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RECURRING SERIES*

BY

MORGAN WARD

I. Introduction. The difference equation of order one

1. Let m he an integer greater than one, and let

(u) : mo, mi, «j, •••,«»,•• •

be an arithmetical seriesf of order k; that is, a particular solution of the linear

difference equation

(1.1) ßn+i =  ¿A+fc-l + C2Qn+fc-2 +  • • • + Ckün

where Ci, Ct, ■ • • , ck and the k initial values u0, «i, • • • , uk-i of (m) are given

integers. Then if an is the least positive residue of m„ modulo m, we may as-

sociate with (m) a second sequence

(a): a0, ai, at, • • • , a», ■ • •

which we call the reduced sequence corresponding to (u) modulo m.

It is easily seen that after a finite number of terms, the sequence (a)

repeats itself periodically, and that any one of its periods is a multiple of a

certain least period which is called the characteristic number of (u) (or (a))

modulo m%. The number of non-repeating terms in (a) is called the numeric

of (u) modulo m; if it is zero, (u) is said to be purely periodic^ modulo m. If

all the terms of (u) after a certain point are divisible by m, so that the re-

peating part of (a) consists of the single residue zero, (u) is said to be a null

sequence modulo m.

Three important problems immediately suggest themselves: first, to

determine the characteristic number and numeric of the sequence (m) as

* Presented to the Society, August 31, 1932; received by the editors September 6, 1932.

f The literature prior to 1917 is summarized in Dickson's History, vol. I, chapter XVII. Among

the more recent papers, D. H. Lehmer, Annals of Mathematics, (2), vol. 31 (1930), pp. 419-449,

treats the case k — 2, and the author, these Transactions, vol. 33 (1931), pp. 153-165, the case £ = 3.

For general k, see R. D. Carmichael, Quarterly Journal of Mathematics, vol. 48 (1920), pp. 343-372.

Certain of Carmichael's results were extended by the use of ideals by H. T. Engstrom, these Trans-

actions, vol. 33 (1931), pp. 210-218.1 shall refer to these papers by the authors' name and page num-

ber. For the bearing of the problem upon elementary number theory, see R. T>. Carmichael, American

Mathematical Monthly, vol. 36 (1929), pp. 132-143
X This term is due to Carmichael, p. 345.

§ This is always the case if m is prime to ck in (1.1).
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LINEAR RECURRING SERIES 601

functions of the 2A + 1 integers Ci, ■ ■ ■ , ck, m0, • • • , m*_i and m*; secondly,

given (1.1) and m, to determine least upper bounds for the characteristic

number and numeric of any solution of (1.1) ; and thirdly, given m and k, to

determine the least upper bounds for the characteristic number and numeric

of any arithmetical series of order k. The bearing of these problems upon the

arithmetical properties of such series is evident ; nevertheless none of them

has as yet been completely solved, f

2. The course of the investigation may best be explained by considering

the special case of a difference equation of order one,

(2.1) 0.+1 = cfin.

Any solution (u) of (2.1) is of the form

Mn =  MoC

where m0 is an integer. It is possible to express this solution as the sum of two

other solutions vn = VoCn, and wn = w0cn where for the modulus m, (v) is a null

sequence with the same numeric as (u), and (w) is a purely periodic sequence

with the same characteristic number. The numbers v0 and w0 may be deter-

mined as soon as u0 is known.

It readily follows that the numeric and characteristic number of the se-

quence (m) modulo m are respectively the least values of n such that

(2.2) vocn = 0 (modw),    w0(cn - 1) = 0 (modm).

In the special case when m is a prime ¿ and w0 is not divisible by ¿, the

least value of n for which the second of these congruences is satisfied is simply

the exponent to which c belongs modulo ¿. A complete solution of our funda-

mental problems is thus at present out of the question even for a difference

equation of order one. Nevertheless it is of considerable interest to reduce

the general problem to its basic constituents. A short analysis discloses that

in order to determine the minimal values of n in (2.2) it is sufficient to know

(i) the decomposition of m, v0, w0 and c into their prime factors ;

(ii) the least value of n such that

C = 1 (mod ¿)

for every prime factor polm;

(iii) if X is the least value of n satisfying (ii), the highest power of ¿ dividing

cx-l.

* Compare Carmichael, pp. 345, 346.

t Compare Engstrom, p. 218.
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Furthermore, (i) alone suffices for the determination of the numeric of

(m), and (i) and (ii) alone for the determination of the characteristic number

of (m) for all square-free integers m. (ii) is the unsolved problem of determin-

ing the exponent to which a given integer belongs for a given prime modulus,

while (iii) is equivalent to the (unsolved) problem of the quotients of Fermât :

to find the highest power of /» dividing cp_1 — 1.

Let us pass now to the general case of a difference equation of order k.

Let
F(x) = xk — Cixk~l — ■ ■ ■ — Ck

denote the polynomial associated with the difference equation (1.1), and (m)

as before any solution of (1.1). Then we can associate with (1.1) and m two

congruences analogous to (2.2) :

V(x)xn as 0     (moddm,F(x)), W(x)(xn - 1) = 0     (moddm,F(x)),

where V(x) and W(x) are two polynomials whose coefficients may be deter-

mined as soon as the k initial values of (u) are known. The numeric and

characteristic number of (m) modulo m are respectively the least values of ra

such that the first and second of these congruences are satisfied.

The central result of this investigation is that these minimal values of n

may be determined in general provided that we know the following:

[ i ] (a) the decomposition of m into its prime factors ;

(b) the Schönemann decompositions* of F(x), V(x) and W(x) modulo

pN, where /» is a prime factor of m;

[ii ] for every prime factor p oi m and every irreducible polynomial factor

<p(x) of F(x) to the modulus /», the least value of ra such that

xn = 1 (modd /», <t>(x));

[iii ] if X is the least value of ra satisfying [ii ], the polynomial L(x) defined by

xx - 1 = pL(x) (modd p2, <t>2(x)).

We have then a complete analogy with the case of a difference equation

of order one. Corresponding to (ii), [ii] is the unsolved problem of deter-

mining the period of a mark in a Galois field, while [iii ] is a kind of general-

ization of the problem of the quotients of Fermât, f

The methods employed are elementary in the sense that no use is made

either of the theory of ideals or the "fundamental theorem of algebra." In-

stead free use is made of polynomial congruences to single and double moduli

in the spirit of Kronecker's theory of algebraic fields. The difficulties in the

algebraic treatment due to discriminantal divisors are thereby evaded.J

* See Fricke's Algebra, vol. 2, Braunschweig, 1928, chapter 2, and §7 of the present paper,

t Compare Ward, p. 161.

J Compare Engstrom, p. 211.
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3. We shall adopt the following terminology in this paper. The term poly-

nomial is restricted to mean a polynomial with integral coefficients; if the

leading coefficient of the polynomial is unity, it will be said to be primary.

We designate polynomials by A(x), B(x), • • • , U(x), V(x), • ■ ■ , 6(x),

<f>(x), ■ ■ • . A polynomial is said to be divisible by an integer m when and

only when all of its coefficients are divisible by m. The notations Res {A(x),

B(x)} and (a, b, ■ ■ ■ ) will be used for the resultant of two polynomials A(x)

and B (x) and the greatest common divisor of two or more integers a, b, • ■ ■ .

If (a) is the reduced sequence corresponding to the solution (u) of (1.1)

modulo m, and if p is a period of (a), we shall say that (u) admits the period

p (modd m, F(x)) where it will be recalled that F(x) =xk— • • • — ck is the

polynomial associated with the difference equation (1.1). In like manner, we

shall refer to the characteristic number of (m) as its characteristic number

(modd m, F(x)) whenever it is necessary to bring m and F(x) in evidence. The

notation
(u) = (v), (u) = (a) (mod m), 0 ^ a < m,

is self-explanatory.

