
ON A SPECIAL CLASS OF POLYNOMIALS*

BY

OYSTEIN ORE

In the present paper one will find a discussion of the main properties of a

special type of polynomials, which I have called /»-polynomials. They permit

several applications to number theory and to the theory of higher congruences

as I intend to show in a later paper, and they also possess several properties

which are of interest in themselves.

The /»-polynomials are defined in a field with prime characteristic p

(modular fields) ; they form a (usually non-commutative) ring, where ordi-

nary multiplication is replaced by symbolic multiplication, i.e., substitution

of one polynomial into another. The /»-polynomials are completely charac-

terized by the property that the roots form a modulus. This modulus has a

basis, and one shows consequently that the /»-polynomials will have a great

number of properties in common with differential and difference equations,

such that the theory of /»-polynomials gives an algebraic analogue to the

theory of linear homogeneous differential equations. One finds that the

theorems on the representation of differential polynomials will hold also for

/»-polynomials; the decomposition in symbolic prime factors is not unique,

but the factors in two different representations will be similar in pairs. One

can introduce the system of multipliers and the adjoint of a /»-polynomial and

even the Picard-Vessiot group of rationality; it corresponds in this case to

a representation of the ordinary Galois group of the /»-polynomial by means

of matrices in the finite field (mod />). When this representation is reducible,

the /»-polynomial is symbolically reducible and conversely.

In this paper I have given only the fundamental properties in the theory

of /»-polynomials; various interesting problems could only be mentioned,

while most applications of the theory had to be reserved for another com-

munication. There are a few applications to higher congruences in §5,

chapter 1, giving new proofs for theorems by Moore and Dickson; in §6 I

give a new and simplified proof for the theorem of Dickson on the complete

set of invariants for the linear group (mod /»). The invariants are, as one will

see, the coefficients of a certain /»-polynomial, and a slight generalization of

the proof of the fundamental theorem on symmetric functions gives the

desired result.

* Presented to the Society, February 25, 1933; received by the editors February 3, 1933.
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Chapter 1. Properties of /»-polynomials

1. Definition of /»-polynomials. Let K be an arbitrary field of characteristic

p where p is a rational prime. In many of the most important applications K

is a finite field, but this will not be assumed at this stage.*

A polynomial of the form

(1) FP(x) = aox"m + aix'm~ +-h am^ixp + amx

with coefficients in K shall be called a p-polynomial; the number m is called

the exponent of Fp(x). When a0 = l, Fp(x) is said to be reduced. At times

polynomials of the form

(2) Gpi(x) = a0xp   + aix* + ■ ■ ■ + am.ixp' + amx

will be considered; their properties are quite analogous to those of /»-poly-

nomials (1).

The /»-polynomials form a modulus, since they are reproduced by addition

and subtraction. The /»th power of a /»-polynomial is again a /»-polynomial.

The product of two /»-polynomials is not a /»-polynomial. It is however

fundamental that a new symbolic multiplication can be introduced such that

the product of two /»-polynomials is again a /»-polynomial. This multiplication

is usually not commutative so that the /»-polynomials will form a non-

commutative ring.

Let namely

(3) Gp(x) = box"" + bix""1 + ■ • • + bn-ix* + bnx

be a second /»-polynomial; we then define the symbolic product Fp(x)Gp(x) as

(4) Fp(x) X Gv(x) = Fp(Gp(x))

and correspondingly Gp(x) XFp(x) =Gp(Fp(x)). It follows that

(5) Fp(x) X Gp(x) = c0*J,"+m + cix»'*' " + ■•• + Cn+m-ix" + cn+mx,

where

Co = aicV",
m m—1

ci = ffoOr"   + aicV     ,
m m—l m—2

(6) c2 = a0¿V   + <zi¿V     4- a2bop      ,

Cn+ m amDn.

* For several of the following theorems it is not even necessary to assume that the coefficient

field is commutative.
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The exponent of a product is the sum of the exponents of the factors.

One immediately observes, that the theory of /»-polynomials is a special

case of the theory which I have discussed in the paper Theory of non-commu-

tative polynomials* One has only to introduce the correspondence

y" —► x, y —> x", ym —» x"m, yn+m = ynym —* xpnx"m = x"n+m

giving in general

Fp(x) —> a0ym + • • • + am-iy + am,

to recognize the formal identity of the two theories. Since

xp X ax = a"xp —> ya = apy

one sees that the two operations conjugation and differentiation in the general

theory are here simply

à = ap, a' = 0.

From the general theory one can now deduce a great number of facts:

In the ring of /»-polynomials the symbolic multiplication is associative and

distributive with respect to both right-hand and left-hand multiplication.

The unit element is EP(x) =x and there are no divisors of zero, i.e., an

identity AP(x)Bp(x) =0 implies Ap(x) =0 or Bv(x) =0.

A /»-polynomial Fp(x) is said to be symbolically right-hand divisible by

Dp(x) if FP(x) =Qp(x)XDP(x). One observes that when FP(x) is right-hand

symbolically divisible by Dp(x), then Fp(x) is also divisible by Dp(x) in the

ordinary sense. When Fp(x) =Dp(x) XQP(x) we say that Fp(x) is left-hand

symbolically divisible by Dp(x).

Let us now consider division for /»-polynomials; supposing m^n in (1)

and (3) one finds that the differences

m—n       m—n

Fp(x) - aobo~p     xp      Gp(x),

Fp(x) - Gp(x) X (aoôo-1)1'" V"m

do not contain any terms of higher degree than xpm~\ It follows, by repetition

of this process, that one can write

Fp(x) = QP(x) X Gp(x) + Rp(x),

Fp(x) = Gp(x) X Pp(x) + Sp(x),

where the exponents of Rp(x) and Sp(x) are smaller than n. The coefficients

* To appear shortly in the Annals of Mathematics. This paper will be quoted as Ore I.
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of RP(x) are all in K, while the coefficients of Sp(x) lie in some radical field

over K.

Theorem 1. Symbolic right-hand division of polynomials is always possible,

while symbolic left-hand division can only be performed in K, when K is perfect*

When left-hand divisibility is discussed in the following we shall always

assume that K is perfect.

Theorem 1 shows that right-hand (and left-hand) Euclid algorithms

exist, and this shows in turn the existence of a unique (reduced) cross-cut

(Fp(x), Gp(x)) =Dp(x). When Dp(x) =x we say that Fp(x) and Gp(x) are right-

hand symbolically relatively prime, and we can then find such polynomials

AP(x) and Bp(x) of exponents less than m and n respectively that

(8) Ap(x) X Fp(x) + Bp(x) X Gp(x) = x.

