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Introduction

0.1. Let/(w), given by

f(w) = x(u, v) + iy(u, v), w = u + iv, w in D,

where D is some domain of definition, be an analytic function of the complex

variable w. Then x(u, v), y(u, v) satisfy the Cauchy-Riemann differential

equations

the subscripts denoting differentiation. These equations (1) are not sym-

metric in x, y, but they imply the symmetric set

(2) xu2 + yu2 = xv2 + yv2, x.,Xv + y*yv = 0.

Conversely, (2) implies either (1) or

\o) y%t      xv, yv      — xu.

From either (1), (2) or (3) it follows that x(u, v), y(u, v) are harmonic func-

tions :
*uu ~T~ %vv Uj  /nu "T"  yvu U.

If (1) holds, y(u, v) is said to be the conjugate harmonic function of x(u, v),

or if (3) holds, x(u, v) is said to be the conjugate harmonic function of y(u, v) ;

generally, if (2) holds then x(u, v), y(u, v) will be called a couple of conjugate

harmonic functions.

0.2. Generalizing this situation to the case of three functions x(u, v),

y(u, v), z(u, v), (u, v) in D, we shall call x(u, v), y(u, v), z(u, v) a triple of con-

jugate harmonic functions provided the following conditions are satisfied :

(i) E = G,   F = 0,

where

E = xu2 + y i + z},  F = xuxv + yuyv + zuzv,  G = xv2 + yi + z„2 ;

(ii) x(u, v), y(u, v), z(u, v)

are harmonie.

* Presented to the Society, December 29, 1932; received by the editors January 23, 1933.

t National Research Fellow.
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It might be noted that if one of the coordinate functions vanishes iden-

tically, say z=0, then (ii) is implied by (i); but in general this implication

does not hold.

0.3. While this generalization no doubt would be of interest from a

purely analytic viewpoint, the following theorem of Weierstrass shows that it

actually is very important geometrically : A necessary and sufficient condi-

tion that a surface given in terms of isothermic parameters (that is, param-

eters m, v such that E = G, F = 0) be minimal is that the coordinate functions

be harmonic.

Thus the theory of minimal surfaces appears as the theory of triples of

conjugate harmonic functions, while the theory of couples of conjugate har-

monic functions is the theory of analytic functions of a complex variable. As

a matter of fact, theorems and methods in theory of functions always have

served as tools and models in the theory of minimal surfaces.

0.4. The purpose of the present paper is the development of this analogy

in the direction of the principle of the maximum. Iif(w) is an analytic func-

tion in a region R, then \f(w) | takes on its maximum on the boundary of R.

Similarly, if x(u, v), y(u, v), z(u, v) form a triple of conjugate harmonic func-

tions in R, then (x2+y2+z2)112 takes on its maximum on the boundary of R;

this is easily shown to be true even if the three harmonic functions are not

conjugate. However, the effectiveness of the principle of the maximum

in the case of analytic functions depends essentially upon the fact that

certain operations (multiplication for instance), if performed on analytic

functions, yield analytic functions again. This situation does not seem to

admit of any direct generalization to minimal surfaces. It is our purpose to

show that despite this lack of direct analogy many important applications

of the principle of the maximum can be generalized to minimal surfaces. Our

tool is the following simple lemma (see §2) :

Three functions x(u, v), y(u, v), z(u, v), continuous in a domain, form there

a triple of conjugate harmonic functions if and only if log[(x+a)2+(y+b)2

+ (;2+c)2]1/2 is subharmonic for every choice of the real constants a, b, c.

This lemma permits us to apply the theory of subharmonic functions,*

so important in theory of functions, to the theory of minimal surfaces. For

the convenience of the reader, we give in §1 the necessary definitions and facts

concerning subharmonic functions.

* See F. Riesz, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel (in two

parts), Acta Mathematica, vol. 48 (1926), pp. 329-343, and vol. 54 (1930), pp. 321-360; P. Montel,
Sur les fonctions convexes et les fonctions sousharmoniques, Journal de Mathématiques, (9), vol. 7

(1928), pp. 29-60; S. Saks, Sur une inégalité de la théorie des fonctions, Acta Szeged, vol. 4 (1928),

pp. 51-55, and On subharmonic functions, Acta Szeged, vol. 5 (1932), pp. 187-193.
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1.   SUBHARMONIC FUNCTIONS AND FUNCTIONS OF CLASS PL

1.1. In this section we present the definition of subharmonic functions

and give those results concerning these functions which we shall need in the

sequel.