The following convenient definition was introduced by H. T. Engstrom*:

A number ir is said to be a general period of the difference equation (1.1) for

the modulus m if every sequence of rational integers (m) satisfying (1.1) has

the period ir. Let t be the least such general period for the modulus m. Then

it is easily seen that every other general period is a multiple of t, and that the

characteristic number of any particular sequence (u) is a divisor of t. We

shall call t the principal period of the difference equation (1.1) (modd m,

F(x)). It possesses the following important property:

Theorem 3.1. There exist solutions of (1.1) whose characteristic number

modulo m is the principal period of (1.1).

Let (m) and (w) be any two solutions of (1.1). Then if we can determine

integers bi, b2, ■ ■ ■ ,bk such that

m„ = biWn + b2Wn+i + • • • + bkwn+k-i     (mod m), n = 0,1, • ■ •,

the characteristic number of (w) will be a period of (u). Owing to the linearity

of (1.1) these congruences will hold for every n provided that they hold for

n=0, 1, 2, • • • , k — 1. But a sufficient condition that the k congruences

biwo    + • ■ ■ + bkwk-i m mo,

bxwk-i + • ■ ■ + bkw2k-i = uk-i (mod m)

* Engstrom, p. 210.
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have integral solutions bi, • • ■ , bk is that their determinant be prime to m.

For that particular sequence (w) with the initial values w0=Wi= ■ • • =wk-t

= 0, wk-i = l, this determinant has the value ( — 1)*.

Hence the characteristic number of (w) is a general period of (1.1). But

the characteristic number of (w) must divide the principal period. Hence it is

equal to it.

Thus the principal period is the least upper bound of the characteristic

numbers of all solutions of (1.1), and the determination of the characteristic

number of (w) gives the solution of the second fundamental problem men-

tioned in the introduction.

Corollary. If (u) is any solution of (1.1) and if A(m) denotes the deter-

minant

Mo, Mi, • • •  , Uk-1

Ml, M2,  • ■  •  , Mi
A(m) =      •

Uk-1,     Uk, • ■  •  , U2k-1

then if A(m) is prime to m, the characteristic number of (u) is the principal

period of (1.1).

As an application of this corollary, consider the solution (s) of (1.1) with

the initial values So = k, Si = Ci, s2 = c12+2c2 and so on, so that if the discrimi-

nant of F(x) does not vanish, sn is the familiar sum of the rath powers of the

roots of F(x) =0. It is well known that A(s) equals the discriminant of F(x).

Hence the characteristic number of (s) is the principal period of (1.1) provided

that m is prime to the discriminant of F(x).

II.   THE RELATIONSHIP WITH THE RING ASSOCIATED

WITH THE DOUBLE MODULUS

4. We begin by considering the solutions of (1.1) from a group-theoretic

stand-point. If we regard any two solutions (m) and (v) of (1.1) as one-rowed

matrices we may define their "sum" to be the sequence (u+v) :

(u) + (v) = (u + v).

The set of all solutions of (1.1) form an infinite Abelian group with respect

to the operation of vector addition just defined, the identity element of the

group being the sequence

(0): 0, 0, • • • , 0, • • • .
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Denote this group by 11 and the corresponding finite group of the reduced

sequences (a) by 21. The relationship between these two groups may be con-

veniently symbolized by writing

11 = 21 (mod m).

Now the method of attack upon the fundamental problems mentioned in

the introduction is to set up an isomorphism between the group 21 and the ring

of residue classes associated with the double modulus m and F(x). The problems

considered are thus transformed into problems belonging to the theory of

congruences to a double modulus which admit of perfectly definite answers.

To set up this isomorphism, it is necessary to define the "product" of two

sequences (u) and (v). How this may be done will be explained in §6 ; for the

present, we will confine ourselves to developing the idea of addition of se-

quences.

Theorem 4.1. Every sequence (u) may be uniquely represented modulo m

as the sum of a null sequence and a purely periodic sequence with the same nu-

meric and characteristic number.

Let X and p be respectively the numeric and characteristic number of (u)

modulo m, and suppose that X= — r (mod p), where 0^r<p, so that X+r
= qp.

SetVn=U\+r+n,Wn=Un-Vn(n=0,  1,   •   •   ■).

Then (v) is a purely periodic sequence with the characteristic number p

modulo m, and
(«) = (v) + (w).

(w) is a null sequence modulo m with the numeric X. For if n ^0,

Wn+\  =  Un+\ — Vn+\  =  Un+\ — Ms)1+n+x = 0,

wx_i = mx_i — v\-i = MX_i — ms„+X-i p= 0 (mod m).

Such a representation of (u) is unique modulo m ; for if there were a second

one

(«) = (/) + (w')

we would have (w — w') = (v'—v), so that (w—w') would be a purely periodic

null sequence. Hence (w—w') = (0) (mod m), (w) = (w'), (v) = (v') (mod m).

It is evident that the set of all null sequences of 21 and the set of all purely

periodic sequences of 2t are both sub-groups of 21. If we denote these sub-

groups by 9Î and 'iß, we have from Theorem 4.1

Theorem 4.2. The group 21 is the direct sum of 9Î and '$, where 3Í is the

group of all null sequences of 21, and ty is the group of all purely periodic se-

quences of 21.
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5. If we form from the first ra terms of any solution (u) of (1.1) a poly-

nomial of degree ra— 1 in the indeterminate x

Un(x)  = Mo*"-1 + UiXn~2 +  •  ■  • + Mn_i,

it is easily verified that we have identically in x

F(x)Un(x)  =  Xn{uoXk~1 + (UX — CiUo)xk~2 +  •  • • + (Mjb_i — CiM*_2

-   •   •   •   -  C*_lMo)}    -    {UnX^1 +  (Un+1  -  ClUn)xk~2 +   •   •  ■

+  (Un+k-1 — CiUn+k-2 —   ■  •  ■  — Ck-iUn) } .

Denote the two polynomials in brackets by U(x) and Uin)(x) respectively.

Then on considering the identity modulo m, we obtain the congruence

(5.1) xnU(x) -U^(x) = 0 (modd m, F(x)).

Assume first that (m) is purely periodic modulo m and admits the period

ra. Then U<-n)(x) = U(x) (mod m), so that (5.1) becomes

(x" - 1) U(x) =. 0 (modd m, F(x)).

Conversely if for some ra this latter congruence holds, (m) is purely peri-

odic modulo m and admits the period ra.

Secondly, assume that (m) is a null sequence modulo m of numeric ^ ra.

Then <7(n)G*0 =0 (mod m) and (5.1) becomes

xn U(x) = 0 (modd m,F(x)).

Conversely if for some ra this latter congruence holds, (m) is a null se-

quence of numeric ?£ra. We have thus established the following two basic

theorems :

Fundamental theorem on purely periodic sequences. If (u) is any

solution of the difference equation (1.1), then a necessary and sufficient condition

that (u) should be purely periodic and admit the period ra (modd m, F(x)) is that

(5.2) (xn - l)U(x) = 0 (moddm,F(x)),

where

(5.3) U(x) = M0x*-1 + (M! - CiUo)xk~2 + • • • + (m*_i - CiM*_2 - • • • - Ck-i)

is a polynomial of degree k — 1 in x whose coefficients are determined entirely by

the k initial values of (u) and the coefficients of (1.1), while F(x) is the poly-

nomial associated with (1.1).

