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1. Introduction. Let M be an analytic manifold of any number of dimen-

sions, and let the volume measure on M be denoted generally by m. Let T be

an analytic one-to-one transformation of M into itself. Such a transformation

may have a positive invariant integral,

m*(a) =   ff(P)dm

where/(P) > 0 for almost all points P of M. The invariance property means

that
m*(ax) = m*(a)

holds for any measurable subset a of M, ax being the image of a under T.

Such transformations are known to play an important rôle in dynamics. The

motions of a dynamical system, considered in the manifold of states of

motion, are equivalent to a one-parameter group of one-to-one transforma-

tions. In the case of a conservative system these transformations always pos-

sess a positive invariant integral; for instance in the case of a Hamiltonian

system the phase volume itself is invariant.

The integral m*(a) may be regarded as another measure on M ; thus a

transformation of that kind is measure-preserving for a suitably chosen

measure. The following paper deals with such transformations, for which the

invariant measure m*(M) of the whole manifold M is finite, and is devoted to

the characterization of these transformations by their intrinsic properties.

Necessary conditions for the existence of a finite invariant measure can

be easily derived. For instance no point set a of positive measure can be trans-

formed into a "proper" part of itself, i.e.

ai c a,    m(ax) < m(a),

for this would imply m*(ax) <m*(a) in contradiction to the invariance. This

intrinsic property of those transformations plays an important rôle in Poin-

caré's and Birkhoff's work on the motions of dynamical systems. However,

this is not the only intrinsic property of those transformations. It is equally

t Presented to the Society, September 11, 1931; received by the editors September 11, 1931.

t International Research Fellow.
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easy to give a still stronger necessary condition for the existence of a finite

invariant m* by introducing the concept of the "image by division."

Definition. Two measurable point sets A and A ' are images by division of

each other, if it is possible to subdivide A as well as A ' into finitely or de-

numerably many measurable parts,

A = a1 + a2 + a3 + ■ ■ ■ , A' = a<1J + a<2> + a<3> + • • • ,

in such a way that aM is an image of a" under a suitable power of T.

If T possesses a finite invariant m*, obviously every image by division M'

of M must coincide with M in the sense of the theory of measure, i.e., m(M

-AT') =0. We have, indeed, M =£>, M'=£>'>,

m*(M') = ¿2m*(a^) = ¿2m*(a') = m(M),

i.e., m*(M-M')=0, thus yielding m(M-M') =0.

The main purpose of this paper is to show that the latter necessary condi-

tion for the existence of a finite invariant m* is also sufficient :

A positive invariant integral m*(a), m*(M) being finite, can always be

found, if m(M — M') = 0 holds for every image by division M' of M.

Naturally this characterization is not fit for immediate applications, but

nevertheless it throws a certain light on the intrinsic nature of those trans-

formations. It characterizes them by an intrinsic incompressibility-property.

It may be remarked that the invariant measure can be constructed by an

explicit process, by introducing the concept of the "compressibility measure,"

of a point set with respect to another set, in generalization of a process intro-

duced by G. D. Birkhoff and P. Smith, f
Since we adopt the theory of Lebesgue measure as a general basis of our

considerations, \ the assumptions of analyticity of manifold and transforma-

tion are inessential and may be replaced by much more general assumptions!}.

2. The compressibility measure. Preliminary theorems on invariant meas-

ures. Let M be an abstract point set. A measure m in the sense of Lebesgue

may be defined on M and on certain subsets of M called measurable sets.

Only measurable sets will be considered in this paper. These sets are supposed

to satisfy the following well known conditions :

(I) The sum of finitely or denumerably many measurable sets is measura-

ble.

f G. D. Birkhoff and P. Smith, Structure analysis of surface transformations, Journal de Mathé-

matiques pures et appliquées, (9), vol. 7 (1928), p. 345.

X This is a natural basis in connection with dynamics. Invariant measures occurring in this field

are always absolutely additive measures. Under the weaker condition of ordinary additivity an in-

variant measure exists without any condition; see I. von Neumann, Zur allgemeinen Theorie des

Masses, Fundamenta Mathematicae, vol. 12 (1928), p. 73.

§ I wish to express my gratitude to Professor Birkhoff for suggesting to me work in this field.
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(II) If a and b are measurable and acb, then 6—a is measurable.

As a well known consequence of (I) and (II) the set ab of all points com-

mon to a and b is measurable, for it is ab = b — ((a+b) — a). The measure m

is supposed to have the following properties :

(i)w^O.