Let g(u, v) he a continuous function of two variables, defined in a domain

D (connected open set).  Suppose that for each point (m0, v0) of D we have

1   r2r

(A) g(u0, »o) á — I      g(uo + p cos favo + P sin <b)d<b
2ir J o

for each sufficiently small value of the radius p. Then the function g(u, v)

is said to be subharmonic in D*

The definition can be extended to the case of discontinuous functions,

but we shall be concerned in this paper only with continuous subharmonic

functions.

1.2. It follows immediately from the definition that a subharmonic func-

tion g(u, v) cannot attain its maximum value at any (interior) point of D,

unless g(u, v) is identically constant.f

1.3. If a function g(u, v) has continuous partial derivatives of the second

order, then a necessary and sufficient condition that g(u, v) he subharmonic

is that its Laplacian be ^ 0 :

Ag = guu + gvv ^ 0.{

1.4. Let g(u, v) he subharmonic in the ring

n < [(« - Mo)2 + (v - vo)2}1'2 < r2,

and let M(r) denote the maximum of g(u, v) on

(m — Mo)2 + (v — Vo)2 = r2, ri < r < r2.

Then M(r) is a convex function of log r. §

1.5. Obviously, if g(u, v) and h(u, v) are both subharmonic in D, then

g(u, v)+h(u, v) also is subharmonic there.

* This definition is due to F. Riesz. See Acta Mathematica, loc. cit., first part, p. 331.

f See F. Riesz, Acta Mathematica, loc. cit., first part, p. 331.

X See F. Riesz, Acta Mathematica, loc. cit., first part, p. 335.

§ See P. Montel, Journal de Mathématiques, loc. cit., where this fact and similar elementary

facts concerning subharmonic functions are presented in a systematic way.
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1.6. A function ¿(m, v), defined in a domain D, will be said to be of class

PL in D provided the following conditions are satisfied there.

(i) ¿(m, v) is continuous.

(ii) ¿(m, v) = 0.

(iii) log ¿(m, v) is subharmonic in the part of D where p(u,v)>0.

1.7. If ¿(m, v) is of class PL, then ¿(«, v) is subharmonic. Indeed, at

points where ¿(m, v) =0 the condition (4) of Riesz obviously is satisfied; and

elsewhere the fact that log p(u, v) is subharmonic implies that p(u, v) is sub-

harmonic*

1.8. Obviously (see §1.5), the product of a finite number of functions of

class PL, or any positive power of a function of this class, is again a function

of class PL.

1.9. The class PL is invariant under conformai mapping. (The same re-

mark applies to the class of subharmonic functions.) That is, if p(u, v) is of

class PL in D and if D is mapped conformally on a (U, V) domain D, then

¿(m, v) is transformed into a function q(U, V) which is of class PL in D.

1.10. A necessary and sufficient condition that a non-negative function

¿(m, v) be of class PL is that eau+ßv p(u, v) be subharmonic for every choice of

the real constants a, ß.f It follows from this (see §1.5) that the sum of a finite

number of functions of class PL is again a function of class PL.

1.11. The classical example of a function of class PL is the absolute value

of an analytic function/(w) of w = u+iv. If f(w) is different from zero in a

domain, then log \f(w) | is harmonic there. " Thus \f(w) | is just barely of class

PL. As a consequence, a great number of theorems concerned with \f(w) |

are a fortiori true for functions of class PL. We now shall state some of these

generalized theorems which will be used in the sequel. The proofs run exactly

in the same way as for \f(w) \ ; for this reason we shall sketch just a few of the

proofs, and otherwise shall give references to typical proofs concerning

\f(w)\.
1.12. Let ¿(m, v) be bounded and of class PL in m2+í»2<1. Suppose

¿(m, v) remains continuous on a certain arc o- of u2+v2 = l, and vanishes

there.  Then ¿(m, v) =0.

Proof.f Choose the integer « so large that 2x/« is less than the length of

* See P. Montel, Journal de Mathématiques, loe. cit., p. 39.

t This criterion is due to Montel, Journal de Mathématiques, loc. cit., p. 40, who proved it under

the assumption that p(u, v) has continuous partial derivatives of the first and second order. For the

case of a merely continuous p(u, v), the theorem has been proved by T. Radó, Remarque sur les

fonctions subharmoniques, Paris Comptes Rendus, vol. 186 (1928), pp. 346-348.

Í Cf. Pólya und Szegö, Aufgaben und Lehrsätze aus der Analysis, Berlin, J. Springer, 1925, vol.

I, p. 139, problem 279.
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the arc <r. Ii we rotate the unit circle about its center through an angle of

27r/ra, p(u, v) is transformed into a new function pi(u, v) of class PL (see

§1.9). Let Pt(u, v), • ■ ■ , pn-i(u, v) be the functions of class PL resulting

from further successive rotations of the unit circle through the angle 2ir/ra.