We shall call the polynomial U(x) which completely determines the k

initial values of (u) and hence (m) itself, the generator of (m) .



1933] LINEAR RECURRING SERIES 607

Fundamental theorem on null sequences. If U(x) is the generator of

the sequence (u), then a necessary and sufficient condition that (u) should be a

null sequence with numeric less than or equal to n is that

(5.4) xnU(x) = 0 (modd m, F(x)).

We have the following important corollaries to these theorems.

Corollary 1. // (m) is a purely periodic sequence modulo m, its characteris-

tic number is the least value of n for which the congruence (5.2) is satisfied.

Corollary 2. // (u) is a null sequence modulo m, its numeric is the least

value of n for which the congruence (5.4) is satisfied.

The generator of the sequence (w) with the initial values 0, 0, • • • , 0, 1

is unity. Hence we have from Theorem 3.1

Corollary 3. The principal period of (1.1) modulo m is the least value of n

such that
xn = 1 (modd m, F(x)).

6. We are now ready to establish the isomorphism between the ring of

residue classes associated with the double modulus m, F(x) and the group

of reduced sequences defined in §4. The ring may be represented by the set of

mk polynomials

L(x) = lox"-1 + hxk-2 + ■ ■ ■ + /4_i (0 = h < m).

On identifying U(x) of (5.3) modulo m with L(x) we obtain the con-

gruences

(6. 1)       Mr — CiMr_i — C2Mr_2 —   ■  •  ■  — CrUo = lr       (mod w), f = 0, ■  • • , k —  1 .

These congruences have a unique solution

Ui = at    (mod m), 0 *£ at < m; i ■« 0, • • ■ , A — 1.

We associate with L(x) the reduced sequence (a) whose initial values are

a0, • • • , fljfc-i, and write

(a)~L(x).

Since the congruences (6.1) are solvable for the /, for any m, given (a),

we can determine a unique L(x). The correspondence is therefore a reciprocal

one.

Suppose that
(b)~M(x).

Then evidently
(a + b)~L(x) + M(x).
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If L(x) -M(x) =N(x) (modd m, F(x)), we define the reduced sequence (c)

associated with N(x) to be the product of the sequences (a) and (¿»). The

exact dependence of the elements of (c) upon those of (a) and (b) need not

detain us here. If we write (a) ■ (b) for the product of the sequences (a) and

(b), we have then

(a)-(b)~L(x)-M(x).

It is easily verified that the set 21 with the two operations of addition and

multiplication just defined satisfies the postulates for a ring* ; hence we have

the following result :

Theorem 6.1. The set 21 of reduced sequences modulo m forms a commutative

ring with respect to the operations of addition and multiplication of sequences

defined above which is simply isomorphic with the ring 9Î of residue classes

associated with the double modulus m, F(x).

u
(a): cío, di, d2, • • •

is any sequence of 21, the corresponding element of the ring 9Î is

L(x) = l0xk-> + hxk-2 + • • • + h-i

where

lr =  aT —  Cidr_ C2dr—2 1.crdo     (mod m), r = 0,

To examine the nature of this correspondence further, we need the follow-

ing lemma.

Lemma. If (u) is a solution of the difference equation (1.1), and if A(u)

denotes the determinant

Mo,       Mi, ••• , Uk-1

Mi,       U2,  ■ ■ ■ ,Uk
A(m) =

Uk-i,  Uk, ■ ■ ■ , M2¡t_i

and U(x) the polynomial

U(x) = Mo**-1 + (mi — Ciua)xk~2 + (m2 — CiUi — c2Ua)xk~3+

+ (ma_i — CiUk-i ■ Ck-iUo),

then ( — 1)*A(m) is equal to the resultant of U(x) and F(x), where F(x) is the

polynomial associated with the difference equation (1.1).

van der Waerden, Algebra, Berlin, 1930, vol. 1, p. 37.
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The nature of the proof is sufficiently indicated by the special case k = 3.

The resultant of U(x) and F(x) may then be expressed as the five-rowed

éliminant

Mo,    Mi — CiMo,    U2 — ClUi — C2Uo,  0, 0

0, Mo, Mi — CiMo, U2 — CiUi — C2Uo,   0

E  =      0,       0,                         Mo, Mi — CiMo, M2 —  CiMi — C2Uo

1, — Ci, — c2, — c¡, 0

0,     1,                — Ci,                      — c2, — c3

Now perform upon E the operations

row 1 — Mo row 4 — Mi row 5,    row 2 — Mo row 5.

The first two elements in the first three rows of E become zero, so that E re-

duces to the third-order determinant

E =

M2,     C2Ui + C3Uo,     C3U\

Mi,     M2 — CiMi, C3M0

Mo,    Mi — C1M0, M2 — C1U1 — C2Uo

From the difference equation,

U3  = CiU2 + C2Ui + C3U0,     M4 = C1M3 -f" C2M2 + C3M1 •

Hence performing upon E successively the operations

col 2 + ci col 1,    col 3 + c2 col 1 + ci col 2,

we obtain

E = -

M2,   M3,   C3M1

Ml,     «2,     C3M0

Mo,     Mi,     M2 — C1M1 C2M0

M2, M3, M4

Mi, M2, M3

Mo,     Mi,     M2

(-D3A(m).

Theorem 6.2. To the units of the ring 9î correspond those sequences of 21

whose characteristic number is the principal period of the difference equation (1.1)

modulo m, while to the identity element 1 of $R there corresponds the sequence (w)

with the initial values 0, 0, • • -, 0, 1.

For the units of 5R are represented by those polynomials L(x) such that

the resultant of L(x) and F(x) is prime to m. But if L(x) = U(x) is the gen-

erator of the sequence (m), we have just seen that A(m) is numerically
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equal to the resultant of L(x) and F(x). By the corollary to Theorem 3.1, the

characteristic number of all sequences (m) with A(m) prime to m is the same,

and equal to the principal period of (1.1) modulo m. The latter part of the

theorem follows from the fact that for the sequence (w) : 0, 0, • • • , 0, 1, • • •

we have W(x) = l.

III. Simplification or the form of the modulus

AND ASSOCIATED POLYNOMIAL

7. If rai = /»i"i ■ ■ • pT is the decomposition of m into its prime factors,

then it is easy to see that the ring associated with the double modulus m,

F(x) is the direct sum of the r rings associated with the double moduli

pini, F(x). We have of course a similar dissection of the ring 21 into a sum of

simpler rings. The following important theorem gives the corresponding re-

duction of the problem of determining the characteristic number and nu-

meric of any sequence modulo m to the case when m is a power of a prime.

Theorem 7.1. If
m = pfi ■ ■ ■ p/h

is the decomposition of m into its prime factors, then the characteristic number of

any sequence modulo m is the least common multiple of its characteristic numbers

modulis pi"i (i = 1, • • • , r) while its numericJs the maximum of its numerics

modulis pi"¡.

It is sufficient to show that if m = a ■ b where a and b are relatively prime,

then the characteristic number of (u) modulo m is the least common mul-

tiple of its characteristic numbers modulo a and modulo b, while its numeric

modulo m is the greatest of its numerics modulo a and modulo b.

Let
(u) = (v) + (w) (mod m)

he the unique decomposition of (m) into a null sequence (v) and a purely

periodic sequence (w). Then since a and b divide m,

(u) = (v) + (w) (mod a), and (m) = (v) + (w) (mod b).

Furthermore (v) is a null sequence modulis a and b and (w) is a purely periodic

sequence modulis a and i>.