(ii) m is absolutely additive,

m(a + b + c + • ■ ■ ) = m(a) + m(b) + m(c) + • ■ •

for finitely or denumerably many sets a, b, c, ■ ■ • excluding each other.

(iii) Each set a of positive measure contains a set b with

0<m(b)<m(a).

(iv) m(M) is positive and finite.

The condition (iii) merely excludes triviality. The following considerations

are based on this measure as a standard measure.

For our purposes we have to take into account different measures m*

being comparable with m in the following sense :

1. »i* is defined for the same sets as m, i.e., for all measurable sets intro-

duced above.

2. «î*è0.
3. m* is absolutely additive.

4. The relations m = 0 and m* = 0 imply each other.

5. m*(M) is finite.

It was proved by J. Radon f that the totality of these measures coincides

with the totality of the measures representable by indefinite Lebesgue inte-

grals,

(1) m*(a) =   (f(P)dm,
"a

where the point function/(P) is positive on M apart from a set of zero meas-

ure, and summable over M.

Now let T be a one-to-one transformation of M into itself, which trans-

forms, as well as P_i, measurable sets into measurable sets and sets of zero

measure into sets of zero measure. The question to be investigated in this paper

is the following: what intrinsic properties of T involve the existence of a

measure m* invariant under T?

Let us denote by a, the successive images of a point set a = a0 obtained by

successive application of T or P_i,

t J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen, Wiener Sitzungs-

berichte, vol. 122 (1913), p. 1299.
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a. = T,(a) (v = 0, ± 1, ± 2, • • • ).

A set is called invariant (under T) if ai = a. In the case of an arbitrary point

set b, let us denote by } b} the smallest invariant point set containing b. Ob-

viously we have

—«o

The following rules are equally obvious :

(a + b + c + ■ ■ ■), = a, + b, + c, + ■ ■ ■ ,

(ab), = a,b„,

(2) {a + b + c+ ■■■} = {a} + {b} + {c} + ■■• .

Now we take a fixed point set b and divide the invariant set {b} into fi-

nitely or denumerably many different parts,

{6} =c» + c1 + c2+ •••,

in such a way that b contains at least one image of each of these parts,

ew-4, ci (, = 0, 1, 2, •••).

Such a subdivision is always possible. For instance, we may set

c° = bo = b,

cl = (Jo + bx) - bo,

c2 = (h + bx + i_0 - (bo + bx),

c3 = (io + bx + b-i + b2) - (bo + bi + b-i),

In this case ¿> contains the images

c(o) = cl     cd) = c_l     cm = cl     c(3) = CJ2) ....

Instead of throwing {b} into b by means of subdivision and transformation

of the parts we may throw any measurable subset a of {b} into b,

(3) a c {¿>}, a = c° + c1 + c2 +  ■ ■ • ; CC = 0, v * p,

(3') «"»-«ici (v = 0, 1, 2, •••).

We set

(4) e;=i>m,
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and

(5) p(a) b = lower bound ¿Z >

for all possible ways of throwing a into b according to (3) and (3').p is defined

for all subsets a of {b} and nowhere negative. We may call p,(a) & the "com-

pressibility measure" of a with respect to 0. f The compressibility measure has

two important properties. It is absolutely additive and invariant under T, that

is,

(6) p(a + a' + a" + ■ ■ ■ )b - „(a)» + p(a')b + p(a")b + ••■ ,

a, a', a", ■ ■ • being any denumerable set of point sets excluding each other,

and

(7) p(ai)6 = p(a)b.

The inequality

(6') p(a + a' + a" + ■ ■ ■ )b ^ p(a)b + p(a')b + p(a")b + ■••

for any sequence of sets is a well known consequence of the absolute addi-

tivity.

First we prove (7). From (3) and (3') we have

«i - d° + ci + ci + • • • ,

(cf)»,-i = c" c b (v = 0, 1, 2, •• •)•

Thus each sum ¿Zl is a sum ¿Zl1. Conversely, by an analogous consideration,

each sum^Z"bl is a sum ^Z"b. Therefore their lower bounds coincide.

In order to prove (6) we set

A - a + a' + a"+ •••.,    A c {b},

and throw a into b, a' into b, a" into b and so on. These processes may be

obviously combined into a single process of throwing the whole of A into 0.

Thus each sum of sums ¿Zl+IZl +1Zl + ' ' ' represents a sum ^Zf.

