
SETS OF ¿-EXTENT IN n-DIMENSIONAL SPACEf

BY

R. L. JEFFERY

1. Introduction. Let A be any point set on the bounded «-dimensional

domain D. In his development of the theory of measure C. Carathéodoryf has

defined in connection with the set A a measurable set A which has come to be

called the massgleiche Hülle of A. §

Let Bn be a sequence of open sets containing A such that Bn ^ Bn+U

and lim pBn=p*A. Then the set

A = BiB2 • ■ ■

contains A, and is measurable with

pA = p*A.

The number of ways of selecting each Bn is more than countable, and no

rule is given for any particular choice. Consequently it is impossible to say of

every point of the domain D whether or not it belongs to the set A. This

amounts to saying that the set A is not well-defined.

It is possible to replace the set A by a set A' which is effectively defined.

Let B be the complement of A on D. Let cok be a sequence of cells with a

point b of B as center, and with equal side lengths tending to zero as A in-

creases. Let
p*Auk

P(b, c>k) = —;—-
p*Bwk

Since at each point of B except at most a null set the outer metric density of

B is unity, it follows that p(b, o)k) is defined for all values of A at almost all

points of B. Let C be the part of B for which p(b, uk) is defined for all values

of A, and for which

Tim p(b, wk) > 0.
£-»°o

The set

A' = A+C

t Presented to the Society, March 25, 1932; received by the editors June 14, 1932, and, in re-

vised form, November 18,1932.

t Über das lineare Mass von Punktmengen, Göttinger Nachrichten, 1914.

§ Hahn, Theorie der Reellen Funktionen, p. 435. Carathéodory, Vorlesungen über reelle Funk-

tionen, p. 260.
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contains A, and is effectively defined in terms of A. We also have the follow-

ing:

I. The set A' is measurable in the sense of Carathéodory, and

uA' = n*A.

IL A necessary and sufficient condition that A he measurable is that

H*C = 0.

Though not explicitly stated, the proofs of I and II are contained in a

previous discussion, t

An analogous situation exists in connection with plane sets of linear

extent. Let A be such a set with finite outer linear measuref equal to /.

Let U„=Uni, Unt, • • • be a sequence of open convex areas which contains A,

with dni, the greatest diameter of uni, tending to zero, and with^dni tending

to I. Then the set
A = UiU, ■ ■ •

contains A, is linearly measurable,§ and

LA~ = L*A.

In this case too there is no way to determine for each point of the domain D

containing A whether or not it belongs to the set A. In the present paper we

determine a set A' which contains the plane set of linear extent A, which is

linearly measurable, with

LA' = L*A,

and which is well-defined in terms of A.

That these sets.4'are well-defined has some significance. || A more important

consideration is, however, that the concepts involved in and leading up to-

their definition combine to form an elegant and very useful tool for handling

certain types of problems.^ We do not restrict ourselves to plane sets, but

carry through the discussion for sets of extent k in ra-dimensional space. We

show that such sets have properties of density similar to the properties of

density which Besicovitchft and SierpinskiJJ respectively have shown to hold

t Annals of Mathematics, (2), vol. 33, pp. 449-451.

% Carathéodory, Göttinger Nachrichten, loe. cit., §23.

§ Carathéodory, Göttinger Nachrichten, loe. cit., §28.

Il Sierpinski, Fundamenta Mathematicae, vol. 2, pp. 112.

U See Annals of Mathematics, (2), vol. 33, pp. 452-459, these Transactions, vol. 34, p. 650, also

the concluding section of this paper.

ft Mathematische Annalen, vol. 98, p. 422.

XX Fundamenta Mathematicae, vol. 9, p. 172.
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for linearly measurable plane sets, and for plane sets which are not neces-

sarily linearly measurable but which have linear extent. Although there would

be no difficulty in giving independent proofs of the various results, to con-

serve space we have, whenever possible, based our proofs on those of Cara-

théodory and Besicovitch.

Let Sn be the «-dimensional euclidean space, and Sk a ¿-dimensional flat

spacef in Sn. Let U be an open convexf domain of 5„. For a given U let Sk

be such that the A-dimensional measure of Sk U is a maximum, and denote

this maximum measure by lk. We shall call h the greatest diameter of U,

and denote it by d. Let A be any bounded set in Sv, and p any positive num-

ber. Put A in a countable set of open convex domains m<. Let Lk>(A) be the

lower bound of 23*"*' f°r au possible such enclosures with d¡<p. Evidently

Lkf(A) does not decrease as p decreases. Let

Lk(A) = lim ¿/04).