We shall finally prove the following theorem:

Theorem 2. The symbolical right-hand cross-cut of Fp(x) and Gp(x) is

equal to the ordinary cross-cut of these polynomials.

This follows from our former remark that every symbolic right-hand

divisor is also an ordinary divisor of a polynomial and the symbolic Euclid

algorithm can therefore also be considered as an ordinary Euclid algorithm.

2. Linear factors. Let us now find the condition that a /»-polynomial (1)

be divisible symbolically by a linear factor xp—ax. One finds easily

Fp(x) = Qp(x) (xp - ax) + Ax,

where

(9) A = aoai^'-D/Cp-D + aia" +••.- + a^a*1 + a^a + am.

Theorem 3. The necessary and sufficient condition that the linear p-poly-

nomial xp—ax be a symbolic divisor of Fp(x) is that a be a root of

(10) a^-^nv-^) + ^^"-'-d/Cp-d + . • . + a^y*1 + a^iy + am = 0,

i.e., a is equal to the (p — l)st power of a root of the equation Fp(x) =0.

One can in the same way find the necessary and sufficient condition that

FP(x) be left-hand divisible by xp—ax. The result is, in this case, a little more

complicated, namely a must be a root of the equation

(11) oo    y + ai       y + ■ ■ ■

Up*    (p+D/p 1/J>
_ + am-2y + am_iy + am = 0.

* Compare Theorem 6, chapter I, Ore I.
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From Theorem 3 follows immediately that every /»-polynomial will de-

compose into linear symbolic factors in some finite algebraic extension of K.

We shall discuss this decomposition later on.

For the product of linear factors one finds

(xp + a2x) X (xp + aix) = xp* + (aip + a2)xp + axa2x,

and the following theorem can be proved by induction :

Theorem 4. We have

(xp + anx) X ■ • • X (xp + a2x) X (xp + aa)

=   Xp" +Ai    X H-h An-lX" + An

where

. <»)        v"> p"i p"« pa< ^
Ai    =   2-jan an   • • • a,. , si < st < • • ■ < St,

where the sum is to be extended over all s and a such that

sr + ar = n— i + r.

In the simplest case where all a's are equal to one, it is seen that

/ n\    n-i      / n\    „_2 / n\
(xp + x) W = x"   + (      )xp     +(      jx"     +••• + (      )xp+x.

3. The roots of /»-polynomials. The roots of /»-polynomials have several

interesting and characteristic properties. Let us consider an equation

(12) FP(x) = 0;

it is obvious that x = 0 is always a root. Furthermore if coi and co2 are roots, it

is seen without difficulty that wi ± w2 are roots.

Theorem 5. The roots of an equation (12) form a finite modulus.

When am9^0 we find Fp (x)=am^0 and the equation (12) cannot have

equal roots. The corresponding modulus must have finite basis and we can

state

Theorem 6. When am^0 the roots of Fp(x) =0 form a finite modulus M of

rank m. There exists a basis

(13) «i, «!,•••,«■

for M, such that every root is uniquely representable in the form

(14) co = kiooi + ■ ■ ■ + kmo>m    (ki = 0, 1, ••-,/>- 1).
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A modulus of the form (14) we shall call a /»-modulus. It can be shown

that m roots (13) form a basis for M if and only if

(15) A(coi, «2, COm)   =

Wl

Ul"

«2

«2*

Wm

CÜ1*„11" C02P •  •  • 0>mP

does not vanish.

It should be observed at this point, that if one considers the root of a

/»'-equation G^x) =0, where G^x) is given by (2), the roots will also form a

modulus M and one can find a basis

ßi, ßs, • • • , ß«

such that every root is representable in the form

Q = kiQi + ■ ■ ■ + KmQm

where the k< run through all the elements of a finite field with pf elements.

4. Polynomials with given roots. We shall next consider the inverse prob-

lem: Given a p-modulus Mp{n) of rank n; to construct a p-pcdynomidl F(x)

of exponent n having the elements of Mpw for roots. Let wi, • • • , co, be a basis

for Mp(B). When n = 1 we find simply

(16) F(x) = x(x - wi)(* - 2co0 ■ ■ ■ (x- (p - l)coi) = x' - coi"-1*.

The general expression can now be found by induction. Let Fn(x) be the

¿-polynomial having the roots

klCOt + • ■ • +  ¿n-l"n-l (ki  =  0, 1, •••,/>—   1) .

The elements of M¿n) will then satiäfy the equation

Fn(x) = Fn-i(x)-Fn-i(x -«»)••• Fn_i(x - (p - IK) = 0,

and since all occurring polynomials are ¿-polynomials,

Fn(x) = F^iixXFn-iix) - F^K)) • • • (Fn-^x) -(p- l)Fn-iM),

or finally, as in the case n — 1,

(17) ¥¿x) - Fn_t(*) - F^W^M*),

which shows that F»(x). also is a ¿-polynomial. Using symbolic multiplica-

tion, we can write FJ<x) S» the foil»

(1*) Fn(x) = (xp - F^iM^x) X Pn-i(x).

Thw gives by repeated application
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Theorem 7. The p-polynomial Fn(x) having the elements of a p-modulus

M¿n) for its roots can be written

(19) Fn(x)  = (xp-Fn-l(Wn)p-lx) X (xp ~ Fn-ifan-l)»'^) X   "  "   ' X (xp - «!«-**)

where wi, • • • , w„ is an arbitrary basis for M p(n). One has also the formula

A(«i, • • •  , ù}n, x)
(20) Fn(x) = ~-^-'-2-J.

A(03U ■ ■  ■ , Wn)

where A denotes the determinant defined by (15).

It is obvious that the polynomial (20) has wi, • • • , «„ and hence all ele-

ments of Mp{n) for its roots.

Theorem 8. The necessary and sufficient condition that the roots of a poly-

nomial form a modulus is that the polynomial be a p-polynomial.

The modulus must be finite, and the field of the coefficients must con-

sequently have the characteristic /». The theorem then follows from Theorems

6 and 7.

5. Applications to higher congruences. The results of §4 immediately give

various theorems on congruences (mod />).

From the definition of Fn(x) and from (20) follows

A(coi, ■ ■ • , co„, x)        •  '-'
(21) —--'—— =. IIIR* - (*i«i + • ■ • + *»«»))        (mod p)

A(coi, •••,«„) <_i t-.o

which is a generalization of well known identities in higher congruences.

When one compares the last term in x on both sides one obtains the following

generalization of Wilson's theorem :

Theorem 9. Let Mp(n> be a finite modulus (mod /») and let o>i, • ■ • , con be

a basis for the modulus; then

(22) II" - (- l)"A(«i, • • • , co»)"-1 (mod/»)

where cot^O runs through all elements of Mpin).