Conversely, let us throw A into ô,

A = C + C1 + C2 + • • • ; C'C = 0, v * p,

C"cb (v = 0,1,2,-■■),

2? = E»(c<"),

t Similarly we could define a "measure of expansion" by taking the upper bound instead of the

lower bound of our sums. Probably our considerations can be simplified by using the measure of ex-

pansion.
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CM being an image of C' under a power »„ of T. We may represent this process

as a sequence of processes, by setting

(aC>)nt = 6* (a'C»)n, = c1", ■■■ (v - 0, 1, 2, • • • ),

and
a = X>C", c°" ce (v = 0, 1, 2, • • - ),

a' = £>'C, c1' c¿, (v « 0,1, 2, • • • ),

According toC" cA we obtain

m(c°0 + m(cu) + m(c2') + ■ • • = w(C<»>),

thus by (8)

z;=z;+z:+z;"+---.

Therefore the totality of the sums^f coincides with the totality of the sums

of sums^î+Sî +z2l"+ ' ' " > whence (6) immediately follows.

A further simple property of the compressibility measure is

(9) p(a)y á p(a)b, b c b', a c {b}.

Indeed, the totality of the sums^y contains the totality of the sums^i- Let

us put

(10) \(b) = p([b})b.

For later purposes the following inequality may be derived :

(ii) x(2» è 12m,

b1, b2, ■ ■ ■ being any sequence of point sets. Indeed, setting b =¿2b', we get

by (2)

X(6)=m({M)> = mQ>})>

and by (6') and (9)

ß(12{b'})b < 2>({*-})i = ZmÜHV = ¿2Kb').

Now we prove the following theorem :



1932] MEASURE AND INVARIANT INTEGRALS 379

Theorem 1. A necessary and sufficient condition for the existence of a finite

and invariant measure m* over M is that each invariant point set of positive

measure contain a set b with

0 < x(e) < <=o .

The condition is necessary. Let m* be a finite invariant measure over M

given by (1) and let A be any invariant point set of positive measure. Fur-

thermore let M" be the (measurable) set of all points, for which

1/h < f(P) < n.

Now the set of points with/ = 0 and/= °° has the measure zero, so that

m(Mn)^>m(M),  m(A M") —> m(Á),

« tending to infinity. Hence m(AM") >0 for a suitable integer «. On setting

b =AMn we conclude

(12) l/n < m*(c)/m(c) < n, .c c b,  m(c) > 0.

Throwing {b} into b we obtain by (12)

- 2>*(cw) < 5>(c<'>) = JZlb]< « 2>*(c(")-
M

On the other hand we have, since cM is an image of c" under a power of T,

X>*(c<») = 2>*(c) = «*(2>) = m*({b}).

Hence, according to (10),

0 < —m*({b}) g \(b) < nm*i{b\) < oo  .
n

The condition is sufficient. A given invariant set of positive measure is

supposed to contain a set b with

(13) 0 < \(b) < °o .

Let us designate a point set a as a null set, if p(a)b = 0, and let us denote by

m' the upper bound of the measures of all null sets. Furthermore let a^a2, • • •

be a sequence of null sets with m(a")-*m', v^°o. Now the invariant point set

a' = ZÍ«"} = lZa'<

is again a null set according to the properties of the compressibility measure,

for we have
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Áa')b = p(12aï)b á ¿2ß{al)b = 0.

According to the definition of the number m' we have m(a') =m'. Further-

more we have m({b} — a') >0, for {b} cannot be a null set because of (10)

and (13). Now a' is the largest null set, for according to the definition of m'

the set {b} — a' cannot contain a further null set of positive measure. Thus

p(a)b,  a c  {b} -a',

defines a finite invariant measure m* over the invariant set {b} —a'. We have

also

p({b} -a')b = \(b).

We have to continue the formation of an invariant measure over larger

and larger point sets, finally over the whole of M. For this purpose we denote

by m the upper bound of the measures m of all invariant point sets, over

which a finite invariant measure m* can be defined. Let Ma), Mi2), • • • be a

corresponding sequence of invariant sets with

limm(M<-")) = m.

The finite invariant measure already found on Ml") may be denoted by m*.

Then we are able to define an invariant measure m* over the whole of

00

M' =   £M<">
i

by setting

m* = «iWj over M(u,

n n—1

m* = anm* over  ^M("> —   ¿2,M<-"\ n > 1,
i i

«i, «2, • • • being a sequence of positive numbers. Clearly the total invariant

measure

oc r~     n n—X

m*(M') = m*(M^) +  ¿>*     X><"> -   £jf <•>
n-2 L     1 1 J

becomes finite by suitable choice of the numbers a,. Thus a finite invariant

m* may be defined over the whole of the invariant set M'. Now the invariant

point set M — M' must have the measure zero, because otherwise we could

continue the formation of an invariant m* over M — M'. Hence the finite in-

variant m* constructed above applies to the whole of M.