It is clear that Lk(A) ^0, and may be-infinite.

The largest value of k for which Lk(A) ^0 determines the extent of the

set A, and the number Lk(A), finite or infinite; is the outer A-dimensional

measure of the set A. If for each arbitrary set W of extent A

Lk(W) = Lk(AW) + Lk(W - AW),

the set A is measurable. This definition of measurability, which is based on

that of Carathéodory for sets of linear extent, coincides with that of Lebesgue

for «-dimensional sets. But not all such sets are measurable in the sense of

Lebesgue. Likewise not all sets of extent A are measurable in the sense of

Carathéodory. An obvious example is a linear set in the plane which is non-

measurable in the sense of Lebesgue.

The theory developed by Carathéodory for linear outer measure, and for

measurability when the set A is measurable, is easily shown to hold for the

measure function Lk(A). For convenient reference we recall such results of

this theory as we shall have occasion to use.

CI. If the sets A and B are of extent A, and if A contains B, then

Lk(B) = Lk(A).

CIL // A is the set each point of which is on one of the sets A i, A2, ■ • ■ , then

Lk(A) g Lk(Ai) + Lk(A2) + ■ ■ ■ .

t A space which by a proper choice of coordinate axes can be represented by x\ = xt= ■ ■ • =

;c_i=0. A domain U is convex if every SiU is convex.
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CIII. If Ai, A2, ■ • ■ is a sequence of sets such that An contains A„_i,

and A is the limit set, then

lunLk(An) =Lk(A).
n-»=o

CIV. If A and B are such that every point of A is a distance not less than

5>0 from any point of B, then

Lk(A)+Lk(B) =Lk(A+B).

2. Some general lemmas. In this section we prove three lemmas.

Lemma I. If A is such that Lk(A) is finite and different from zero, then

Lk-i(A) is infinite and Lk+i(A) =0.

That Lk+i(A) =0 follows readily from the fact that, for any set of domains

Ui with di<p, 2^1'k+i<p%2lk< • We then have Lk_i(A) infinite. For a supposition

that Lk-i(A) is finite makes Lk(A) =0.

Lemma IL f Let V = Vi, V2, ■ • ■ be an infinite sequence of open convex

domains in Sn, and A any set of points. Then

Lk(AV) + Lk(A - AV) = Lk(A).

First let V consist of a single domain, and let Uh Ui, • • • be a sequence of

closed domains interior to V and such that Un contains ¿7„_i and lim Un = V.

Let An = AUn. Then lim An=AV. The sets An and A— AV are on closed

mutually exclusive domains. Hence these two sets satisfy the conditions of

CIV/and it follows that

Lk(An) + Lk(A -AV) = Lk(An + A - AV) Ú Lk(A).

And since by CIII lim Lk(An) =Lk(AV) we have

Lk(AV) +Lk(A - AV) ÚLk(A).

But by CII
Lk(AV)+Lk(A -AV) >Lk(A).

These two inequalities give the Lemma for V a single region. The extension

to the case where V consists of a finite number of regions is obvious. When

V = vi, vt, ■ • ■ , set Vn = vh Vi, ■ ■ ■ , vn. Then

(1) Lk(AVn) + Lk(A -AVn)= Lk(A).

t It has been remarked by Mr. J. F. Randolph that Lemma II follows from the definition of

Carathéodory for A-dimensional measurability, provided the open set V in Sn is considered to be

¿-dimensional measurable in the sense of Carathéodory, with infinite measure if k<n. In this con-

nection we note that if k<n every open set V in S„ does not satisfy the criterion of measurability

which is obtained for sets of finite extent in Theorem XII of the present paper.
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The set A-AVn tends to A-AV, and the set AVn tends to AV. And since

A Vn contains A Vn-i it follows from CIII that

limLk(AVn) = Lk(AV).

Hence

(2) Lk(AV) + limLk(A - AVn) = Lk(A).

It follows from CI that

Lk(A - AV) g limZ,*(,4 - AVn).