Let us finally apply the formula (21) to the case of n — 1 basis elements

coi, • • • , co„_i and let us put x = un. This gives

n—1 p—1

A(cOi, • • •  , ù)n)   «  A(C01; ■  • •   , COn_i) H H (un +  kn-lWn-1 + " ' • +  ¿lCOi)

(mod />)

and we have a simple proof of a theorem by E. H. Moore.*

* E. H. Moore, Bulletin of the American Mathematical Society, vol. 2 (1896), p. 189.
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Theorem 10. The following identity holds:

n—l     p—1 p—l

(23) A(wi, •••,«») s  U   JI   • • • H(w» + ki-iui-i + ■ ■ ■ + Aiwi)    (mod />).

It can be stated by saying that A («i, • • • , o¡n) is congruent to the product

of all different linear expressions in the coj, considering two such expressions

equal if they are proportional.

Another result is the following:

Let Hp(x) =Ap(x) XBp(x) ; then

Bp(x) = U(Bp(x) + co)

where a runs through the modulus of all roots of Ap(x) =0 and the product sign

indicates ordinary multiplication.

This simple remark contains and generalizes various theorems on higher

congruences by Mathieu* and Dickson.f

6. The invariants of linear groups (mod />). We shall now consider the

symmetric functions of the roots of a /»-polynomial. From (20) it follows that

the ¿-polynomial corresponding to given modulus Mp(n) has the form

(24) Fp(x) = xp + Aixp~l + ■ • • + An-ixp + Anx,

where

A<*>(coi, • • • , w„)
(25) Ai = (- 1)' —-¿---'-¿ (i = 1, 2, • • ■ , n),

and where A(0(wi, • • • , co„) denotes the minor of the term xpi in the deter-

minant A(c<>i, • • • , w„, x). Every symmetric function of the elements of

M¿n) can therefore be expressed by the rational function (25) of the Wj.

We shall now consider the inverse problem: When is a rational function

F(xi, ■ ■ ■ , Xn) à symmetric function of the ¿n — 1 linear forms

(26) <*>*,...*„(*1, ■  ■  ■  {Xn)   =   *1*1 +  •  •  •  +  ¿n*n (A( = 0, 1, •  •  •  , ¿ —   1),

the combination h= ■ ■ ■ =kn=0 excluded. We shall prove

Theorem 11. The necessary and sufficient condition that F(xi, ■ ■ ■ , xn)

be a symmetric function of the linear forms (26) is that F(xi, -••,*„) be an

absolute invariant of the full linear group of order n (mod ¿).

When F(xi, ■ ■ ■ , x„) is representable as a symmetric function of the forms

* E. Mathieu, Journal de Mathématiques, (2), vol. 6 (1861), pp. 241-323.
t L. E. Dickson, Bulletin of the American Mathematical Society, vol. 3 (1897), pp. 381-389.
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(26) it is represen table by the coefficients A ¿ in (24). From the representation

(25) it is easily seen that these coefficients are absolute invariants by all

linear substitutions of the co¿ with non-vanishing determinant (mod /»).

To prove the converse, let F(xi, •■■,*») be an absolute invariant; one

can assume, without loss of generality, that Z^íci, • ■ ■ , xn) is integral. If

we write

(27) F(X1, ■  ■  ■  , Xn)   =    E^(*2, •  ■  •  ,  Xn)x{",
i

the B(xt, ■ ■ ■ , Xn) must be absolute invariants of the linear group on the

(n — 1) variables xt, ■ ■ ■ , xn. Let us put

p-i
(28) A =      II    Oi + ktxt + • • • + knxny-1 = xi»-"' + ■ ■ ■ ,

*2. •••.*„-°

where the coefficients of A as polynomial in Xi are also invariants of the group

in n — 1 variables. We can now divide F(xi, ■ ■ ■ , xn) by the powers of A

and obtain a representation of the form

(29) F(xi, ■ ■ ■ , Xn) = Rt(xi)A' + Rt-i(xi)A'-1 + • • • + Ro(xi),

where the coefficients Ri(xi) are polynomials of degree smaller than the

degree of A in Xi and with coefficients which are invariants in the « — 1 re-

maining variables. We shall now show that Xi does not occur in any R¡(xi). Let

us suppose namely that

(30) Ri(xi) = So(x2, ■ ■ ■ , xn) + *iSi(a;2, ■■•,*»)+••-.

It follows from the representation (28) that A is invariant under an arbitrary

substitution of the form

Xi —» ¿1*1 + • ■ • + knx„,  kj 5¿ 0,
(oi)

Xi —► Xi.

Since the representation (29) is unique, all coefficients in (29) must also be

invariant under the substitutions  (31).  From (30)  we obtain, however,

Ri(xi)  — So(Xi, ■     ■  , Xn)  =  XiK(Xi),

and applying all substitutions (31) to this identity we find that the difference

Ri(xi)-So(x2, ■••,*„) is divisible by A, giving Ri(xi)=S0(x2, ■ ■ ■ , xn).

This gives the special form

(32)        F(xu ■ ■ ■ , xn) = Rt(x2, • ■ ■ , xn)A* + ■ ■ ■ + Ro(x2, ■ ■ ■ , x„)

for the representation (29).

The remaining part of the proof is analogous to the proof for the principal
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theorem on symmetric functions. The terms of F(xi, ■ • • ,xn) are arranged in

decreasing order as usual in this proof, and we assume that

(33) axflxi' • • • *„"», an à a« = ■ • • è a„,

is the principal term, «i is then the highest exponent of any power of x(

which occurs in F(xi, ••-,*„); according to (32) «i must be divisible by

pn—pn~l; a2 is the highest power of x2 contained in the invariant

Rt(xi, • ■ • , xn) and it is therefore by the same reason divisible by

pn-i—pn-i etc   j|- follows that the principal term (33) must have the form

(34) axi«pn-pn~1'>Xit*(p"~l-pn~i) • ■ ■ Sn*"^-1'.

The invariant A ¿ in (25) has the principal term

n      n— 1        n—l      n—Î n-t-f-I      n—i

±  Xf ~p     Xtf     ~p       ■ ■  ■  Xip ~p

and the difference

F(xi, ■ ■ ■ , xn) - (± a^i'.-Mj'.-'- • • • An'~)

only contains terms lower than (34) and one obtains a representation of

F(xi, ••-,*„) by the A{ through repetition of this process. It also follows

that if

F(xi, • • ■ , Xn) = R(Ai, • ■ ■ , An)

is the representation of the integral invariant F(xi, •••,*„) then the coeffi-

cients of R belong to the ring generated by the coefficients of F.