In view of Theorem 4.1, it is sufficient to prove the result for the numeric

of (v) and the characteristic number of (w).

Consider first (v), and let V(x) be its generator, vm, va and j»j its numerics

modulis m, a and b respectively, and t the greatest of va and Vi. Then by the

fundamental theorem of §5,
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x>V(x) = 0 (modd m, F(x)),  x"'V(x) m 0 (modd a, F(x)),

x">V(x) = 0 (modd b, F(x)).

Thus x">nV(x) =0 (modd a, F(x) (and (moddb,F(x)) so that vm = r. But since

a and b are relatively prime,

xTV(x) = 0 (modd ab, F(x))

so that T = vn. Hence r=vm.

The proof for the characteristic number of (w) is similar and will be left

to the reader.*

We shall assume hereafter that m = ¿]V, ¿ a prime, N a given integer.

Now suppose that

F(x) =. {4>i(x)} <• • {<j>2(x) }<»•••{ 4>.(x)} '• (mod ¿)

is the unique decomposition of F(x) modulo ¿ into a product of powers of

primary irreducible polynomials <p(x). Then by Schönemann's second

theoremf there exists a decomposition of F(x) modulo ¿^ of the form

(7.1) F(x) =. Fi(x) F2(x) ■ ■ ■ Fe(x) (mod pN)

where

Fi(x) = {cbi(x)} <• (mod p),i= 1,2, ■■■ ,s,

and the polynomials F{(x) are primary. We shall refer to (7.1) as a Schöne-

mann decomposition of F(x) (modulo p").

Corresponding to this decomposition of F(x), we have a decomposition

of the ring associated with the double modulus p11, F(x) into the direct sum of

the s rings associated with the moduli fF, F¿x). If U(x) is any element of this

ring, and
U(x) m £/<•>(*)        (mcdd p», Fi(x)), i = 1, • • • , s,

where U(-t'(x) is of degree less than Fi(x), then U(x) may be uniquely repre-

sented as

U(x) m BM(x)UW(x) + BW(x)UW(x) H-+ BM(x)U^(x) (moddpN,F(x))

where the B(i)(x) are of degree less than F(x) and

B^(x) m 1 (moddpN,Fi(x)),

= 0 (modd pN, Fj(x)),    j t¿ i; 1 ¿ j g s; i = 1, • • • , s.

* See Ward, p. 155, Theorem 3.11.

Í See Fricke, work cited, §11.
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If (m) is the sequence generated by U(x), (m(í)) and (2»(i)) the sequences gener-

ated by C/(i,(x) and B{i)(x), the analogous decomposition of (m) is

(u) = (6(D) ■ (««)) + (o<2>) • (M<2>) +-h (&<•>) • («(•>)    (mod p»).

The corresponding theorem for the characteristic numbers and numeric of

(m) is as follows:

Theorem 7.2. Suppose that (7.1) is a Schönemann decomposition of F(x)

modulo pN, and that U(x) is a polynomial of degree ^k — 1 in x generating a

sequence (u). Furthermore suppose that

U(x) =. U«\x) (modd/»",//,•(*))

where U<-i)(x) is a polynomial of degree less than Fi(x), and the generator of a

sequence (m(<)) which is a solution of the difference equation whose associated

polynomial is Fi(x).

Then the characteristic number of (u) (modd pN, F(x)) is the least common

multiple of the characteristic numbers of (m(<)) (modd p", Fi(x)) and the numeric

of (u) is the maximum of the numerics of the (m(í)).

Suppose that

(«) = (v) + (w) (mod pN) and U(x) = V(x) + W(x)    (modd pN, F(x))

are the decompositions of (u) into a null sequence (v) and a purely periodic

sequence (w), and the corresponding decomposition of the generator U(x) of

(m). Furthermore, suppose that

U(x) = U™(x), V(x) = V^(x), W(x) = W^(x)     (moddpN,Fi(x))

where the polynomials on the right side of the congruences are of lesser de-

gree than Fi(x), and that (u{i)), (»(<>) and (wU)) are the solutions of the dif-

ference equation associated with Ft(x) with the generators (7(i)(#), V-'^x)

and W{i)(x) respectively. Then we may write

(««>) = („<») + (w(0) (mod**),

(7.2)
U^(x) = V^(x) + W^(x) (moddpN,Fi(x)).

I assert that (7.2) gives the decomposition of (m(0) into its purely periodic

and null components ; for if t and X are the numeric and characteristic number

of (m), we have by the theorems of §§4 and 5

xrV(x) = 0,     xxW(x) s W(x) (modd pN,F(x)).

Hence

(7.3) xrV^(x) = 0, x*WW(x) = WW(x) (moddpN,Fi(x))

so that by the theorems of §5, (a(i)) is a null sequence and (wCi)) is a purely
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periodic sequence. By Theorem 4.1, the numeric of (v{i)) and the character-

istic number of (w»(i)) are the numeric and the characteristic number of (m(í)) .

Call this latter number X¡ and let p be the least common multiple of Xi,

Xa, • • • , X„. From the second congruence in (7.3), (w(<)), and hence (m(í)),

admits the period X (moddpN, Fi(x)). Hence X, divides X so thatju divides X.

But clearly

(*" - l)W^(x) = 0 (modd pN,Fi(x))

so that

(*" - l)W(x) m 0 (modd pN, Ft(x)), i = 1, • • • , s.

Since the resultant of any two distinct Fi(x) is prime to ¿, these last congru-

ences imply that

(x" - l)W(x) = 0 (modd p», F(x)).

Hence by the fundamental theorem again, X divides p so that X equals p.

The proof of the result for the numerics is similar and will be omitted here.

8. In the present section, we shall solve completely the problem of deter-

mining the null component and the purely periodic component of any se-

quence (modd pN, F(x)).

Let us assume that the coefficient ck in (1.1) is divisible by ¿. Then in the

Schönemann decomposition (7.1) one of the Fi(x) must be of the form

x'i+pV(x) ; let us suppose that it is Fi(x), so that

Fi(x) = *<> + pV(x).

The exponent /i is simply the number of consecutive coefficients ck,

Ck-\, ck-2, ••• • which are divisible by ¿. Let

F'(x) =F2(x)-F3(x) ■■ -Fs(x),

so that Res {Fi(x), F'(x)} is prime to ¿.

By the fundamental theorem of §5, the sequence (m) is a null sequence

modulo pN when and only when the congruence

xn U(x) a 0 (modd pN, F(x))

is solvable, U(x) denoting as usual the generator of (m). But this congruence

is solvable when and only when the two congruences

xnU(x) = 0     (modd pN, Fi(x)),     xnU(x) = 0      (modd pN, F'(x))

are solvable. The first of these congruences is solvable for any U(x), for we

may take n = Nh. The second is solvable when and only when U(x)=0

(modd pN, F'(x)) for Res {*, F'(x)} is prime to ¿. We have thus established

the following theorem.
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Theorem 8.1. If in the Schönemann decomposition modulo pN of the poly-

nomial F(x) associated with the difference equation (1.1),

(7.1) F(x) m Fi(x) -F2(x) ■ ■ ■ F,(x) (mod /»*),

we have Fi(x) =x'i+pV(x), then a necessary and sufficient condition that a given

solution (u) of (1.1) be a null sequence modulo pN is that its generator U(x)

satisfy the relation

U(x) =■ O (modd pN, Ft(x) ■ ■ ■ F,(x)).

In this case its numeric is the least value of ra such that

(8.1) x" U(x) = O (modd pN, Fi(x)).

We can prove the following result in very much the same manner.