Suppose the equality sign does not hold. Then from (2) we get

Lk(AV) + Lk(A - AV) < Lk(A),

which, by CII, is not true. Hence

Lk(AV) + Lk(A - AV) = Lk(A),

and the Lemma is proved.

Lemma III. Let V(p) denote any finite or countably infinite set of open con-

vex domains Vi, V2, • • • with greatest diameter ¿<<p. Then to any set A of

extent A and any positive number e there corresponds a number pi>0 such that

for any set V(p) with p <pi the inequality

Lk\AV(p)} < 23*v +e

is satisfied.

This Lemma has been proved for linearly measurable plane sets by Besico-

vitch.f His inequality (2) follows from the measurability of the set. But the

corresponding inequality for any set follows from Lemma II above. The

remainder of the argument is similar to that of Besicovitch with 23«-** replac-

ing 23^< f°r the various regions involved.

3. Density. Let A be a set of extent A, a any point of A, and H (a, r) an

«-dimensional hypersphere with center a and radius r. Let hkr be the A-

dimensional measure of the maximal A-dimensional flat space that can be in-

scribed in H (a, r). Let

Lk[AH(a,r)]
D(a, r) = —->

hkr

and let D*(a) and D*(a) be the upper and lower limits respectively of D(a, r)

as r tends to zero. These numbers are respectively the upper and lower

densities of A at a.

t Loc. cit., p. 427.
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It has been shown by Besicovitchf that the linear measure of a plane set

depends on the type of region m¡ used in estimating this measure. A similar

state of affairs is to be expected for sets with extent greater than unity. In

estimating outer measure we shall take into consideration only types of re-

gions Ui which are such that

U = fad",

where <pk is a constant depending on k and on the particular type of region,

and d is the greatest diameter of the region. For a hypersphere H(a, r) let

ht = **(2r)*.

We then have

Theorem I. If A is any set of extent k, then for almost all points of A,

1  4>k
-= £*(d) < 1.
2* fa

Let E he the part of A for each point of which D*(a) > 1. Let E\ he the

part of E about each point e of which there exists a sequence of hyperspheres

H(e, r,) with

(!) ¿»[^(,.)]>1 + x
hkri

By Lemma III there exists p>0 such that for any set of hyperspheres H{

with Ti<p we have

(2) 2~lLk(EiHi) <  5>*" + «.

From the set of hyperspheres defined in (1) let those with r;>p be discarded.

It is then possible to use Vitali's argument to show the existence of a count-

able non-overlapping sequence of the remaining hyperspheres of Hi which

contain almost all of E\. From (1) for this sequence we have

(3) £*iF(l+X)<L»(&).

But from (2) we get

(4) £>*'« > £4(£x) - e-

But for X sufficiently small Lk(E\) >0, and e can be taken arbitrarily small

independently of X. This makes (3) and (4) contradictory, which proves

that D*(a) g 1 for almost all A.

t Loc. cit., p. 459.
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To complete the proof of Theorem I we notice that the argument of

Besicovitchf may be used to establish the existence of a part ^4i of A with

Lk(Ai) arbitrarily near to Lk(A) such that about each point ai of Ai there

exists a hypersphere H(ai, d) for which

, ,        <bkdk
Lk{AH(ai, d)} =--,

1 + V

where n is arbitrary and d<r¡.

From this we get, by dividing by hkd,

Lk[AH(ai,d)]      <M* J_ <h _

h/~       =   hk" ~ri = 2~k~pk~n'

Completing the argument along the lines followed by Besicovitch we finally

arrive at
1  4>k

D*(a) à — —
2kpk

at almost all points of A.

We note that if hyperspheres are used in computing the outer measure of

A then we get 1/2* as a lower bound for the upper density at almost all points

of ,4.

If, at a point a of the set A, D*(a) =D*(a) = l, then A is regular at a.

Otherwise A is irregular at a. The existence of sets of extent A which are regu-

lar at almost every point is obvious. Besicovitchî has shown the existence of

linearly measurable plane sets which are irregular. An evident modification

of his methods may be used to construct sets of extent A = 2 in S3 which are

irregular.

Theorem II. If A is any set of extent A then the part of A for which D*(a) = 0

has zero measure, regardless of the type of region used in estimating Lk(A).

For the sake of simplicity we prove this for a set A of extent two in three-

dimensional space. With suitable notation the method may be used to obtain

the same result for sets of extent greater than two.