An immediate consequence of this proof is

Theorem 12. The polynomials

A(<)(*i, ••-,*»)
(35) Ai(xi, ••-,*„)= ——-— (t = 1, • • • , »)

A(*i, • • • ,xn)

form a fundamental system for all the absolute invariants of the linear group of n

variables (mod ¿).

A relative invariant of the linear group is an expression G(xi, ■ ■ • , xn)

which is only multiplied by a power of the substitution determinant by a

linear substitution (mod ¿); A(xi, • • • , xn) is a relative invariant and by

multiplying by a suitable power of A(xi, •••,*„) one obtains a very simple

proof of a theorem by Dickson* :

* L. E. Dickson, these Transactions, vol. 12 (1911), pp. 75-98.
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Theorem 13. The polynomials

(36) A(*i, • • • , Xn), Ai(xi, ■ ■ ■ , xn)       (i = 1, ■ ■ ■ , n — 1)

form a fundamental system for all relative invariants of the linear group on n

variables (mod /»).

The polynomial An(xi, •••,*») in (36) has been omitted since

An(xi, ■ ■ • , x„) = A(*i, • • • , s»)*-1.

Dickson has proved Theorem 13 for the somewhat more general case

in which the linear group is supposed to have coefficients in an arbitrary finite

field. Our proof holds with slight modifications also for this case. In the same

paper Dickson considers the "Formenproblem" of the invariants: i.e., the

problem of finding the values of the variables Xi for which the invariants

assume prescribed values. From our point of view, this is identical with the

problem of solving the equation defined by the corresponding /»-polynomial,

a problem which has already been discussed at some length.

7. The resultant. An important invariant of two /»-polynomials Fp(x)

and Gp(x) denned by (1) and (3) respectively is the so-called /»-resultant

RP(Fp(x),Gp(x)).Let

"ii • • • . w«>; fa, • • •, fa

be the basis elements of the two corresponding /»-moduli; the determinant

A(coi, ■ ■ • , o>m, fa, • • • , fa) is then according to (22) equal to the product

of all possible different linear combinations

(37) ai«i + • • • + amw„ + bifa + • • • + bnfa

in which not all coefficients vanish, and where two expressions (37) are con-

sidered to be equal if one can be obtained from the other through multiplica-

tion with a rational integer. We then define the /»-resultant of FP(x) and

Gp(x) by putting

(38) RP(F, G) =   ^■■■,o>m,fa,---,fa)

A(coi, • • • , um)A(fa, • ■ • , fa)

This resultant is, we see, the product of the differences of all non-vanishing

roots of the two polynomials, considering as before two differences o> — \f/ and

k(o) — fa as being equal. It is therefore

/?,(*)     Gr(x)y^
RP(F,G) = R[-^-^,   -^)

\    x x    /
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where R denotes the ordinary resultant. I mention without proof that the

¿-resultant of Fp(x) and Gp(x) can be represented in the form

HFp(Pi), ■■■ , Fp(pn))     A(Gp(ui), ■■■, Gp(um))
(39)     Rp(Fp,Gp) =

A(lr% • • • , pn) A(«i, • • • , wm)

One can also find a representation of Rp by means of the coefficients of Fp(x)

and Gp(x).

8. The adjoint of a ¿-polynomial. To a given modulus MP(n) we construct

the adjoint modulus Mp(n)

, ..     ,/k"-,«») . A(C0!,  W3,  •  •   •   ,  CO»)
»i = (- 1)"+1T7-r»   w* = (- 1)n+*—-,-r~'

A(co!, • ■ • , o>„) A(wi, • ■ • , w.)

(40)
_        A(cüj, • • ■ , co„_i)
w« = -;-•

A(wi, ••-,«„)

We show simply that these numbers are linearly independent and therefore

can be regarded as the basis of a modulus MPM.

In §4, we have found that the reduced polynomial Fp(x) having the

modulus Mpln) for roots will be left-hand divisible by xp—ßx, where according

to (18) and (20)
A(C01,  ■  •   •  , Wn)"-1 1

A(C01, •  •   •  , C0B_!)P-1 Ctfn*-1

By changing the order of the basis elements cof of Mp(n) one can deduce in the

same way that Fp(x) is left-hand divisible by all factors

xp — cörCp_1)*,

and finally also by all factors

xp — ¿-Cp-O^

where w is an arbitrary element of the adjoint modulus Mp( n).

Let on the other hand w be an element such that

(41) Fp(x) = (xp - ¿>-(p-"x) X Qp(x).

The roots of QP(x) will form a submodulus Mptn-1) of Mjn), and since a basis

of M„<n_1) may be completed to a basis for Mp(n) we see that w must be an

element of MpM. This leads to the following result which may also be used

as a definition of Mp(n) :

Theorem 14. The adjoint modulus M¿n) to AfP(n) consists of all elements w

such that the corresponding p-polynomial Fp(x) to Mp(n) has a decomposition of

the form (41).
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We shall express this result in a somewhat different form. From (41) we

obtain

(42) wpFr(x) = ((x¿b)p - ûx) X QP(x) = (xp - x) X ax X Qp(x).

An element k such that

(43) kFp(x) = (xp - x) X RP(x)

shall be called a multiplier of Fv(x). It is obvious that the multipliers form a

modulus, and from (42) and Theorem 14 we find

Theorem 15. The multipliers of a polynomial Fp(x) form a modulus

N¿n) of rank n which is equal to the modulus of the pth powers of the adjoint

modulus Mjn) to the modulus Mp(n) of the roots of Fp(x) =0.

Let us now determine the /»-polynomial corresponding to the adjoint

modulus Mjn) or to the modulus Njn) of the multipliers, which is virtually

the same problem. If Fp(x) is left-hand divisible by xp—ßx, then

ß = K-<.p-üipj where k is a multiplier, and the condition (11) for left-hand

linear factors gives

Theorem 16. The multipliers of

(44) Fp(x) = xp% + Aixp*~l + ■ ■ ■ + Anx

are the roots of the equation

(45) FP(x) = (Anx)p" + (A„-ix)p"~l + ■ ■ • + (Aix)p + x = 0.

Since the roots of xp—x = 0 are 0, 1, • ■ ■ , /> —1, we observe the following

result: If k is a multiplier of Fp(x) giving the decomposition (43), then

(46) KFp(x) =  U(Rp(x) + i)
t'-O

where the product sign denotes ordinary multiplication.