Simpler conditions may be obtained for particular types of invariant

measures. Let us call a measure m* a measure of the order of m, if
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m*(a)/m(a)

lies between positive bounds for all sets a c M of positive measure. The fol-

lowing theorem was proved by Birkhoff and Smith : f

Theorem 2. A necessary and sufficient condition for the existence of an in-

variant measure m* of the order of m is that

m(a¿)/m(a) ï; const. > 0; v = 0, ± 1, ± 2, • • • ,

the constant being independent not only of v but also of the set a.

The condition is necessary, for

l/x ^ m*(a)/m(a) ^ x,  a c M,

implies

l/x2 = m*(a,)/x2m*(a) :g m(a,)/m(a) i£ x2m*(a,)/m*(a) = x2.

The condition is sufficient. We choose

m*(a) = p(a)M.

If the inequalities

l/y ^ m(a,)/m(a) ^ y

are satisfied for any set a and any number v, we obtain, by a subdivision of a,

a =   JZC">   c"c" = 0,v ^ p,

Y^m(cM) ̂  y ¿Z™(c") = ym(a),

cM being an image of c under a power of T. Similarly we get

X>(c<">) ^ X>0)/:y = »»(a)/?,
whence

l/y ^ p(a)M/m(a) S y,

for any set a c M of positive measure.

3. Further preliminary considerations. If no finite and invariant measure

m* exists over M, we infer from Theorem 1 the existence of an invariant point

set A, m(A)>0, such that the symbol \(b) does not take values except

\(b) = 0,  \(b) = oo ,

b being any subset of A. This behavior of X in the case of non-existence of a

finite invariant m* may be illustrated by a simple example.

t G. D. Birkhoff and P. Smith, loc. cit., §4. The special sums5Zm were nrst introduced in this

paper.
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Let M be the linear interval 0 <x < I and let m be the ordinary measure

on M in the sense of Lebesgue. Let T be a transformation which leaves

x = 0, 1 invariant and shifts all inner points to the left. The images x, of a

point x=x0 clearly satisfy the conditions

x, > x,+i,   lim x, = 0,   lim x, = 1;
,. = + 90 *= — 00

in other words, the intervals

I,: x, > x ^ x,+x

exclude each other and fill up the whole of M, also {la} =M. A finite in-

variant m* cannot exist, for m*(Iv) would be independent of v, and m*(M)

=¿2m*(I,). It can be shown that X = °o holds for each interval the end points

of which are inner points of M. On the other hand X = 0 holds for any interval

having an end point at 0 or 1. Consider for instance the two intervals I o and

I' =¿211- We may throw M = {lo} into lo by

+00

M =   ¿2l„  (2,)-, = h.

The corresponding sum ¿Zf0 is infinite, and it is readily seen that this sum

is not altered by throwing M into I o differently. Hence X(/0) = °° • On the

other hand let us throw M into the interval I' =¿2,11, by

+°°

M =   ¿ZL, (/,)» d>è 0;    (/,)„_s,-i c I', v < 0,
— 00

n being a positive integer. In this case we have

00 —CO /      «3 V

¿Zfr   =   12m(ln+v) +   ¿Zm(ln-r-x) = 2m( ¿2,1,),
0 —1 \    » /

which can be made arbitrarily small by a suitable choice of «. Hence X(0 = 0.

It may be remarked that an infinite measure, invariant under T, may be con-

structed, m* may be arbitrarily chosen on 70 and automatically continued on

the images I, by T.

The fact that X = oo holds for each closed interval c M in our example is a

particular case of a general fact concerning the values of X, if no finite in-

variant m* exists. We prove

Theorem 3. There are only the following two possibilities, in case no finite

invariant m* exists :
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(a) an invariant point set A of positive measure exists such that X(ft) =0 for

any be A;

(ß) an invariant point set A of positive measure and an infinite sequence of

increasing sets filling A,

A1 c A2 c A3 c   • • -,  JZA' = A,

exist such that X(ft) = oo, whenever m(b)>0 and bo A "for a sufficiently large v.

We observe that (a) and (ß) do not necessarily exclude each other (in this

case the A of (a) is of course different from the A of (ß)). We know already

the existence of an invariant set A of positive measure such that either

X(ft) =0 or X(ft) = oo for any be A. Excluding (a) we assume X(ft) = oo for a

suitable be A. Any set a c b satisfies either the equation X(a) = 0 or X(a) = oo .