Let As be the part of A for which

L2[AH(a,r)]
- < e, r < S.

h{

For ô sufficiently small Z,2(^4s) >0. Put j4s in Mi, m2, • • • where á¿<5/23/2, and

23¿2* <L2(A¡) + e. About m¿ circumscribe a rectangular parallelepiped ¿¿ with

t Loc. cit., pp. 428^429.
î Loc. cit., p. 431.
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longest side parallel to a greatest diameter ¿¿ of Ui. Then, since Ui is convex,

the maximal plane section of /»¡ is not greater than 4/2. Circumscribe /»< by a

cylinder d with axis parallel to longest side of /»¿. Then the measure <?,- of a

cross section of this cylinder through the axis is not greater than 4/2. It is

evidently possible to cover a part of C< with cylinders C„- with length i,-,-

and radius r^ where if,-=2r,-,-^2cZI, where 2^Qn = 2?» á 8/2, and where 2^1<2~2i

Lk(A¡Ci¡) *zLk(Ai)/2. Fix any point of A¡ in C<,-, and with this point as center

construct a sphere H(a¡, 2t(l) with radius 2ti¡. H(as, 2U,) then contains C¿,-

and ht2ti¡ =Air(2ti,y = 16irqa. From these and (1), since the greatest linear di-

mension of dj is less than 23/2d<<5, we get

L2[AtCa]
-< e,

h22'a

which gives

£ ZlmA/) ^ £ Z 5>!'w ^ «i6x 2Z ¿Zqn = «i28x zi
i i i i i i i

X                  .                    .       X + e
— < 6128t [£*(í4!) + e] <-

But X can be fixed greater than zero, and t can be taken arbitrarily small

independent of X. We are thus led to a contradiction, which proves the

theorem.

4. Separated sets. A point set A is separated from a point set B, if a part

of A can be put in a set of open convex regions a in such a way that

(1) Lk(aB) < e, and Lk(A - aA) < e.

Theorem III. If A is separated from B, then B is separated from A.

It follows from CIII that if a = ai, a2, • • • satisfies (1), and if a'=ai,

a2, • ■ • , an, then for ra sufficiently large

Lk(a'A) > Lk(A) - 2e.

Let Vi=vn, vi2, ■ ■ • ,vin where v^ is a closed region interior to a,-, such that

va contains 8«-«/, and um va—ai- Then by CIII, for / sufficiently large, we

have

(1) Lk(AVi) > Lh(a'A) - e > Lk(A) - 3«.

Put the part of B exterior to a in ß so that any point of ß is distant from Vi

by not less than ô>0. Then

Lk(B - ßB) g Lk(aB) < e,
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and, by CIV,

Lk(ViA) + Lk(ßA) = Lk(ViA + ßA) = Lk(A),

which, with (1), gives

Lk(ßA) < 3e.

Theorem IV. If A and B are separated sets, both of extent A, then

Lk(A)+Lk(B) =Lk(A +B).

Put A in a set of open convex regions a so that

(1) Lk(aB) < e, Lk(A - aA) <(.

Set E = A+B. Then, by Lemma II,

(2) Lk(aE) + Lk(E - aE) = Lk(E),

which, from CI, gives

(3) Lk(aA) + Lk(B - aB) = Lk(E).

But from Lemma II we get

(4) Lk(aA) + Lk(A - aA) = Lk(A),

and

(5) Lk(aB) + Lk(B - aB) = Lk(B).

It then follows from (1), (3), (4), (5), and the fact that e is arbitrary, that

Lk(A)+Lk(B) =Lk(A +B).

But by CII

Lh(A)+Lk(B) =Lk(A +B).

These two inequalities give the theorem.

Let A b° be the part of A for which

Lk[BH(a,r)]
lim   —- = 0,
r^o   Lk[AH(a, r)]

and A B+ the part of A for which

Lk[BH(a,r)}
hm   —=- > 0.
r-o   Lk[AH(a,r)]

Define BA° and BA+ by interchanging the roles of A and B.
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The ratios which are used in determining the sets Ab* and AB+ are de-

fined for almost all A. For otherwise there would exist a part of A with outer

measure >0 for each point a of which D*(a) =0. But this contradicts The-

orem II. Likewise the ratios used in determining the sets Ba" and BA+ are

defined for almost all B.