We have in the preceding supposed Fp(x) to be reduced. If Fp(x) in (44)

has the highest coefficient A0 then the multipliers will be k'Aô1, where

k' is a multiplier of the corresponding reduced polynomial.

In general we shall call the polynomial

(47) Fp(x) = (Anx)p + (An-ix)p"1 + • ■ • + (Aix)p + A0x

the adjoint of F„(x). The adjoint of Fp(x) is
I

Fp(x) = A/xp° + Afx'"1 + ■ ■ ■ + Ap° = xp  X FP(x) X xp~\
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and for the adjoint of a product one finds

F,(x) X GP(x) = xpU X G,(x) X xp~" X Fpjx).

It may be more simple to introduce fractional powers and define the ad-

joint polynomial by putting

Fp(x) = Anx + (An-ixyip +■■■ + (Aix)p~n+1+ (Aox)p~\

This expression has the same roots as (47) and it has the simpler properties

that the adjoint of a sum is the sum of the adjoints, the adjoint of a product

is equal to the product of the adjoints in inverse order, and also simply

Fp(x)=Fp(x).
Let us finally determine when FP(x)=Fp(x), using the definition (47).

We obtain the relations

(48) /i   = Ai (i = 0, 1, • • • , n)

and also
n—t

An-i  = Ai (i = 0, 1, • • • , m),

giving

APÎ =Ai (i = 0, 1, • • • ,»).

Theorem 17. When a polynomial Fp(x) is self-adjoint, all coefficients must

belong to a finite field of pn elements; in addition the relations (48) must hold.

Chapter 2. Formal theory

1. The union of /»-polynomials. Let Fp(x) and Gp(x) be two ¿-polynomials

given by (1) and (3) ; the reduced polynomial

Mp(x) = [Fp(x),Gp(x)]

of smallest degree with coefficients in K which is right-hand symbolically

divisible by both Fp(x) and Gp(x) is called the least common multiple or the

union of Fp(x) and Gp(x). From the existence of a Euclid algorithm the exis-

tence of the union follows; it has the exponent m+n — d, where d is the ex-

ponent of the cross-cut Dp(x) = (Fp(x), Gp(x)).

Let as before

(1) Mpm)  =   (CO!,  •   •   •   , C0m),   Np       =   (pi,  ■  •   ■  ,pn)

be the basis of the two moduli formed by the roots of the two polynomials

Fp(x) and Gp(x). The modulus corresponding to DP(x) is then the modulus

formed by the common elements of Mp(m) and Npw while the modulus of the

union is



1933] A SPECIAL CLASS OF POLYNOMIALS 573

Tp = (coj, ■ • ■ ,<om,fa,- ■ • ,fa).

When Fp(x) is relatively prime to Gp(x) we find

... r    . .  _ , .-,      A(coi, • ■ • , um, fa, ■ • • , fa, x)
(2) [FP(x), Gp(x) J = —;-■-——,

A(coi, •••,«»,, fa, •.. , fa)

because the right-hand side is a reduced polynomial having the same roots

as the union. For the same reason we see that also

A(Fp(fa), ■ ■ ■ , Fp(fa))

_ A(Gp(u>i), ■ ■ ■ ,Gp(wm),Gp(x))

A(Gp(ui), • • • ,G„(com))

represent the union.

As an application let us determine the union of a reduced polynomial Fp(x)

and a linear factor x"—ax. Since the roots of the latter are kallip~l> (k = 0,

1, • • • , p — 1), we find, using formula (17), chapter 1,

Mp(x) = Fp(x)p - Fp(a1^p-^)p-Wp(x).

Ii we put

(4) <¡>(x) = x(j>"-i)/(»-i> + i!,*«/"1-««»-« + ■ . . + An,

a simple reduction shows

Theorem 1. The union of a reduced polynomial Fp(x) and a linear poly-

nomial xp — ax is

Mp(x) = Fp(x) - a^>(a)p-iF(x)

(5) = x""' + (Aip - a^ay-^x + (A? - a(j)(a)p~1Ai)x

+ • • • - a4>(a)p-lAnx,

where <j>(x) is defined by (A).

2. Transformation of /»-polynomials. The existence of a union for two

arbitrary /»-polynomials permits us to introduce a new operation on /»-poly-

nomials, which we shall call transformation.

The polynomial

(6) Ap\x) = aob/~d[Ap(x), Bp(x)} X Bp(x)~l = BpAp(x)Bp~l

is called the transform of Ap(x) by Bp(x). The notation is such that Ap(x) has

the exponent n, Bp(x) the exponent m, while d is the exponent of the cross-cut
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(7) Dp(x) = (Ap(x), Bp(x)), Ap(x) = Jp(x)Dp(x), BP(x) = Bp(x)Dp(x).

Finally, a0 and b0 are the highest coefficients of Ap(x) and Bp(x) and the

numerical constant in (6) is chosen such that the transform has the same

highest coefficient as ^4P(*).

When Ap(x) is relatively prime to Bp(x), we say that (6) is a special

transformation; the transform has then the exponent n. When a cross-cut

Dp(x) exists we call the transformation general, and the transform has the

exponent n — d. The general transformation can always be reduced to a special

transformation, since it follows from (6) and (7) that

(8) BpA p(x)Bpl = aocV~<i[IP(*), Bp(x)] X B^x)'1 = BpAp(x)Bpl.

When the polynomial ^4P(1) (x) is obtained from Ap(x) by a special trans-

formation, we say that Av(-V>(x) is similar to ^4P(*). It can be shown that the

notion of similarity is symmetric, reciprocal and associative.

There exist a large number of results on the transformation of ¿-poly-

nomials which can all be deduced from the general polynomial theory. They

will be given here without proof:*

When Bp^(x)=Bp^(x) (mod .4P(*)) then

(9) B™A P(x) (Bpyi = BP}A p(x) (Bp V1.

Furthermore

(10) (CpBp)Ap(x)(CpBp)-1 = Cp(BpAp(x)Bpi)Cpx.

From (9) and (10) it follows that if A™ (x) =BpAp(x)Bp-\ where Bp(x)

is relatively prime to Ap(x), then Ap(x) = Bp™Ap™ (x)(Bp^)~\ when 5P<» (x)

is determined such that

Bp (x)Bp(x) = x (mod.4p(*)),

which is always possible according to (8), chapter 1.

For the transformation of a union one finds simply

(11) Cp[AP(x), Bp(x)]Cp' = [Cp^p(x)Cp-1, CpB^C^};

the corresponding formula does not hold for the cross-cut. For the transform

of a product of reduced factors one finds

(12) Cp(Bp(x) X Ap(x))Cpl = Cp^^xXC™)-1 X CpA^Cfi

where Cp( l) (x) =ApCp(x)Ap~1. For an arbitrary number of factors one finds

* The proofs follow from Ore I.
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a corresponding result, which gives the theorem that the transform of a

product is made up of factors which are similar to the factors in the original

product.