Then \p(u, v) =/>/»i • • • pn-i is again of class PL (see §1.8), and \p(u, b)—»0

if (m, v) converges to any point of m2+z>2 = 1. Since ^^0, it follows from this

(see §1.2) that fau, v) =0. In particular, ^(0, 0) =/»(0, 0)n = 0, that is to say,

p(u, v) vanishes at the origin. As any point of u2+v2<l can be thrown, by

conformai mapping of the unit circle upon itself, into the origin, it follows

that p(u, v)=0.

1.13. Let p(u, v) be bounded and of class PL in m2+z>2<1. Suppose

p(u, v) vanishes in a subdomain k of m2+h2 < 1. Then p(u, v) =0.

Proof. Consider any fixed point (m0, v0) of k. Then given any point (ui,

Vi) in u2+v2<l but not in k, there exists a circle passing through (m0) v0),

tangent to u2+v2 = l from within, and containing (ui, Vi) in its interior. The

theorem of §1.12 applies to this circle.

1.14. Let p(u, v) he bounded and of class PL in the angle 0 <arc tg (v/u)

<a. Let p(u, v) remain continuous on the ray m>0, v = 0, and let p(u, 0)—»0

as m—>+0. Then in every angle 0 <arc tg (v/u) <a — a, where cr>0, we have

p(u, !»)—>0 as (m, v)—*(0, 0) in any manner.*

Of course this theorem is true if the domain of definition is only the sector

0<arc tg (v/u) <a, 0<u2+v2<ra2; the proof is the same in either case.

1.15. Let p(u, v) be bounded and of class PL in m2+d2<1. Let (u', v'),

(u", v") be two distinct points on u2+v2 — l. Let (uñ, vñ), (uñ', v") be two

sequences in m2+d2<1, converging to (u',v'), (u", v") respectively, and let

C„ be a continuous arc, joining (uñ, vñ) and («„", vñ'), and comprised in the

ring l —£„<(m2+d2)1/2<1, where e„>0, and e„—»O. Denote by rjn the maxi-

mum of p(u, v) on C„ and suppose that t/„—»0. Then p(u, v) =0.f

1.16. Let p(u, v) he ^1 and of class PL in r2 = M2+i)2<l. Let /»(0, 0) =0

and suppose that for a certain a>0, p(u, vj/r" remains bounded in 0<r<l.

Then p(u, v) gr". If the equality holds for any (u, v), 0<m2+d2<1, then it

holds identically.%

Proof. Let M(r) denote the maximum of /»(m, v) on M2+z»2 = r2.  Then

* This generalizes a theorem of Lindelöf. Cf. Pólya und Szegö, loc. cit., p. 138, problem 277.

The proof, given there for the special case when p(u, ii) is the absolute value of an analytic function,

applies without the change of a word to the general case considered above.

t Cf. L. Bieberbach, Lehrbuch der Funktionentheorie, Berlin, B. G. Teubner, 1927, vol. II, pp.

19-21.
X This generalizes the Lemma of Schwarz. See C. Carathéodory, Conformai Representation,

London, Cambridge University Press, 1932, p. 39. The example p(u, v) = (ut+vl)llt shows that the

value a= 1 which holds for the Lemma of Schwarz does not hold in the general case.
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Mfâ/r* is the maximum of ¿(m, v)/r" on u2+v2=r2. Since log r" is harmonic,

¿(m, »)/>*** is of class PL in 0<m2+î»2<1. Therefore (see §1.4), M(r)/r" is a

convex function of log r, — <x> <log r<0. If such a function is bounded from

above, then it is a non-decreasing function.   Consequently, from

linw M(r)/r° ^ 1

it follows that ¿(m, zO/f^l, 0<r<l. If the equality holds for any (u, v),

0<m2+z»2<1, then (see §1.2) it holds identically.

2. A characterization of minimal surfaces

2.1. If x(u, v), y(u, v), z(u, v) form a triple of conjugate harmonic func-

tions (see §0.2) in a domain D, then we shall say that the equations

(5) x = x(u, v), y = y(u, v), z = z(u, v), (u, v) in D,

give a minimal surface in typical representation. In this statement, the term

minimal surface is used in a more general sense than is customary in dif-

ferential geometry, where the condition EG—F2>0 is always required. In

§4.1, we shall use the term minimal surface in an (apparently) even more

general sense.