Theorem V. The set AB° is separated from B, and the set Ba" is separated

from A.

For a given e>0 there corresponds to each point of AB° a number p>0

such that

Lk[BH(a,r)]

(1) Z^ZZ(d,r)]<É'r<P-

If E is the part of Ab" for which (1) holds, then for p sufficiently small it

follows from CIII that

(2) Lk(E) > Lk(AJ) - e.

About each point of E there then exists a sequence of hyperspheres H(e, rt)

with r¡ tending to zero for which (1) holds. Vitali's argument may now be

used to show the existence of a non-overlapping set of these hyperspheres

H = Hi, Ht, • • ■ which contain almost all of E. By (2) and Lemma II we get

Lk(A£ - BAS) < €,

and from (1)

2ZLk(BH,) < e 2~lLk(AHi),

Lk(BH) < eLk(A),

where e is arbitrary. Thus AB° is separated from B. In a similar manner it

may be shown that Ba° is separated from A.

Theorem VI. There is no part of A B+ with outer measure greater than zero

which is separated from B, and no part of Ba+ with outer measure greater than

zero which is separated from A.

Suppose there is such a part of AB+. CIII may then be used to show the

existence of a positive number d and a part E of A B+ such that at each point e

of E we have

m Lk[BH(e, n)]
(l) —-- > d

Lk[AH(e,n)]

for a properly chosen sequence of values of r¡ tending to zero. By supposition,

E is separated from B. It is, therefore, possible to put a part of £ in a set of
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open convex regions a in such a way that

(2) Lk(aB) < «, and Lk(E - aE) < t.

About each point of E on a may be put a sequence of hyperspheres H(e, r<)

satisfying (1) and such that all the hyperspheres are on a. Vitali's argument

may now be used to show the existence of a countable non-overlapping set of

these hyperspheres containing almost all the part of E on a. For this set Hn of

hyperspheres we get from (1)

^JLk(BHn) > d Y,Lk(AHn) > dLk(E) - e.

But this contradicts (2). We conclude, therefore, that there is no part of

AB+ with outer measure >0 which is separated from B. In a similar manner

it can be shown that there is no part of BA+ with outer measure >0 which is

separated from A.

It has now been shown that AB° is separated from B and no part of AB+ is

separated from B, with similar remarks applying to BA° and BA+. From these

facts it is easy, by methods used above, to obtain

Theorem VII. Ab" is separated from AB+ and BA° is separated from BA+.

We next prove

Theorem VIII. Lk(AB+) =Lk(BA+) =Lk(AB++BA+).

Suppose Lk(AB+) =Lk(BA+)+c, c>0. Making use of Lemma III, a

number p>0 may be so fixed that for any set of open convex regions V — Vi,

v2, ■ ■ ■ with di <p we have

(1) Lk(VAB+) < 23« + — •
4

Now let V with di<p enclose BA+ in such a way that

23« < Lk(BA+) + — ■
4

This, with (1), gives

Lk(VAB+)<Lk(BA+)+^-,

which shows that there is a part E of AB+ exterior to V with Lk(E)>c/2.

But V contains BA+. Hence, since E is exterior to V, it may be shown by

methods used above that E, a part of AB+ with outer measure >0, is sep-

arated from B. But this contradicts Theorem VI. We conclude, therefore,

that Lk(AB+)=Lk(BA+). Precisely the same argument shows that Lk(BA+)

úLk(AB+). We thus have Lk(AB+) =Lk(BA+), which is the first part of the the-

orem.
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Suppose Lk(AB++BA+)=Lk(AB+)+c, c>0. Lemma III may be used to

enclose AB+ in a set of open convex regions V = vh i>2, • • • in such a way that

(2) 2>' <Lk(AB+)+—,
A

and

(3) Lk[(AB+ + BA+)V] <  2ZH +->
A

which shows that there is a part E of AB++BA+ exterior to V with measure

>c/2. Since V contains AB+ it follows that E belongs to Ba+. Reasoning as

above, we arrive at the conclusion that E is separated from AB+- But this

again contradicts Theorem VI. Thus we conclude that Lk(AB++BA+) èLk(AB+).

Hence, since always Lk(AB++BA+) ^Lk(AB+) =Lk(BA+), we have

Lk(AB+ + BA+) = Lk(AB+) = Lh(BA+).