The following theorem has some important applications in the formal

representations of /»-polynomials.

If a product Ap(x) XBp(x) is divisible by Cp(x) and Cp(x) is relatively prime

to Bp(x), then AP(x) is divisible by BpCp(x)Bp~1.

Let us now consider the expression for the transform in terms of the roots

of the polynomials. From (3) and the definition of transformation follows

Theorem 2. When Bp(x) is relatively prime to Ap(x), we have

r,  a , n „   , A(Bp(wi), ■ ■■ , B,(a>»), x)
(13) BpAp(x)Bp-i = ao -

A(Bp(ui), ■ ■■ , Bp(wn))

where the Uiform a basis for the roots of Ap(x).

When co is an arbitrary element in the modulus of Ap(x), then the modulus

of BPAp(x)Bp~l consists of all numbers Bp(u>) and this holds even in the general

case. The transformation is consequently analogous to the Tschirnhausen

transformation for algebraic equations.

As an application let us find the transform of a linear polynomial xp — ax

by an arbitrary polynomial Fp(x). From Theorem 1 follows

(14) Fp(xp - ax)Fpl = xp - a<p(a)p-1x.

One can easily determine when two linear expressions

(15) xp — ax, xp — bx

are similar. According to (14) every polynomial similar to a linear polynomial

can be obtained from it by transformation with an expression ex, and there

follows from (14)

Theorem 3. Two linear polynomials (15) are similar when the quotient ab-1

= cp~l is a(p — l)st power in K.

3. Decomposition into prime factors. We shall say that two reduced poly-

nomials Ap(x) and Bp(x) are transmutable if Ap(x) can be represented in the

form

Ap(x) = BpAp (x)B-]p >

where Ap'l) (x) is similar to Ap(x). In this case the product

Ap(x) X Bp(x) = [Ap\x), Bp(x)] = Ap)Bp(x)Ap)

can be written in two ways, such that the factors are similar, but occur in
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different order. We shall say that one representation is obtained from the

other by transmutation. As an example let us find when two linear factors are

transmutable. Let

Ap(x) = x   — ax, Bp(x) = x   — bx, AP (x) = x   — ex;

then according to (14)

BpAp (x)Bp   = x   — c(c — b)     x

and c must be a root of the equation

c(c - b)p~l = a.

A prime polynomial PP(x) in K is a polynomial which has no reduced

symbolical divisors except itself and *. Every polynomial similar to a prime

polynomial is also prime. One can then prove the following theorem*:

Theorem 4. Every reduced polynomial has a decomposition into prime

factors. Two different decompositions of the same polynomial will have the same

number of factors; the factors will be similar in pairs by a suitable ordering, and

one decomposition can be obtained from the other through transmutation of factors.

It is easily seen that one cannot expect the decomposition to be unique;

if Fp(x) is an arbitrary polynomial with the exponent n, then Fp(x) is divisible

by all ¿ linear factors xp — up~1, x, where co is an arbitrary root.

4. Completely reducible polynomials. We shall say that a polynomial

Fp(x) in K is completely reducible when it is the union of prime polynomials.

It can then be represented by a basis

Fp(x) = [Pi(x), ■■■ , Pr(x)}

where each prime polynomial Pi(x) is relatively prime to the union of the

others. We can also show the following:

The necessary and sufficient condition that a polynomial be completely re-

ducible is that two consecutive prime factors in an arbitrary prime polynomial

decomposition always be transmutable.

The union of all prime polynomials, which divide an arbitrary poly-

nomial Fp(x) on the right, we shall call the maximal completely reducible factor

of Fp(x) and denote by Hp(-X)(x). Then

Fp(x) = Fp\x) X Hp\x),

and FP{1) can be treated the same way; there follows

* Ore I, Theorem 1, chapter 2.
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Theorem 5. Every polynomial has a unique representation as product of

maximal completely reducible factors.

From the general theory a large number of results on completely reducible

polynomials can be deduced.* We shall however only mention a few facts,

which we shall apply at a later point.

We shall say that a completely reducible polynomial is uniform, when it is

only divisible by similar prime polynomials. The necessary and sufficient

condition that a completely reducible polynomial be uniform is that the

basis contain only similar prime polynomials.

Let Fp(x) now be an arbitrary completely reducible polynomial; the union

of all prime divisors of Fp(x) which are similar to a given prime polynomial

PP(x), we shall call a maximal uniform component of Fp(x). It then follows

that

Every completely reducible polynomial is uniquely representable as the union

of maximal uniform components.

Let finally

Fp(x)= [Ppy>(x),---,PV(x)\

he an arbitrary completely reducible polynomial. If Fp(x) is to be divisible by

any prime polynomial Pv(x) different from the basis elements, then at least

two basis elements must be similar. Any prime divisor of Fp(x) has to be

similar to one of the basis elements, and if Ppm (x) =APp(x)A~19^Pp(x)

we could have constructed the basis such that Pp(x) and Pp(1) (x) were basis

elements. When conversely an arbitrary polynomial Fv(x) is divisible both

by Pp(x) and the similar polynomial Ppw (i),we see that

Fp(x) m 0,        Fp(x) X Ap(x) = 0 (mod Pp(x))

and from a theorem in §2, it follows that Fp(x) is also divisible by all poly-

nomials BPp(x)B~x, where Bp(x) is an arbitrary polynomial of the form

Bp(x) = kix + kiAp(x)    (ki, kt = 0, 1, • • • , p - 1).

Since the roots of Ppa) (x) are different from those of PP(x), it is easily seen

that BPp(x)B~l is different from Pp(x) and Pp{1) (x) when kx^0 and ^3==0.

This shows that

The necessary and sufficient condition that a completely reducible polynomial

be divisible by a prime polynomial different from those occurring in a basis

representation is that the basis representation contain at least two similar prime

polynomials.

* See Ore I, §2, chapter 2.
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One can also state this by saying that the basis representation of a com-

pletely reducible polynomial is unique, when none of the components are similar.

5. Decomposable and distributive polynomials. In Theorem 4 and The-

orem 5 we have found two different representations of ¿-polynomials; several

others can be found, but only two other representations of importance will

be mentioned briefly.