If the equations (5) give a minimal surface 5DÎ in typical representation,

then the function (x2+y2+z2)112 will be called the norm of SJÍ and will be

denoted by | SD?| or | W(u, v)\ or | ïïfl(w) j, where w=u+iv.

2.2. Let

(6) SDi:     * = x(u, v), y = y(u, v), z = z(u, v), (u, v) in D,

be a minimal surface given in typical representation. Then

(7) | m | ■ (x2 + y2 + 32)1'2

is of class PL.

It is sufficient to consider points where | $Jl\ ̂ 0 (see §1.6). At such points

the Laplacian of log 15Dî| is given by A log | SDî| = T/\ 9fl\4, with

T = (ru2 + r,2)r2 - 2[(rrK)2 + (rr,)2],

where r, ju, ïs denote vectors, namely

£ = \.x, y, z), Xu = (Xu, yu, zu), Xv = (xv, yv, zv),

and where the vector products indicated are scalar. The parameters being

isothermic, we have

Since the partial derivatives of the second order of log \f0l\ are continuous
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where | 9J¿| ?¿0, we have only to show (see §1.3) that

(8) T ^ 0.

Fix (m0, Vo); then two cases are possible; either X = 0 or X>0. If X = 0, then

ïu = ïr = 0 and (8) is trivial. If X>0, then the vectors %u, Xv are both p^O and

are perpendicular to each other; let £ denote the unit vector perpendicular

to each of them. Then we can write

r = dr„ + b%v + c£,

where a, b, c are scalars. Therefore

x2 = a2\ + b2\ + c2,

££„ = dX, ïï„ = oX,

T = 2X(d2X + b2\ + c2) - 2(d2X2 + ¿>2X2) = 2Xc2 ^0.

2.3. The fact that (7) is of class PL certainly does not characterize mini-

mal surfaces.* However, (6) is still a minimal surface given in typical repre-

sentation if we shift the ryz-axes. Therefore, for the functions x(u, v),

y(u, v), z(u, v) in (6),

[(* + d)2 + (y + b)2 + (z + c)2]1'2

is of class PL for arbitrary choice of the real constants a, b, c. And, as we now

shall show, the converse also is true, so that we have the following

Lemma. A necessary and sufficient condition that the continuous functions

x(u, v), y(u, v), z(u, v) represent a minimal surface given in typical representa-

tion is that [(x+a)2+(y+b)2+(z+c)2]112 be of class PL for arbitrary choice of

the real constants a, b, c.

2.4. The necessity has been proved above. To prove the sufficiency, ob-

serve first that if (x2+y2+z2)112 is of class PL, then x2+y2+z2 also is of class

PL (see §1.8). Let then (m0, v0) he any fixed point of D, and put x(u0, v0) =x0,

y(u0, Vo) =yo, z(m0, i>o) =z0. Then if C denotes a sufficiently small circle with

center at (m0, v0) we have

(x0 + a)2 + (y0 + b)2 + (z0 + c)2

g — ( [(x + a)2 +(y + b)2 +(z + c)2]dfa
2ir J c

whence

* See §2.6.
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0 = xo2 + y02 +Zo2-f (x2 + y2 + z2)d<b - 21  a (— f xdd> - x<\

+b(iLyd*-y)+{iJczd*-**)]■

The point (u0, va) and the circle C being fixed, the right-hand member of this

inequality is a linear function of the arbitrary real constants a, b, c. Thus (9)

clearly implies that the coefficients of a, b, c vanish. That is to say, x(u, v) for

instance has the property that, for every point (m0, Vo) in D,

1   r2*
x(uo, vo) = — I     *(mo + p cos 4>, vo + p sin <p)d<p,

2ir J o

for sufficiently small values of p. As is well known, this property character-

izes harmonic functions.* Thus it follows that x(u, v), y(u, v), z(u, v) are har-

monic functions.

2.5. We proceed to show that E = G, F = 0. Let £ = (*, y, z), and let » = ?

+a, where a is an arbitrary constant vector. By assumption, then, (n2)1'2

is of class PL so that (see §§1.3 and 2.2)

(10) (b„2 + t),2)»2 - 2[(Ur,u)2 + (»r,,)2] ^ 0

at points where n^O. At points where D = 0, (10) clearly also holds (with

the sign of equality).

Consider a definite point (u0, v0) in D. Then i)u = ïu, *)„ = £„, regardless

of the choice of the constant vector a. Choose first u=£u(m0, v0)— ï(m0, vQ).