From Theorems IV, V, and VII, we get

Theorem IX.

Lk(A) = Lk(AJ>) + Lk(AB+),

Lk(B) = Lk(BA°) + Lk(BA+),

Lk(A + B) = Lk(Aj?) + Lk(BA°) + Lk(AB+ + BA+).

Theorems VIII and IX may now be combined to give

Theorem X.

Lk(A) + Lk(B) = Lk(A + B)+ Lk(AB+ + BA+).

5. Relations between sets in general and measurable sets. Let A he any

set of finite extent k in Sn, B the complement of A. Let C he the part of B for

which
...                                         T.-    Lk[AH(c,r)] ^  n
(1) hm   - > 0.

r->0 hkr

Theorem XI. The set C is of extent not greater thank.

Suppose there is some integer j ^ 1 for which

Lk+i(C) > 0.

On account of (1) there exist two positive numbers 5 and d, and a part G

of C with Lk+j(Ci) >0 for which



1933] SETS IN »-DIMENSIONAL SPACE 641

hkr

for a proper choice of r<5. Since Lk+j(Cî) >0, it follows from Lemma I that

there exists a part C2 of Ci with Lk(C2) >G, G an arbitrary positive number.

Choose a sequence ôi > 52 > • • • tending to zero, and let C2* be the part of C2

for which (2) holds for some r>5,-. Then C2* tends to C2. Thus there exists

5' >0 and a part C3 of C2 with Lk(C3) > G for which we have

Lk[AH(c3,r)]
(3) - > a

hi

for some r >S'. Now put C3 in a set of open convex regions ux, m2, • • • with

di<8', and such that

23« > ¿*(C3) - € > G.

In each m¿ choose a point c3 of C3 and about this point put a hypersphere

H(c3, r) with r¡>5' and satisfying (3). Then hi >lk*, and consequently from

(3) we get

Lk[AH(c3, n)]      Lk[AH(c3,n)]

hri hkn
> d.

This gives

Y,Lk[AH(c3, fi)]>d 2>' > dG.

But since Lk(A) is finite, and since G can be chosen arbitrarily large, this

gives a contradiction. Hence our assertion is proved.

Theorem XII. If A is any set of finite extent A, then a necessary and suffi-

cient condition that A be measurable is that Lk(C)=0.

Let W be any set of extent A. We show that if Lk(C) =0, then

(1) Lk(W) = Lk(A W) + Lk(W -AW).

Set W—AW = E. Since E — EC belongs neither to A nor to C, we have for

any point e of E—EC

Lk[AH(e,r)]
lim   - = 0.
r-,0 hkr

Hence, since Lk(C) =0, for almost all E we have

M^h,)] /    v     . 0
r^o    Lk[EH(e, r)]/  Lk[EH(e, r)
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But for almost all E

__ hs
lim
r-*    Lk[EH(e,r)]  ~   '

and this, with (2), gives, for almost all E,

—   Lk[AH(e,r)]
lun   -:- = 0.
r-o    Lk[EH(e,r)}

Hence almost all E—EC belongs to WA°. And since Lk(EC) = Lk(C) =0, it

follows that almost all E belongs to WA°. Hence E = W—AW is separated

from A and consequently from WA. The truth of (1) now follows from

Theorem IV. Then, according to our definition of measurability, A is measur-

able. Thus the condition is sufficient.

At every point of C
Lk[AH(c,r)]

lim   -— > 0.
r—0 hi

Hence for almost all C

¿O   Lk[CH(c,r)}/ Lk[CH(c,r)]

Lk[AH(c,r)\  / hi
lim-— / -;-- > 0.

But for almost all C

lim--^ 1.
7=«    Lk[CH(c,r)]

Consequently, for almost all C,

Lk[AH(c,r)]
hm- > 0.
r-.o    Lk[CH(c, r)\

We conclude, therefore, that almost all C belongs to CA+. Hence if Lk(C) >0

it follows that Lk(CA+) >0. Now let W=AC++CA+. Then by Theorem VIII,

Lk(W) =Lk(Ac+) =Lk(CA+).

But

Lk(AW) + Lk(W - AW) = Lk(Ac+) + Lk(CA+) = 2Lk(W).

Hence A is not measurable. This shows that the condition is necessary.