A polynomial is said to be decomposable when there exists a representation

(16) Fp(x) = [Ap(x), Bp(x)]

where Ap(x) is relatively prime to Bp(x); Fp(x) is said to be indecomposable

when no such representation exists. We can prove

Theorem 6. Every polynomial can be represented as the union of a number

of indecomposable polynomials

(17) Fp(x)= [A™(x),--,A<r\x)],

where each indecomposable polynomial A p<ö (x) is relatively prime to the union of

the others; when two or more different representations (17) exist, they will all

have the same number of components, which will be similar in pairs.

A polynomial Fp(x) shall be said to be distributive when there exists a de-

composition (16), where Ap(x) and Bp(x) are proper divisors of Fp(x) ; a cross-

cut Cp(x) of Ap(x) and Bp(x) may perhaps exist; when no such decomposition

(16) exists, we shall say that FP(x) is non-distributive.

For the proofs of the following theorems it is necessary to assume that

K is perfect; one can then state

Theorem 7. The necessary and sufficient condition that a polynomial Fp(x)

be non-distributive is that Fp(x) have only a single left-hand prime divisor P(x).

We shall say that the non-distributive polynomial Fp(x) belongs to P(x).

It is easily seen that every left-hand divisor of Fp(x) is also non-distributive

and belongs to the same prime polynomial P(x). One can also prove

Theorem 8. Let the completely reducible polynomial

(18) Ap(x) = [Fi(x), ■■■ , Pr(x)]

be the union of all prime polynomials dividing a given polynomial Fp(x) on the

left. Then every representation of Fp(x) as the union of non-distributive compo-

nents has the form

(19) Fp(x) = [Ci(x),--- ,Cr(x)],

where the non-distributive polynomial Ci(x) belongs to a prime polynomial

similar to Pi(x) (i = l, 2, ■■ ■ , r).
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We have supposed that (19) is a shortest representation; i.e., we have omit-

ted all components which divide the union of the others.

6. The invariant ring. We shall now define a certain characteristic group

G i, the invariant group, and also a characteristic ring R¡, the invariant ring,

corresponding to an arbitrary /»-polynomial FP(x). We make the following

definition :
The polynomial Ip(x) is said to be an invariant transformer of Fp(x), when

IpFp(x) Ip~l is a divisor of Fp(x).

It is easy to determine the invariant transformers in some simple cases.

Let first Fp(x) =xp—ax; it can then be assumed that Ip(x) =cx, and from §2

follows

IpFp(x)Ipl = x" - acp~lx, c^O,

giving the values c = 0 and cp_1 = l, i.e., c=0, 1, • • • , /> —1. Let next Fp(x)

=xpM; using the definition of the transform, one easily finds that every

polynomial is an invariant transformer.

The definition of the invariant transformers can easily be modified in the

following way:

Theorem 9. The necessary and sufficient condition that Ip(x) be an invariant

transformer ofFp(x) is that

(20) Fp(x) X Ip(x) m 0 (modFp(x)).

This condition (20) immediately shows that the sum, difference, and

product of two invariant transformers is again an invariant transformer, and

the ring of all invariant transformers is the invariant ring of Fp(x).

When an invariant transformer Ip(x) is relatively prime to FP(x) we must

have

(21) IpFp(x)Ipl =FP(x).

The invariant transformers satisfying (21) form the invariant group. It is

obvious that the product of two such polynomials has the same property,

and to show the group property it only remains to show the existence of an

inverse. Since Ip(x) is relatively prime to Fp(x), we can determine an Zp(1) (x)

such that

lf(x) X /,(*) =■ x (modF,(*)),

and it is easily seen that also IPw(x) satisfies (21).

Let now a be a root of

(22) Fp(x) = 0-
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from (20) follows that Ip(a) is also a root of (22) for an arbitrary root a and

an arbitrary invariant transformer IP(x). The invariant transformer there-

fore permutes the roots of (22), or, expressed in a different way, it transforms

the modulus formed by the roots of (22) into itself or a submodulus. When all

the roots of (22) are different, the invariant transformer IP(x) is uniquely

determined by the transformation it produces, since IP(d) =7P(1) (a) for all a

implies Ip(x)=Ipw(x) (mod Fp(x)). Since the number of roots of (22) is

finite we obtain

Theorem 10. When all the roots of Fp(x) =0 are different, the invariant ring

and the invariant group are finite.

When Fp(x) =0 has equal roots, then

Fp(x) = xp'Gp(x),

and the invariant ring of Fp(x) will be identical with the invariant ring of

Gp(x), when considered (mod Gp(x)). Incidentally, these remarks also show

that the polynomials cxpr are the only ones for which all the polynomials are

invariant transformers.

From the fact that the invariant ring is finite follows that it is an algebra

over the finite field (mod ¿) and the invariant ring has a basis, such that every

element can be represented in the form

Ip(x) = cjp (x) + • ■ ■ + crIp (x) (mod Fp(x))

where Ci=0, 1, • • • , ¿ — 1. The invariant ring defined here should more

specifically be called the right-hand invariant ring. There also exists a left-

hand invariant ring having similar properties; for a left-hand invariant trans-

former JP(x) one must have as in (20)

(23) JP(x) X Fp(x) = Fp(x) X Ip(x),

and here IP(x) must be a right-hand invariant transformer according to defi-

nition. When conversely Ip(x) is an invariant right-hand transformer it is

easily seen that

(24) Jp(x) = Fp(x) X /„(*) X Fp(x)-1

is a left-hand invariant transformer of Fp(x).

Theorem 11. The left-hand and right-hand invariant rings and groups are

directly isomorphic through the correspondence (24).

Let us finally determine the invariant ring of a prime polynomial Pp(x).

In this case every lp(x)^0 (mod Fp(x)) has an inverse, and the invariant
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ring is a field. Since this field has a finite number of elements, it follows from

a theorem of Wedderburn that it is commutative.

Theorem 12. The invariant ring of a prime polynomial Pp(x) is a commuta-

tive, finite field.

The invariant ring of a /»-polynomial is closely connected with the struc-

ture and representations of the given polynomial and several interesting re-

sults can be obtained. It will however carry us too far to study these problems

here.

Chapter 3. Connection between /»-polynomials

and ordinary polynomials

1. Polynomials belonging to a /»-polynomial. We shall finally study some

of the connections between /»-polynomials and ordinary polynomials in K.

First of all we shall show that an arbitrary polynomial f(x) of rath degree

always divides a /»-polynomial. Let us divide all /»th powers of x by f(x) ;

this gives relations of the form

(1) xP = Cn-ixn~l H-h có''    (mod/(*)) (i = 0,1,2, ■■ ■).