Theorem 8.2. With the hypotheses of Theorem 8.1, a necessary and sufficient

condition that a given solution (u) of (1.1) be purely periodic modulo pN is that

its generator U(x) satisfy the relation

U(x) = 0 (moddp",Fi(x)).

The decomposition of (m) into its purely periodic and null components is

now easily effected. For since Res {Fi(x), F'(x) } is prime to />, we can deter-

mine two polynomials Si(x), S2(x) such Jhat

Si(x)Fi(x) + S2(x)F'(x) m U(x) (modd pN, F(x)).

Suppose that

S2(x)F'(x) = V(x),     Si(x)Fi(x) =. W(x) (modd pN, F(x))

where the degrees of V(x) and W(x) do not exceed k — 1, and let (v) and (w)

be the sequences generated by V(x) and W(x) respectively. Then

U(x) = V(x) + W(x)     (modd pN, F(x)),     (u) = (v) + (w)    (mod /»*),

and (v) is a null sequence and (w) a purely periodic sequence modulo pN'.

IV.  THE DETERMINATION OF THE NUMERIC

9. If (m) is a null sequence modulo pN, we have just seen that its generator

is of the form

U(x) = U'(x) -Ft(x) ■ ■ ■ F,(x) (mod />")

and that its numeric is the least value of ra such that

xnU'(x) =■ 0 (modd pN, Fi(x)).
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Fi(x) it will be recalled is of the form x'i+pV(x). It may happen that V(x)

is also divisible by ¿. To conserve generality, we therefore assume that

Fi(x) = x*i — p"'0(x);       0(x) fá 0 (mod ¿);       0(x) of degree less than h.

By Schönemann's theorems,* U'(x) has a decomposition modulo pN of

the form
U'(x) = pMGi(x)U"(x) (mod pN)

where

M = 0,      Gi(x) = *a' + ¿Afi(í);

Res {Gi(x), U"(x)} prime to p;      £i(x) jé 0 (mod p).

It follows immediately that the numeric of (u) is the least value of n such that

(9.1) *»Gi(*) = 0 (moddpN-M,Fi(x)).

This minimal value may always be calculated in view of the following two

theorems :

Theorem 9.1. Suppose that a set of polynomials U(x), G(x), £(*) are de-

fined recursively by

Ur-i(x) = Gr(x)Ur-i(x) (mod ¿^i), r = 1, 2, • • • ,

x''~arGr(x) m p"'Ur(x) (modFi(x)),

Gr(x)   =   Xa'  + pHr(x),

Lr  =   N  -   M   -   (pi + p2 +   ■   ■   •  + p/),

where Ur(x) is not divisible by p, Ur-i(x) is not divisible by x modulo p, and

Çr(x) is a polynomial of degree less than aT not divisible by p, while Ua(x)

= Gi(x)U"(x), Uo(x) = U"(x). Then the numbers p are all positive, and after

a finite number of steps, say I, we will either have

N á M + pi + p2 + • ■ • + pi or Res { Ui(x), Fi(x)} prime to p.

Let I now denote the first time one of these alternatives occurs. Then in the

first case, the numeric of (u) is Ih — (0:1+0:2+ • ■ ■ +0:1) and in the second case,

the numeric is lti — (ai+a2+ ■ ■ ■ +a,)+vi, where v¡ is the least value of n such

that

(9.2) xn = 0 (moddpL',Fi(x)).

* Fricke, work cited, p. 59, p. 65.
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Theorem 9.2. Suppose that a set of polynomials d(x), d(x) are defined re-

cursively by

Br(x) =- (x'r + pyrd,r(x))dr(x) (mod />**),

x'>-rrdr(x) =. p''6T+i(x) (modFi(x)), r = 1, 2, • • • ,

where 6T(x) is not divisible by p, and 8r(x) is not divisible by x modulo /», <pT(x)

is a polynomial of degree less than r, not divisible by p, while rr is the number of

consecutive coefficients of the zeroth, first, second, ■ • ■ powers of x in 6r(x)

which are divisible by p. Then after a finite number of steps, say h, we will either

have Z-¡Scri+cr2+ • • • +<rh or rh=0 and Res {0h(x), Fi(x)} prime to p.

Let h denote the first time one of these alternatives occurs. Then in the first case,

the least value of ra for which the congruence (9.2) is satisfied is rh = hti — (ti+t2

+ • • • +Th). In the second case it is qhTh, where qh is the integer next greater

than or equal to Li divided by ai+at+ • ■ ■ +ah.

The proofs of these theorems are by induction, and are perfectly straight-

forward though rather lengthy. They will be omitted here, as the important

result is that the numeric may be calculated if we merely know the Schönemann

decompositions of U(x) and F(x) quite independently of the calculation of the

characteristic number.

The following results are immediate corollaries of Theorems 9.1 and 9.2.

Corollary 1. If

F(x) =- Fi(x) ■ ■ ■ F,(x) (mod pN),

Fi(x) = x*> - p^di(x) (6i(x) ^ 0 mod />)

is the Schönemann decomposition of the polynomial F(x) mod pN associated

with the difference equation (1.1), the least upper bound of the numerics of all

solutions of (1.1) modulo pN is qti, where q is the integer next greater than or

equal to N/ffi.

Corollary 2* The least upper bound for the numerics of all difference equa-

tions (1.1) modulo pN whose h last coefficients are divisible by p is Nh.

Corollary 3. The least upper bound for the numeric of all difference equa-

tions (1.1) of order k modulo pN is Nk.

V. The determination of the characteristic number

10. In this division of the paper we shall reduce the problem of determin-

ing the characteristic number of any solution of (1.1) to its constituents in

the sense explained in the introduction. In view of the results of §7, we may

* Due to Engstrom, p. 218, Theorem 9.



1933] LINEAR RECURRING SERIES 617

assume that m = pN where ¿ is a prime, and that the associated polynomial

F(x) is of the form

(10.1) F(x) = {<t>(x)\° - p0(x)

where it will be recalled that <p(x) is primary and irreducible modulo ¿, while

6(x) is of lesser degree than F(x).

The results of §8 allow us to assume that (m) is purely periodic. Hence by

the fundamental theorem of §5, the characteristic number of (m) is the least

value of n such that

(10.2) (xn - l)U(x) = 0 (moddpN,F(x)),

where U(x) is the generator of (m).

The following easily established theorem* justifies us in assuming that

U(x) is not divisible by ¿.

Theorem 10.1. If (m) is any solution of the difference equation (1.1), the

form of F(x) being unrestricted, and if the integer d is a common factor of the k

initial values of (u), then the characteristic number of (u) to any modulus m is the

characteristic number of ¿_1(m) modulo (m/l), where I is the greatest common

divisor of m and d.

Suppose that X is the characteristic number of (m) (modd p1*, F(x)),

so that

(10.21) (xx - l)U(x) as 0 (modd pN, F(x))

and let pK be the first elementary divisor of the matrix of the éliminant of

U(x) and F(x) corresponding to the prime ¿. Then I have shown elsewheref

that (10.21) implies that

*x - 1 = 0 (modd px-*, F(x)).

Thus X is a multiple of the principal period of (1.1) modulo pN~K.

Theorem 10.2. If the first elementary divisor of the matrix of the éliminant

of U(x) and F(x) corresponding to the prime p is pK, then the characteristic

number of (u) (modd¿Ar, F(x)), N>K, is a multiple of the principal period of

(1.1) modulo f~K.

This theorem is of some practical importance, as it gives us a lower

limit to the characteristic number of any sequence. The extension to com-

posite m and F(x) unrestricted is obvious in view of the results of §7.