Theorem XIII. Let A be any set of finite extent k. Then the set

A' = A+C

contains A, is measurable with
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Lk(A') = Lk(A),

and is well-defined in terms of A.

A point b of the set B complementary to the set A does or does not belong

to C according as the upper limit of

Lk[AH(b,r)]

hi

is greater than zero, or is equal to zero. Hence C, and consequently A', is

effectively defined in terms of A.

To show that A' is measurable, let c' be a point of C. Then c' belongs

neither to A nor to C, and

Lk[A'H(c',r)]
lun   ■-■-> 0.
r-»o hkr

But this, with Theorems IV, VII, and VIII, gives

,.       (Lk[A<? H(c', r)\     Lk[(Ac+ + CA+)H(c', r)h
lim   <-1-> > 0,
f-»o    (. hkT hkr )

_  Lk[(Ac°+Ac+)H(c',r)]
lun   -> 0,
r-0 hkr

which makes c' a point of C. Hence C is empty and L*(C')=0. Then by

Theorem XII A is measurable.

Theorem XIV. If the set A of extent A is regular then A ' is regular, and if

this set is irregular then A ' is irregular.

Let A be regular, and suppose there is a part of A', other than null parts,

at which A ' is irregular. Obviously A ' is regular at each point of A. In the

proof of Theorem XII it was shown that almost all C belongs to CA+. Hence

there is a part E of CA+ for which

Lk[A'H(e,r)]
(1) -—-< 1 - V

hi

for an infinite set of arbitrarily small r, tj >0, and Lk(E) >0. Then, since E

belongs to CA+, almost all points of E are points of EA+. This and Theorem

VIII then give

Lk(AE+) = Lk(Et) = Lk(E) > 0.

The set A' is regular at points of A and consequently at points of AB+. Let



644 R. L. JEFFERY [July

F be the part of AE+ which is such that

(2) Lk[A'H(f,r)] ±

hi 2

for r<5, Lk(F)>0. The set F belongs to AB+, and consequently almost all

F belongs to Fe+. Hence, as above,

Lk(EF+) = Lk(FB+) = Lk(F) > 0.

For each point of EF+,(1) holds. Hence about a fixed point x of this set there

exists H(x, r) with r<ö such that

Lk[A'H(x,r)]
(3) -;-   <   1   -   T).

hi

Every point of EF+ is a limit point of points of FE+. Let Xi, xt, ■ ■ ■ he a se-

quence of points of FE+ tending to x. On account of (2) for an arbitrary e

there exists H(xí, r—e) about each x, for which

Lk[A'H(xitr-e)] r,

(A) ■-> 1-
hi~' 2

For e fixed and i sufficiently large H(xí, r — e) is interior to H(x, r). From this

and (4) we have

(5) Lk[A'H(x, r)] à Lk[A'H(xi} r - «)] > hi- - blhk^'.

But for e sufficiently small hkr~' is arbitrarily near to hrk, which makes (5) and

(3) contradictory. We conclude, therefore, that if A is regular A ' is regular.

The proof for the case when A is irregular is along the same Unes, and we

merely sketch it. Except for a null set

A' = Ac" +AC+ + CA+.

Since A c° is separated from CA+ it readily follows that A ' is irregular at each

point oí Ac0- Also, since for any ZZ(<zc+, r),

Lk[(Ac+ + CA+)H(a+, r)] = Lk[Ac+H(a+, r)],

it follows that A ' is irregular at each point of A c+. Let E he the part of C at

which A' is regular. Let F be the part of AE+ for which

Lk[A'H(f,r)]
(1)- < 1 - 77

hi

for an infinite set of arbitrarily small r. Let G he the part of EF+ at which,

for all r < 5,
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(2) Lk[A'H(g,r)]>i_rL

hi 2

Then for Fa+, (1) holds, and for Gf+, (2) holds. It is now possible to take a

point * of Fa+, and a sequence of points *i, x2, • ■ ■ of GF+ tending to x, and

arrive at a contradiction, as in the case when A was regular.

6. Some applications. It was shown in the introduction that correspond-

ing to a set A of linear extent there was a measurable set A which contained

A, and for which
Lk(A) =Lk(A).

It can likewise be shown that there is a measurable set A similarly related

to any set A of extent A. We are now in a position to discuss the density

properties of this set A.

If A is regular (irregular) then A is regular (irregular).