Let us denote by m the upper bound of the measures of all sets a c b with

X(a) =0, and let us select a sequence of such sets contained in b,

ft1, ft2, • • • , X(ft') = 0,    lim w(ft') = m.

According to (11) the point set

ft' = 2>
i

satisfies again the equation X(ft') =0, and we conclude m(b')=m according to

the definition of the upper bound m. The set ft —ft' has a positive measure, for

otherwise we would have X(ft) =X(ft') =0 in contradiction to our assumption

X(ft) = oo. Now, ft' is the largest set with X(ft') =0 according to the definition

of m and according to (11), and each subset a of ft —ft', w(a)>0, satisfies

X(a) = oo.

We have hereby constructed a point set c of positive measure such that

X(a) = oo holds for any subset a of c, m(a) >0.

In order to construct a sequence of sets indicated in the condition (ß) of

Theorem 3, we may start with the following preliminary considerations. Ac-

cording to the properties of the transformation T the point set function m(a,),

regarded as a function of the set a, v being a given integer, has precisely all

properties of a measure m*(a). Thus we may represent it as an indefinite

integral in the sense of Radon,

(14) j»(a„) =   I <b,(P)dm,

<f>, being positive almost everywhere and summable over M. Under well

known restrictions for M and T, <j>, is the Jacobian of T,. For a given integer
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v a positive number e„ can always be found so that the measure of the set of

all points P with <b,(P) ̂  e, is less than m(c)2-'~i, c being the set constructed

above. The sum of these point sets (v= ±1, ±2, • • •) has a measure less than

00

m(c) Yßr"-1 = m(c)/2.
i

Thus the complementary set e of this sum with respect to the set c has a

measure m(e) >m(c)/2 > 0. The set e is precisely the set of all points P of c, for

which the inequalities 0„(P)>e, hold simultaneously, v= +1, ±2, ■ • ■ .Now

we are able to prove that the point sets

(15) A = {e};A\A2,A3,...,

where

n n

(16) A2n =   ¿Ze„ n > 0; A2^1 =   £>„ « ^ 0,
1—n —n

satisfy the condition (ß) of Theorem 3. For this purpose we write

(17) E1 = A1 = e,  £'+l = A*1 -A', v> 0.

Any two of the sets E' have no points in common, and it is evident that

oo

¿2,E' = A.

(16) and (17) imply

(18) Eh+1 c e,

where h= —(k + V)/2 for k odd, h = k/2 for k even. According to (14) and to

the definition of the point set e the inequalities

(19) m(a-h) ^ e~hm(a), ace (e_* > 0),

are satisfied by any subset a of e.

Now we know already that X = °° holds for any subset a of Ax = e with

positive measure. We may then prove (ß) by complete induction, assuming

that \(a) = » holds for any subset a c Ak,m(a) >0.

We throw A into Ak+1,

(20) A =   ¿2<?, cV c Ak+1,
9

where cM is the image of c" under the «„th power of T, and we set

(21) ¿Zk+1=  Ef»(c<").
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According to (17) we have

(22) Ak+1 = Ak + Ek+1, AkEk+l = 0.

We subdivide the parts c of A by setting

(23) C = a" + ft',

where a', ft' are defined by the equations

(23') a<'> = c^A",  ft<'> = e<'>£*+1,

aM, ft(') being the images of a', ft' under the «„th power of T, respectively. By

(21) we get

(24) Z*+1=   Em(a<")+  I>(ft<").

From (23'),

(25) a<'> c A";

on the other hand, from (18) and (23'),

(25') fti"} c e = A1 c A".

Thus A =%Za" +5Zb" together with (25) and (25') represents a way of throw-

ing A into Ak. Since, by hypothesis, X(.4*) = oo, we have

(26) JZ"=   XX«'") +   IXfti'') = « •

Applying (19) to a = b(kv} (see (25')) we obtain

ZX*w)fc«-»2Xtf))i
V V

thus, by comparison with (24) and (26),

¿Z     = y 1Z >y = min(l, «_»),

and X*+1 = °° » XL4*+1) = oo. An analogous consideration yields X(a) = oo for

any a c^4t+1, m(a) >0, which completes the proof of Theorem 3.