The powers 1, x, x2, ■ ■ -on the right-hand side of the v gra first congruences

(1) can now be eliminated, and on the left-hand side this gives a /»-polynomial

Fp(x) with the exponent v which is divisible by f(x). Since Fp(x) obviously is

the /»-polynomial with the smallest exponent having this property, it follows

from Theorem 2, chapter 1, that every other /»-polynomial <bp(x) having the

same property must be symbolically divisible by Fp(x).

Theorem 1. Every polynomial f(x) of degree n belongs to a unique, reduced

p-polynomial Fv(x) with exponent v^n, such that f(x) divides Fp(x) and every

other p-polynomial <f>p(x) divisible by f(x) is symbolically divisible by Fp(x).

The number v shall be called the exponent oif(x). It is easily seen that one

can determine Fp(x), when the /»-polynomials corresponding to the irreducible

factors oif(x) are known. Let namely

(2) /(*) = fa(x)i ■ • • <t>T(x)er

he the prime-function decomposition of f(x) ; we denote by g(x) the product

of all different prime factors oif(x) :

(3) g(x) = <t>i(x) • • • 4>r(x).

When g(x) belongs to GP(x), then Fp(x) must be symbolically divisible by
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Gp(x), and since Fp(x) cannot contain equal factors, except when the last

coefficient vanishes, it follows that Fp(x) has the form

Fp(x) = xpl X Gp(x),

where t is the smallest exponent such that p' exceeds all e{ in (2).

One can consequently assume that the polynomial to be considered has

no equal factors and therefore is of the form (3). One finds, that when the

irreducible factor <£,•(*) belongs to 0P(i}(x), then g(x) belongs to the union

Gp(x) =  [ci»p (*),-•• ,c6pr (x)].

2. The degrees of the factors. When the roots of the polynomial /(*) are

known, the corresponding ¿-polynomial Fp(x) can be determined in a

different way. Let

(4) /(*) = (x-6i)---(x- en),

and let us assume that all roots are different and non-vanishing. In the field

K(6i, • ■ • , 0„) a linear factor x — 0¡ belongs to xp — 0ip~1x, and from the last

remarks of §1 we obtain

Theorem 2. Let the n different non-vanishing numbers

(5) 0i, 02, • ■ ■ ,0n

be the roots of a polynomial f(x) in K; thenf(x) belongs to

(6) Fp(x) = [xp - Of~xx, ■ ■ ■ ,xp - o*"1*].

It is obvious that the coefficients of Fp(x) belong to K, since they are

symmetric functions of the elements (5).

It should be noted that there are always polynomials belonging to an

arbitrary ¿-polynomial Fp(x), for instance Fp(x). There are however not

always irreducible polynomials belonging to a given ¿-polynomial, and

consequently there exist ¿-polynomials without primitive roots, i.e., such

that every root of Fp(x) =0 satisfies a ¿-equation with lower exponent. As an

example let us take

Pp(x) = [xp — ax, xp — abp~lx].

Fp(x) is the union of two similar ¿-polynomials with the exponent 1, and its

roots are of the form

g = ¿iai/(p-n + ktba1"»-»     (h, k» = 0, 1, • • • , p - 1),

and 6 satisfies the equation with exponent 1

*" - (h + kiby-^ax = 0.
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It would be an interesting problem to determine the necessary and sufficient

condition for the existence of primitive roots.

Let us now suppose that the /»-polynomial Fp(x) is generated by an ordi-

nary polynomial f(x) with the roots (5) as indicated in Theorem 2. The roots

of Fp(x) are then according to (6)

(7) M, = kA -I-h knen   (k,• = 0, 1, • • • , p - 1; i = 1, • • • , »).

All factors g(x) of Fp(x) have therefore roots lying in the Galois field K(0i,

• ■ ■ , 0n) and if N is the degree of this Galois field, it follows that the degree

of each factor is a divisor of N. This gives in particular

Theorem 3. When FP(x) is generated by an irreducible Galois polynomial

f(x) of degree N, then all factors of Fp(x) have degrees equal to N or a factor of N.

It is possible that even for an arbitrary /»-polynomial Fv(x) the theorem

holds that if N is the degree of the maximal factor of Fp(x), then all other

factors have degrees equal to N or a factor of N. I have only been able to

prove this theorem under certain limiting conditions. It should be observed

that Theorem 2 gives a generalization of a well known property of the poly-

nomial x^—x (mod /»).

3. The Galois group. Let Fp(x) be a /»-polynomial and f(x) a polynomial

belonging to Fp(x) ; when the roots of f(x) are given by (5), then the roots of

Fp(x) form the modulus (7). The following is therefore obvious:

Theorem 4. The exponent of f(x) is equal to the rank of the modulus (7).

Choosing the notation in a suitable manner, one can write the modulus

(7) in the reduced form

(8) Mp = kiBi +-h kA    (ki = 0, 1, • • • , p - 1; i -1, • • • , v).

The equations Fp(x) = 0 and f(x) = 0 define the same Galois field, as one sees

from the representation (8) of the roots. Let G he the Galois group of f(x) ;

any permutation 5 in G will then produce a substitution on the linear expres-

sions (8), and it is easily seen that two different permutations will produce

different substitutions. This shows

Theorem 5. When v is the exponent of the polynomial f(x), then there exists

a true representation of the Galois group G off(x) by means of matrices of rank v

in the finite field (mod /»).

We have in the introduction mentioned the analogy between /»-poly-

nomials and differential polynomials. To those who are familiar with the

Picard-Vessiot theory of linear homogeneous differential equations, it will be

clear that the group of linear substitutions on the expressions (8) correspond-
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ing to the Galois group G is the analogue of the group of rationality of a

differential equation. One may of course obtain a different representation of

G by using a different basis for the roots of FP(x), but it is easily seen that all

such representations are similar.

Almost all theorems on the group of rationality have analogues in the

theory of ¿-polynomials. I shall here only mention two results, analogous to

theorems by Loewy on differential equations:

Theorem 6. The necessary and sufficient condition that a p-polynomial be

reducible in K is that the representation of G be reducible.

When the representation of G is reducible, one can choose a basis for the

modulus of the roots, such that there exists a submodulus G' which is trans-

formed into itself by all substitutions of G. The submodulus G' defines a factor

Gp(x) of Fp(x) and since Gp(x) is left unchanged by all substitutions in G

it has coefficients in K. When conversely Fp(x) has a symbolic factor QP(x)

it is clear that a reducible representation of G exists. In a similar way we show

Theorem 7. When FP(x) is decomposable,

Fp(x) = [AP(x), Bp(x)],

then the representation of G is also decomposable and equal to the sum of two

representations corresponding to Ap(x) and Bpix), and conversely.

Yale University,
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