* Ward, p. 157, Theorem 5.2.

t These Transactions, vol. 35 (1933), p. 258.
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Since U(x) in (10.2) is not congruent to zero modulo /», we may assume

that

U(x) = {<*>(*)}¥(*) (mod/»), a > b ^ 0,

where Res {fa(x), <j>(x)} is prime to /». Then by Schönemann's second the-

orem^ we have

U(x) m U*(x)V(x) (mod/»")

where

(10.3) U*(x) = {<t>(x)}b + pt(x),      |(z) of lower degree than U*(x),

and V(x) = fax), mod /».
It follows that the characteristic number of (u) is the least value of n such

that

(10.4) (*» - l)U*(x) m 0 (moddpi,,F(x)).

To avoid circumlocutions, we shall refer to this number as the character-

istic number of the congruence (10.4).

If N = 1, we may replace (10.4) by

(10.5) x* -1 ■ 0 (mcdd/>, {4>(x)}"-").

Suppose that the polynomial tp(x) is of degree t in x. Then the character-

istic number of
x" - 1 s» 0 (modd p, <t>(x))

is a well known quantity in the Galois field theory$ ; for it is simply the ex-

ponent to which belongs the mark associated with a root of <b(x) =0 in the

Galois field of order /»'. We shall regard this number as known to us§; it is a

divisor of /»' —1 and hence prime to /» and at most equal to />' —1. Let us

denote it by X. Then there exist polynomials <j>(x) of degree t for which the

corresponding X equals /»' — 1; in other words, /»' —1 is not only an upper

bound for X, but it is the least upper bound for X.

We have then

(10.6) x* - 1 = fax)<f>(x) + pr(Xy

where fax) and Ç(x) are polynomials and Ç(x) is of lower degree than <p(x).

Since the discriminant of xx — 1 is prime to />,

(10.7) fax) fé 0 (modd /», <b(x)).

t Fricke, work cited, pp. 65-66.

Î See Dickson, Linear Groups, Teubner, 1901, Part I.

§ Compare the remarks in §2 of the introduction.
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From (10.6),
xr% = 1 + rp(x)4>(x) (modd ¿, 4>2(x)).

Hence the characteristic number of

xn = 1 (modd ¿, 4>2(x))

is ¿X. But since
x* m 1 + {íKx) }p{<*>(*)}" (mod¿),

¿X is also the characteristic number of (10.5) if 2 ¿a — bgp.

Proceeding in this manner, we obtain the following result :

Theorem 10.3. // U(x) is the generator of a purely periodic solution (u) of

the difference equation (1.1) whose associated polynomial is of the form

F(x) = {<f>(x)} " (mod ¿), while U(x) s {d>(x)} hV(x) (mod ¿),

where Res {V(x), <j>(x)} is prime to p and <p(x) is irreducible modulo p, then

the characteristic number of (u) modulo p is ¿«X where the integer q is such that

¿"-1 < a - b g. p*

and X is the least value of n such that

xn m 1 (modd ¿, 4>(x)).

Theorem 10.4. Under the hypothesis of Theorem 10.3, the principal period

of (1.1) modulo p is ¿rX where the integer r is determined by the condition

p*-1 < a g pT

and the least upper bound for the principal period is p'(Pt — l), where t is the

degree of the polynomial <p(x) in x.

We leave the formulation of the corresponding theorems when F(x) is

unrestricted in form and m any square-free integer to the reader.

11. We are now in a position to attack (10.4) in the general case when N

is greater than one. We have, with the notation of Theorem 10.4,

(11.1) *"rx - 1 = p'V(x) (modF(x))

where cr is a positive integer, and V(x) is of lesser degree than F(x). If V(x)

=0, we shall think of a as arbitrarily large. If V(x) ^0, the value of cr is fixed

by the condition V(x)fe0 (mod ¿). Then

(11.2) U*(x)V(x) = p>W(x) (modFOe))

where p is a positive integer or zero, and W(x) is of lesser degree than F(x).

If W(x) =0, we assign an arbitrarily large value to p. Otherwise, the value of

p is fixed by the condition W(x) p=0 (mod ¿).
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p may be equally well defined as the largest whole number M such that

U(x) V(x) = 0 (modd pM,F(x)).

Unless V(x) divides F(x) (when U(x) may be taken so that W(x) =0), p has

a definite upper boundf depending only on V(x), F(x) and p.

From (11.1), we deduce that

pto+«pt _i)

x\p*> = (l + p°V(x))p' =- 1 + p'+'V(x) +--V2(x)-\-(modF(x)).

Hence from (11.2),

U*(x)(x*pr+' -1) = p'+"+'W(x) + p2'+"+tW(x)      ~    V(x) -|-(modF(x)),

U*(x)(x*pT+' -1) = p"+"+tW(x) (modd p'+,'+t+\F(x)),

save possibly in the case p = 2, a = l, which we shall exclude. From this last

congruence, we deduce the following theorems:

Theorem 11.1. If p is an odd prime, N>1, the characteristic number of the

congruence (10.4) is /»rX if N^p+a and X/»r+JV~',~<' if N^p+<r, where p and a

are determined by the congruences (11.1) and (11.2).

Theorem 11.2. If p is an odd prime, the least upper bound for the charac-

teristic number of the congruence (10.4) for all choices of U* (x) is />rX if N ^p

and X/»,+JV_" if N^p, where p is determined by the congruence (11.2).

The fundamental problem of finding the characteristic number of any

linear recursive sequence to any modulus m has thus finally reduced to deter-

mining the exponents <r and p in (11.1) and (11.2). We shall first seek to

determine p in the case when /» is odd and the exponent a in (10.1) is greater

than unity.

If m is an indeterminate, and if we let

M2 M""1

ZZ(m) = m-1-,
2 /»- 1

M / 1\M2        / 1 1\M3
K(u) =-+   1+ —)-1 + — + — )—+ ...

2      \        2/3      \        2       3/4

/         1                      1    \ up~l
+Í1+ — +••• +- --»

V 2 p-2/p-l

L(u)  =   1  — M + M2—   ••• + Mp_1,

HM(x) = H((<W)P'), K"(x) = K((<t>fapT), £<"(*) = L((<t>fap'),

t These Transactions, vol. 35 (1933), p. 258.
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and, for uniformity of notation,

*<-»(*) = f(*),

then it follows by induction on r from (10.6) that for any positive integral

value of r,

xpT* = 1 + ¿9i(s) + ¿2@2(x) + {p(x))pT{<p(x))pT        (mod ¿3),

where

(11.3) 6i(*) = H('-»(x), ®2(x) = K^l\x) + #<•-«(*)£<•'-»(*).

Now by (10.1),

<¡>p' = d>a-d>p'-a = 4>p'-*(F + p0) m pd<bp'-" (modiX*)).

Therefore

(11.4) xpr* =. 1 + ¿(tty"V-° + ®i) + ¿2©2      (modd p3,F(x)).

On comparing (11.4) and (11.1), we have

(11.41) p°-W(x) =. &ppV"-a + ©i + ¿02 (modd¿2,F(*)).

Therefore a necessary and sufficient condition that a be greater than one is

that d\ppr<ppr-"+@i=0 (modd ¿, F(x)). This congruence is equivalent to

(11.5) 0pp'<ppr-° + vO'-V-1 - if2*'"1^"1 + • • •     =0   (modd¿, {<t>(x)}°),

which may be looked upon as a condition upon 6(x).

If pr — a>pr~1 or B(x) =0 (mod ¿), the congruence has no solutions. For

if it had a solution, we would have

Ppr~'= 0 (modd p, 4>(x))

contradicting (10.7). If pr-agpr~l and 0(x)^O (mod ¿), (11.5) implies that

6(x) = 0 (modd¿, {<b(x)}c), where c = ¿r~'- p' + a.