4. Images by division and invariant measures. Concerning the notion of

the image by division we shall only require that the different parts exclude

each other in the sense of measure theory, i.e., that they have at most sets

of zero measure in common. However, the greater generality of this notion is

readily seen to be apparent. Let us call a set A a "proper part" of a set B, if

A c B and m(A) <m(B). We note the following simple results.
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Lemma 1. If each image by division of the whole of M has the measure m(M),

no set A possesses an image by division forming a proper part of A.

This simply means, that the intrinsic incompressibility of the whole of M

implies the incompressibility of the subsets. Let A ' be an image by division of

A, and let A'cA, m(A')<m(A). We put

M = (M - A) + A, M' = (M - A) + A'.

Obviously M ' is an image by division of M with

m(M') = m(M - A) + m(A') < m(M - A) + m(Ä) = m(M).

Lemma 2. The compressibility measure of a set A with respect to an image by

division A' of A is always finite.

The corresponding divisions of A and of A',

A =   2>, A' =  5>«,

yield a particular sum

£t=   2>(fl<'>) =rn(A').

Hence

p(A)A. úm(A').

The following lemma will be useful for later discussions :

Lemma 3. Let B' be an image by division of B and let A d B'. If

(27) m(A - B') > 0,   {A - B'} c B,

Ike second inequality holding apart from a set of zero measure, then M possesses

an image by division that is a proper part of M.

Let

(28) B =   2>,   B' =   £>'>;   b'b» = b^b^ = 0,   v ̂  p;   b^ = b'n/

We set

(29) E = {A - B'},  E' = B'{A - B'} .

Now E' is an image by division of E, for (27), (28) and (29) yield

E = BE=   ¿2b'E;  E' = B'E =   ¿Zb^E =   £(&"£)„,,

the first of these equations holding apart from a set of zero measure. From

(29) we conclude that

E' c E,  E- E' o (A - B') {A - B'}  d A - B'.
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Hence according to (27), m(E — E')>0, i.e. E' is a proper part of E. Lemma 1

completes the proof.

We need two further simple results.

Lemma 4. If m(a) >0, m(b) >0, p(a)b = 0, a point set a' and an integer «

can always be found to satisfy the conditions

,   . a' c a,  a„'  c ft,

(30)
0 < w(an') <m(a')/2.

We can always throw a into ft in such a way that

X>(c(,,)) < 5«(») = è ¿Zm(cv); a =   ]£>, c<'> = c^ c ft.

Thus the inequality m(cM) <m(c')/2 must hold for some j». a' = e', » = »,

satisfy (30).

Lemma 4'. 7/ »i(a) >0, w(ft) >0, p(a)b= <x>, a set a' and an integer n can

always be found to satisfy the conditions

a„' c a, a' c ft,

0 < «(a»') < »0*0/2.

By any way of throwing a into ft we get

¿Zm(c^) = oo ; a =  X>, c(,,) = <„ c *•

The inequality m(cM) > 2m(c") must therefore hold for some v. Then, a' = c(,),

n=—n, satisfy (31).

We are now prepared to prove the main

Theorem 4. A necessary and sufficient condition for the existence of a finite

invariant measure m* over the whole of M is that m(M — M') =0 holds for each

image by division M' of M.

It remains to prove that the condition is sufficient. Under the assumption

that no finite invariant m* exists over M, we shall construct an image by

division of M forming a proper part of M. With regard to Theorem 3, we

have to treat separately the two cases (a) and (ß).

(a) An invariant set A exists such that X(ft) =0 holds for any subset ft of

A. From p(a)¡,gp({b})¡, = X(ft) we conclude that

(32) p(a)b = 0

holds for any set ft c A and any set a c {b}.

We may arrange point sets in certain groups Go, Gx, G2, • • • . A set a be-
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longs to Gn, if 2-nm(A)>m(a)^2-"~1m(A). The group Gn cannot contain

more than 2n+1 sets belonging to a sequence of sets which exclude each other.

According to Lemma 4 (with a = b = A) we can find a set a1 c A and an image

a(1> under a suitable power of T such that

«(a«>) <m(a1)/2.

a1 belongs to a group Ga. We choose a1, a(l) so that a is as small as possible.

Now we select, if possible, a second set a2 and an image a(2> under a suitable

power of T which satisfy the conditions

a» c A,  axa2 = a<»a™ = 0,

^ m(aW) < m(a2)/2.