To prove this, set 1=A+B where Lk(B)>0. If Lk(B)=0 the case is

trivial. The set B is not separated from A. For then we would have

Lk(Ä) = Lk(A) + Lk(B)

which cannot hold, since Lk(Ä~) =Lk(A). Hence almost all B belongs to BA+.

Now suppose that A is regular but that there is a part of BA+ with outer

measure greater than zero at which A is irregular. Let E be the part of BA+

at which
Lk\lH(e, r)]
-< 1 — i}

hi

for a sequence of values of r tending to zero, and Lk(E) >0. Since E belongs

to BA+, each point of £ is a point of EA+. Let F be the part of AE+ which is such

that

(i) LtfXHjf, r)] y
hi 2

for r <S, and Lk(F) >0. Each point of F is a point of FA+. About a point x of

EF+ put a hypersphere H(x, r) with r<o, and such that

m Lk\ÄH(x,r)]
(2)-——- < 1 - r,.

hi

Let Xi be a sequence of values of FE+ tending to *. About each x{ put a hyper-

sphere H(xí, r — i). Then, on account of (1), we have

Lk[ÄH(xj, r - e)] -n_

hi- 2
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For any e, i can be taken large enough to insure that H(xí, r—e) is interior

to H(x, r). But for rj fixed, e can be taken arbitrarily small, which, with (2),

(3), and the fact that for e small hi~' is near to h\, leads to a contradiction.

We conclude, therefore, that if A is regular then A is regular at almost all

points. Similar reasoning shows that if A is irregular then A is irregular at

almost all points.

If A is any plane set of linear extent then the sets A and A ' are linearly

measurable, and are regular or irregular according as A is regular or irregular.

Besicovitch has shown that linearly measurable regular plane sets have a

tangent at almost all points. Hence if A is regular there exists a tangent at

almost all points of A, and of A'. And since each of these sets contains A

it follows that A has a tangent at almost all points. Likewise the other the-

orems which Besicovitch has proved for linearly measurable plane sets are

seen to hold for general sets of linear extent.

In proving that a regular linearly measurable plane set A has a tangent

at almost every point, Besicovitchf makes use of the set .41 which is the part

of A for which

Li[AH(a,r)]_

hi

for r<8. He assumes that Ai is linearly measurable. The measurability of

this set can hardly be considered as obvious, and there seems to be no trivial

proof for his assertion. We shall establish some general results from which

the measurability of A i follows.

We show first that

Separated divisions of measurable sets are measurable.

Let A he any measurable set of extent k, Ai and A2 separated divisions

of A. Since Ai and A2 ave separated, G contains at most a null part of A2,

and C2 contains at most a null part of Ai. Hence, except for at most a null

set, G and C2 belong to C. But since A is measurable, Theorem XII gives

Lk(C) =0. But this makes Lk(Ci) =Lk(Ct) =0, which again by Theorem XII

makes Ai and A2 measurable.

Let A be any set of extent k. Let B be the part of A for which

Lk[AH(a,r)]
(l) -, > 1 - V

hi

for r<8. Then the sets B and E = A—B are separated.

t Loc. cit., p. 438.
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Suppose BB+ exists with Lk(BB+)>0. Then, by Theorem VIII, Lk(EB+)

= Lk(BE+) >0. For each point x of EB+ there exists some r<8 for which

Li[AEM]si_ri
hi

Take a sequence of points *i, *2, • • • of BE+ tending to x, and about each Xi

put a hypersphere ff(*i, r— e). Then from (1) we have

Lk[AH(Xi,r-e)]
(3) -—->1-,.

But, for every e, i can be taken so large that H(xí, r — e) is interior to H(x, r).

Then, since e can be taken arbitrarily small independent of n, (2) and (3) are

contradictory, which allows us to conclude that B and E=A—B are sepa-

rated.

It can likewise be shown that the part of A for which

Lk[AH(a,r)]
1 — v =í-;-=? 1 + v

hi

is separated from the remainder of A. From this it follows that the set ^4i of

Besicovitch is separated from A—Ai. Then, since A is measurable, Ai and

A—Ai are measurable. We note further that if A is not measurable the sets

Ai and A—Ai are, nevertheless, separated. This fact permits the arguments

of Besicovitch in regard to tangency to be carried through for any plane set

of linear extent.
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