If 6(x) =0 (modd ¿, {(p(x) }c+1), we again obtain a contradiction of (10.7).

Hence

0(x) = k(x){o)(x)}c (mod¿),        k(x) fá 0 (modd p, ci>(*)).

On substituting in (11.5), we find that

(11.6) KPp'-pr~'+l = 0 (modd ¿, {#(*)} O «

This criterion can be greatly simplified. For if y = xp'~1,

W(x)} p-p" - {#(y)} p~\ {<*»(*)} rT' = ^(y) (mod ¿).
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Hence (11.6) is equivalent to

k(x) {fay)} *-1 + 1 =- 0 (modd /», <p(y)).

Since fay)féO (modd /», 4>(y)), there exists a polynomial t?(y) of degree

less than <£(y) such that

Hy) {My)}p-1 + i = o (modd /», <t>(y)).

Hence k(x) =t?(y) (modd /», <p(y)), so that we may take

k(x) = ê(xp-\

where

(11.7) d(x){fax)}p~1+ 1 =• 0 (modd/», 0(z)).

If we let

6i(x) = 0(*O {*(*)}«, Fii«) = {*(*)}' - #i(«),

the results we have obtained may be summarized in the following theorem:

Theorem 11.3. If p is an odd prime, a>l, the exponent a in (11.1) is gen-

erally unity. It is always unity if pT — a>pr-1, or if 0(x)=0 (mod /») or if

PT — a>p'-1, 6(x)^0 (modd /», <p(x)). It is greater than unity only when

F(x)=Fi(x) (mod p2) where the polynomial Fi(x) has been defined above.

The further study of the exceptional case when F(x)=Fi(x) (mod p2)

would take us top far afield and will not be embarked upon here. The the-

orems of §13 on the determination of p when a = 1 will give the reader an idea

of the considerations which apply. We do however gain additional insight

into the close relationship between recurring series and higher congruences

if we seek to determine the polynomial fa(x) in (11.7) which must be known

(modd /», <p(x)) for Fi(x) to be well defined. It will be recalled that fax) was

originally defined as the quotient obtained on dividing xx — l by <b(x). Hence

if
xx — 1 = pL(x) (modd p2, <j>2(x)), L(x) of lesser degree than <¡>2(x),

\p(x) satisfies the congruence

p(x) = L(x) (modd /», <t>(x)).

It is sufficient then for our purpose to determine L(x).

Now if we set

<b2(x) = x1 - dix'-1 — •■• — ¿i,

i

xR =  2^w".kx'~'! (mod02(x)),
¡t-i

w„,l+1 = 0 (ra = 0, 1, 2, • •■ ),
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then it is easily verified that the constants wn.k satisfy the following relations:

wn+i,k = Wn.k+i + dkwn.i    (k = 1, • • • , /; n = 0, 1, 2, • • • ),

Wn.k  =  S„,i_Jfc (» < I)

where on,i-k is the Kronecker 5. It follows without much difficulty that

Wo.k, Wi,k, w2,k, • • • is a particular solution of the difference equation

(11.8) Í2B+Í = ¿iÍ2„-m_i -j-+ d,Qn.

For convenience denote the sequence a»o,z-i, wi,j_i, Wi.i-i, • • • whose initial

values are 0, 0, •• -, 0, 1 simply by (w). Then we may write for a fixed A

j

W„,t  =    YjCkjVDn+l-j
i-1

where the c*, are integers determined by the / equations

;

EckjWn+l-j = ¡n.l-k (n =  0,  1, •••,/-  1).
J-l

Thus if

W,{x) -  ¿ctf*'-*,
t-i

W^(*) is a polynomial of degree / — 1 in # with integral coefficients, which we

may regard as known to us. Then

i i    i
xn = 23 w„ ,**'-* = 23 23c*j'w»+*-j*'~*

£-1 £-1 j-l

¡

=     Y,Wn+i-jWj(x) .
J-l

Hence

pL(x) m wx+l_iWi(x) + wx+i-2W2(x) -\-+ WxWi(x) + 1      (mod <*>2(*))

so that L(x) is determined if we know the residues modulo ¿2 of the I terms

wx+¡_i, züx+i-2, • • • , w\ of the solution 0, 0, • • • , 0, 1, dx, ■ ■ ■ of (11.8).

There seems to be no way of obtaining these residues short of calculating the

whole sequence (w) modulo ¿2 step by step out to X+Z terms. Such a calcula-

tion will at the same time determine X after at most ¿' — 1 terms have been

found.

12. We are now in a position to study the value of p in (11.2) in the general

case when <r = l. We have from (10.3) and (11.41)
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(12.1) U*(x)V(x) m epp'<b"'-'+b + <¡>h@i + p(ífa'4>vr-a + €©i + ¿602)

(modd p%, F(x)).

Hence p is greater than zero when and only when

efar<t>pT-°+b + <¡>b&i m 0 (modd />, F(x)) ;

that is, when and only when

(12.2) 6ip'—+b + <t>pT~x+bppr-l(\ - èi»p"Vpr_I + • • • ) = 0 (modd/», {<*>(*) }•)•

If pr — a+b^a, PT~l+b^a, (12.2) is satisfied for any choice of d(x). In

the contrary case, it is either insolvable or imposes a condition upon 6(x).

We find in fact that there are no solutions in any one of the five following

cases:

(i) pr - d + b ^ d, pr~l + b < a;

(ii) pr - a + b < a, p'-1 + b < a, pr - a > pr~x;

(iii) 6(x) = 0 (mod /»), pr~l + b < a;

(iv) pT - a + b < a, pr~l + b < a, p'-1 ^ pT - a,

e(x) ¿é k(x) {4>(x)} pr-1~p+" (mod /»),

where k(x) {fax) J^'-^ + l =0 (modd /», {<1>(x) }*-*'-*);

(v) pr - a + b < a, pr~l + 6 è d, 6(x) fé 0      (modd />, {<j>(x)} 2°-V-&).

Thus generally speaking, if o* = l, p=0 unless b^a—p'-1, b^2a — pr.

Passing to this case, we have from (10.1), (11.21) and (12.1)

U*(x)V(x) = /»{0VV + t¥pr~V(l - hfa'"^'1 + •••) + tfar<t>p-a

+ ^Va -hr"l4>^ + ■■■)

+ 4>b+pr-ifa'-\- i + fr*"fa"-)

+ ¿h-p"Vm(i - ifa'"4>pr" +•••)} (modd p2, F(x)),

where the last group of terms within the bracket must be replaced by

<t>bÇ(x)(l — fai>+ ■ ■ ■ ) if r = l, and the exponents d and e in the first two

groups of terms are èO and have the values pr — 2a+b, pr~x+b — a.

Hence p = 1 unless the expression in brackets above is congruent to zero

(modd /», F(x)) or

e2faT4>d + epp'~ V + #p V~° + &p"'<t>p'~' + <t>b+pr~lpp"1 + <2>6+*'~V3,r_i

(12 3)
+ c66+2Pr"'£ + ¿^"""'.F + 4>b+2p'~iG + e<¡>'+p"1 H = 0    (modd p, <t>a),
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where E, F, G, H denote polynomials in * which are not congruent to zero

(modd ¿, <b(x)) with integral coefficients modulo ¿. The terms c/>*+2J,r_2£

+<pi+p'~2}f/pr-2 must be replaced by <phÇ+(pb+1tE if r -1.