We require again the index ß of the group Gß to which a2 belongs to be as

small as possible, provided that (33) is satisfied. By continuing this process

as far as possible we obtain a finite or infinite sequence of sets a1, a2, • • ■ and

an associated set of images a(1), a(2), • • • satisfying the conditions

a' c A,  a'a" = a^a^ =0,  v ¿¿ p,

w(a<">) < m(a')/2,

where in succession the index an of the group G, to which a" belongs, is chosen

as small as possible. We have

ai Í »! â aj S • • • ,

If the sequence is infinite, we necessarily have a,—► <x>, whence follows that the

process cannot be continued further. In any case, we assume the process to be

continued as far as possible.

The point sets

B =   ¿2a',  B' =   ¿ZgV

axe images by division of each other. From (34) we have

m(B') < m(B)/2 < m(Ä).

On setting

(35) b = A - B', a = (A - B){b},

we therefore have

m(b) > 0.

Now we show that necessarily m(a) =0, the case m(a) >0 leading to a con-

tradiction with our assumption that the process cannot be carried further.
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According to Lemma 4 we may indeed find a set a' and a suitable image a(,)

so that

a' c a, a(,) c ft, m(aM) < m(a,)/2.

According to (35) the first and the second inequality are obviously equiva-

lent to

a* c A, a'a" = aU)aM =0, 1 2¡ v < s,

so that (34) is satisfied for the former sets a" together with a'. Thus we must

have m(a) =0, i.e., {A —B'} cB holds apart from a set of measure zero. In

this case Lemma 3 finishes the proof. In conclusion, the process can either be

continued till the sets a' fill up the whole of A, or it stops before. The latter

case is by no means unfavorable, as Lemma 3 automatically provides for it.

(0) An invariant set A, miA)>0, exists having the following property.

For any given number e > 0 a set A c A can be found such that

(36) miA - A) < (,

while for any ft c A, mQ>) >0, we have

(36') X(6) = oo .

The treatment of this case follows much the same line as in the case (a), the

only complication being due to the fact that the equation pia)b= <x> is not

satisfied by each ft c A, a c {ft}, w(a) >0.

We start by fixing a set A such that (36') holds for any ft c A, ra(ft) >0.

According to Lemma 4' with 6 = A, a = {ft}, /n(a)b=X(Z) = oo, we may select

a first set a1 and a suitable image a(1) so that

a1 c Z,

w(a(1)) < m(a1)/2.

We proceed exactly as in the case (a) by constructing a sequence of sets a'

and of associated images which satisfy the conditions

a' c J, a'a" = a('>a("> = 0, v ^ p,

i»(a<'>) < w(a')/2.

We assume again the process to be carried on as far as possible. We set now

B =   2><", B' =   £a',

these sets being images by division of each other, and

(37) b = 2 - B', a = iA - B){b}.
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The assumption m(a) >0 is again in contradiction with the assumption that

our process cannot be continued. In order to show this, we note first that

(38) p(a) (,= oo,

an equation which will be proved below. Supposing (38) to be proved we may

apply Lemma 4 and accordingly find a set a" and an image a(,) such that

a' c A - B', a(s) c a c A - B,

m(aM) < m(a')/2.

Thus a continuation would be possible. We conclude therefore that m(a) =0,

i.e., that {Â — B'} cB holds apart from a point set of measure zero. If now

m(b) =m(A~—B')>0, we may apply Lemma 3, replacing the A occurring

there by our present A. If, on the other hand, m(b) =0, the point set A is

filled by the sets a'. We may then continue our process by choosing a larger

A and by filling, if possible, the remainder of this new A~ with respect to the

former A. Either the remainder can be filled up by new sets a", or the process

stops before. The latter case is settled by Lemma 3. On setting A=AX, A2,

A3, ■ ■ ■ (see Theorem 3) in succession we finally infer that M possesses an

image by division which is a proper part of M.

It remains to prove (38). For this purpose let us set

(39) C = B{b},      C' = B'{b}.

As {b} is an invariant point set, C and C must be images by division of each

other. (37) and (39) yield

(40) {¿>}  = a + C, aC = 0.

Since b = A-B' and C'cB', the set

(41) E = b + C

must be part of A. With regard to the definition of the set A we have

X(£) =M({£})S = oo.

