of his paper Memoir on the general theory of surfaces and rectilinear congruences, these Transactions, vol. 20 (1919), Green defined the relation $R$ between two lines with respect to a net in $S_{3}$. The definition we have used for the relation $R$ between two lines with respect to a net in $S_{n}$ reduces to Green's definition when $n=3$. It is to be noted however that not all lines $l$ in $S_{n}$ for $n>3$ and protruding from the surface at $x$ have a line $l^{\prime}$ in relation $R$ to $N_{x}$.

[^2]:    * L. P. Eisenhart, Transformations of Surfaces, Princeton University Press, 1923, p. 34.

[^3]:    * Bompiani, Surfaces, pp. 634-635.

[^4]:    * Bompiani, Surfaces, p. 635.

    Michigan State College, East Lansing, Mice.