It is not difficult to show that the lowest exponent of <j> occurring in (12.3)

is either d or e so that (12.3) imposes a condition upon 6(x) of the type ap-

pearing under (12.2),

0(x) = {4>(x)}«k(x) (mod¿).

The exponent g here depends upon the relative magnitudes of a, b, ¿r,

¿r_\¿r_2 but may be shown to be positive. We may therefore state the follow-

ing theorem:

Theorem 12.1. // ¿ is an odd prime, F(x) = {(¡>(x)}a+pd(x), a>l,

6(x)f£0 (modd p,(f>(x)), then pin (11.2) is unity if pr+b = 2a,pT~x+b — a and

zero otherwise. If 6(x)=0 (mod ¿), p is zero if pr~1+b<a, and if pr~1+b = a

it is unity unless both pT — a and ¿r_1 are =b+pr~2 and 6(x) satisfies a special

condition. Ifd(x) =0 (modd¿, <p(x))^0 (mod¿), the same results usually apply

unless F(x) is of a special form similar to that of Fi(x) in Theorem 11.4.

13. We shall conclude by discussing the case when the exponent a in

(10.1) is unity so that

(13.1) F(x) = 4>(x) - p0(x).

A necessary condition for this to hold is that ¿ should not divide the discrimi-

nant of F(x). Hence if this discriminant is not zero, the results of this section

will apply to the powers of all primes save a finite number.

If the sequence (m) is not divisible by ¿, Res { U(x), F(x) } is necessarily

prime to ¿, so that the characteristic number of (m) modulo pN is the prin-

cipal period of (1.1), and hence the characteristic number of the congruence

xn = 1 (modd pN, F(x)).

With the notation of §10, let X be the characteristic number of the con-

gruence

x" = 1 (modd ¿, <b(x)),

so that we have identically in x

xx - 1 = p(x)<p(x) + ¿f(x),
(13.2) (moddp,d>(x)).

P(x) £ 0

We shall now establish the following comprehensive theorem :
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Theorem 13.1. Let p be an odd prime, <p(x) an irreducible polynomial

modulo p, and suppose that the polynomial F(x) associated with the difference

equation (1.1) is of the form (13.1). Furthermore, let

Ft(x) = <t>(x) - pdi(x)

where £(x) = 9i(x) is a solution of the congruence

fa[x)t(x) + Ç(x) =■ O (modd p, <p(x)),

fa(x) and Ç(x) being given\ by (13.2) .
Then if F(x)^Ft(x) (mod p2), the characteristic number modulo pP of any

solution of (1.1) which is not divisible by p is pN~1\, where X is the least value of

n such that

xn = 1 (modd /», 4>(x)).

On the other hand, if F(x) =Fi(x), mod p2, there exists a set of polynomials

Ft(x), F3(x), • • • , FT(x), • • • , depending only upon p, <p(x), fa(x) and Ç(x),

such that if F(x)=FT(x) (mod pT), ^FT+i(x) (mod pT+1), the characteristic

number isX or Z»"-7^ according as N^T or N^T.

We have

x* - 1 = fax)F(x) + p(6(x)fax) + Ç(x)).

Suppose first that 6(x)fa(x)+C(x)¿éO (modd /», c6(*)). Then

xx = 1 + pK(x) (modF(x))

where K(x) is of lesser degree than F(x) and not divisible by />. On raising

this last congruence to the /»th power, we obtain

(13.3) xp'x =1 + p*lK(x) + -^-p2K(x) 4-      (modF(x)).

Hence if /> is an odd prime,

xp'\ s ! + pr+iK'x) (modd p*+2, F(x)).

But clearly

xp+1 x = 1 (modd Z»^2, F(x)).

Since the characteristic number of (13.1) for A7 = r+2 is a multiple of its

characteristic number for N = r+1, it is exactly equal to />W_1X.

Now let us assume that

f They may be determined sufficiently to define F2(x) by the procedure sketched in §11.
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P(x)0(x) + t(x) m 0 (modd ¿, <p(x)).

This congruence has a unique solution modulo ¿ of degree less than <f>(x).

Let us denote it by 0i(*), and set

F2(x) = <p(x) - p0i(x).

Then if F(x)fèF2(x) (mod ¿2), 6(x)^di(x) (mod ¿). Consequently \p(x)d(x)

+r(*)^0 (modd ¿, <l>(x)) and the argument just given is applicable. Assume

then that
F(x) m F2(x) (mod ¿2).

Consider the polynomials

Fi(x),F2(x),F3(x), ■ ■ ■ ,Fk(x), ■ ■ ■

defined by the recursive relations f

Fk(x) = </>(*) - ¿@*-i(*),   ®k(x) = 6*_i(*) + pk~l0k(x),   ®o(x) = 0,

P(x)®k-i(x) + f (*) m p"-lrk(x) (modd pk, Fk(x)),
(13.4)

P(x)0k(x) + rk(x) = 0 (modd ¿, <&(*)), A = 1,2,3, • • •.

These relations are consistent with one another ; for if k = 1 they give Fi(x)

= <t>(x) and for A = 2 they give the polynomial F2(x) defined above. If we as-

sume that they are consistent for k = 1, 2, 3, • • -, s it easily follows that they

are consistent for k = s+l.

Now suppose that

F(x) = Ft(x) (mod pT), ^ FT+1(x) (mod pT+1), T=2.

Then
x* - 1 = 0 (modd pT, F(x)), ^ 0 (modd pT+\ F(x)).

For by (13.2) and the relations (13.4),

xx _ 1 = p(x)4>(x) + ¿f(*) = P(x) {FT(x) + p@T-i(x)} + ¿r(x)

= P(x)FT(x) + p(p(x)@T~i(x) + r(*))

s P(P(x)@t-i(x) + r(*)) (mod.Fr(x))

= p-pT-hT-i(x) (modd ¿T, iV(x))

■ 0 (modd ¿r, Ft(x)), = 0 (modd ¿T, F(x)).

In like manner it can be shown that

xx - 1 5¿ 0 (moddpT+\F(x)).

f The ®{x) here have no connection with those of §11.
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Hence we have

a* = 1 + pTK(x) (modF(x)),

where K(x)^0 (modd /», F(x)). On raising this congruence to the appropriate

power, we find that whether p he even or odd the characteristic number is

pN-T\or\ according as N ^ T or N ^ T.

The case /» = 2, T = l demands separate treatment. If d(x)\p(x)+Ç(x)

=K(x)féO (modd 2, <f>(x)), we obtain from (12.3), on putting /» = 2,

xt1 = l + 2r+1K(x)(l + (2' - l)K(x) H-) = 1 + 2'+1K(x)(l - K(x))

(modd2*+2,F(x)).

If K(x) ¿e 1 (mod 2), the previous argument for /» odd is applicable. But in

case K (x) = 1 (mod 2), the characteristic number is a divisor of 2rX.

Since K(x) is of lesser degree than F(x), the most general assumption is

that

K(x) + 1 = 2'L(x) where L(x) ^ 0 (mod 2).

Then

(13.5)                                       x* = - 1 + 2'+lL(x) (modF(x)),

x2* = 1 (modd2'+2,F(*)).

Hence if A7 = 1, the characteristic number is X, while if s+2^N>l, the char-

acteristic number is 2X. On raising (13.5) to a power of 2, we find that if

N^s+2, the characteristic number is 2iV-5-1X.

These results determine the characteristic number in the excluded case

of (11.1) when <r = l and /» = 2 for all F(x) of the form cp(x)-26(x). The

further discussion of the characteristic number for powers of 2 demands a

special treatment which will be given elsewhere.
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