From (39) we obtain

(C)  c  {b},  {b + C} = {b} + {C'}.= {b};

thus according to (40) and (41),

p({E})e = p({b})E = p(a)E + p(C)e = » -

By (9) and (41) we finally obtain

p(o)e ú p(a)b, p(C)e ^ p(C)c,

where p(C)c< is a finite number according to Lemma 2. Hence p(a)b= oo.
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5. Some remarks on images by finite division. It is an outstanding ques-

tion, whether the weaker supposition, that no set goes into a proper part of

itself under T, guarantees the existence of a finite invariant m*. According to

Theorem 4 this would be equivalent to the question whether a set going into a

proper part of itself under T can be found, if a suitable image by division of M

forms a proper part of M. It is rather doubtful whether the anwer to this

question is in the affirmative. However, it may be remarked that the main

difficulty lies in the use of infinitely many parts in the concept of the image

by division, for in case of divisions into a finite number of parts our question

is affirmed by

Theorem 5. 7/ a point set A possesses an image by finite division which is a

proper part of A, a point set can always be constructed, which goes into a proper

part of itself under T.

The proof of Lemma 1 shows that the whole of M possesses an image by

finite division M ',
k k

(42) M =   JJa', M' =   ]>><'>, «(,) = «' >
i i "'

a/a» = a(-)a(M) = o, v ^ p,

so that

(43) M' c M, miM - M') > 0.

We may assume that

(44) nv > 1 iv = 1, 2, • • • , k),

for otherwise we might use the set Mn' instead of M ', « being sufficiently

large. Now let us consider the array, k^l,

i
Co

2

00

(45)

*
a0

i
ai •

2
ai •

(i)
a_i

(2)
a_i

ai a_i

(i)
ao

(2)
a0

a0

where the numbers of elements in the different rows are «i+l, «2+1, • ■ ■

successively. We denote by E<the set of all points contained in i or more point

sets standing between the two vertical lines, and we put E° = M. These sets

decrease, i increasing,

(46) M = £° d E1 o E2 3 • • • d E>, E'+1 = 0,
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where 5^^*(»'— 1). Now we set

(47) A* = B*-1, B* - Ei + M'E'-1    (i = l, 2, ■ ■ ■ , s + l) .

As a; c If and Xa'Œ M, each point of £i_1 belongs to a suitable a'. Thus each

point of £*_1 belongs to i or more point sets on the left of the right vertical

lines in (45). Conversely, each point with the latter property belongs to i— 1

or more sets between the vertical lines, because it cannot belong to two differ-

ent sets ag according to (42). Ai is therefore the set of all points contained in i

or more'sets on the left of the right vertical line in (45).

It is equally obvious that each point of B* belongs to i or more sets on the

right of the left line in (45). Conversely, each point with the latter property

either belongs to E* or it belongs to some a¿r). But in this case it must be con-

tained in B*~l, because the sets aér) exclude each other. Thus Bi is exactly the

set of all points contained in i or more sets on the right of the left vertical line.

By this consideration we clearly obtain

(48) Bl = A[ (i= 1,2, •••,5+1).

(46), (47) and (48) yield

Ai<zA\.

Now we prove that A [ must be a proper part of Ai for a suitable i. From

(46), (47) and (48) we easily get

A' - AÍ = (M - M'XE*-1 - Ei)       (i = 1, 2, • • •, s + 1),

these point sets excluding each other. Hence follows

»+i

¿Zm(A' - A'/) = m[(M - M')(E<> - £•+»)] = m(M - M') > 0
i

according to (43), thus yielding m(A"—A\) >0 for some v.

Generalisations. So far we have considered only the case of a single trans-

formation of M into itself. Apart from §5, however, all notions and results

may easily be extended to very general groups of transformations. This

may be briefly outlined in the case of a linear one-parameter group Tt,

-oo <¿<+oo,

I ti s   =   I s+t,

of transformations of M into itself (steady flow on M). Every transformation

of the group is supposed to have the properties stated in §2. Concerning the

dependence upon t we suppose that
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hm m(ATt(B)) = m(AB)
Í-0

holds for any two measurable sets A, B. This general supposition is certainly

fulfilled if M is an analytic manifold and if Tt(P) is analytic in P and t.

A measurable point set A is called invariant under the group if, for every

/, Tt(A) coincides with A apart from a point set of measure zero. The

smallest invariant set {A} containing a.set A is defined by

{A} =T,Tr(A)
r

where r runs through the sequence of the rational numbers. {A } is obviously

invariant under all Tt with a rational index; in other words, the equations

m({A]Tt{A\) = m({A\) = miTt{A\)

hold for all rational values of /. From the above continuity supposition we

infer that they hold for any /, i.e., that {^4 } is invariant under the group.

Notions such as the compressibility measure and the image by division ad-

mit of an obvious extension. As all our considerations remain the same,

Theorem 4 indicates also in the case of our group the necessary and suf-

ficient condition for the existence of a measure m, invariant under the

group Tt.
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