Then b(m0) ̂ o) =ï«(«o, î>o), and (10) gives that

EG - E2 - 2F2 = 0

at the point (m0, v0). Choose secondly a=î,(«o, v0)— ï(m0, v0). (10) gives

EG -G2 - 2F2 ^ 0

at (mo, vo). Addition gives

- (E- G)2 - 4F2 = 0

and consequently E = G, F = 0 at (m0, v0) . Since (m0, v0) was any point in D,

the lemma of §2.3 is proved.

2.6. The following remark might help explain the situation.

* See for instance O. D. Kellogg, Foundations of Potential Theory, Berlin, J. Springer, 1929, p.

227.
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Z/î = ï(«, »), (m, v) in D, is a minimal surface in typical representation,

then E = r„2 is of class PL in D*

It is clearly sufficient to consider the case when D is the interior of a

circle. Then the components x(u, v), y(u, v), z(u, v), which are harmonic, can

be written in the form

* = 9t/i(«0, y = »/»(w), z = 9l/,(w),

where fi(w), ft(w), fz(w) axe single-valued analytic functions of w = u+iv in

D. We have then

xu — ixv = f{, yu — iyv = fi, zu - izv = //,

and hence, on account of E = G,

E = \(\n\2 + \fi\2 + \fi\2).

Thus E is the sum of three functions of class PL, and consequently (see §1.10)

E is also of class PL.

As an example, let us consider the surface of Enneperf (in typical represen-

tation)
x = 3u + 3uv2 — m8,

y = — 3v — 3u2v + v3,

z = 3m2 — 3v2.

Then xu, y„, zu are three harmonic functions, such that the sum of their squares

is of class PL. Computation shows that Xu, y«, zu are not conjugate. Thus, in

the lemma of §2.3, the parameters a, b, c are actually necessary, even if the given

three functions are known to be harmonic.

3. Applications

3.1. Let

JfJÎ:      x = x(u, v), y = y(u, v), z = z(m, v), m + iv = w, \ w\ < 1,

be a minimal surface given in typical representation, such that (0, 0) is

carried into (0, 0, 0). If 5DÎ is comprised in the unit sphere, z2+y2+z2^l,

then

(11) |3R(w)| g | w|,0 <| w\ < 1,

and

(12) £o/2= 1,

* In a subsequent paper, Subharmonic functions and surfaces of negative curvature, in the present

number of these Transactions, we point out that if a surface is given in typical representation, then

E=Xu is of class PL if and only if the Gauss curvature of the surface is ¿0.

t See G. Darboux, Théorie Générale des Surfaces, Paris, 1887, vol. I, pp. 372-376.
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where E0112 denotes the length deformation ratio at the origin. The equalities

hold if and only if 9JÎ is a simply-covered circular disc with unit radius.*

Proof. Since E = G, F = 0, we have

(13) lim | m(w) | / | w | - ET
IH-.0

and therefore | 9Jc(w) | /1 w\ remains bounded in 0 < | w\ < 1. Consequently in

0< | w\ < 1 we can apply §1.16, with a = 1, to the function ¿(m, v) = \ ffll(w) |.

This gives (11), and then (13) yields (12).

If we define | 9Jc(w)|/M =£01/2 for w = 0, then both (11) and (12) are

contained in | Í0l(w) \/\w\ «SI, \w\ < 1. If then | ürjc(ie») \ /\w\ = 1 for any w in

|w| <1, then (see §1.2) the equality is an identity, | W\2=u2+v2. Differen-

tiation gives

rru = m, ïï, = v,

ïïuu + ïu2   =  1, XXvv+tv2   =  1,

whence addition gives E = G = 1 throughout. Therefore the area of the mini-

mal surface is

A =   ( (        (EG- F2y2dudv = t.
J J w+vXl

It follows from this situation that ffl is a simply-covered circular discf

3.2. Let

SDi:    x = x(u, v), y = y(u, v), z = z(u, v), u2 + v2 < 1,

be a minimal surface given in typical representation, and let 15DÎ | be bound-

ed. Suppose x(u, v), y(u, v), z(u, v) remain continuous on a certain arc cr of

u2+v2 = l, and x(u, v) = const. = x0, y(u, v) = const. =yo, z(u, v) =const.=z0

there. Then x(u, v) =x0, y(u, v) =y0, z(u, v) =za.%

Proof. Apply §1.12 to the function

¿(m, v) = [(x(u, v) — xo)2 + (y(u, v) - yo)2 + (z(u, v) - ¡Jo)2]1'2.

3.3. Let

9JÍ:    x = x(u, v), y = y(u, v), z = z(u, v), 0 < arc tg(i//M) < a,

* This generalizes the Lemma of Schwarz. Cf. C. Carathéodory, Conformai Representation, p. 39.

t See E. F. Beckenbach, The area and boundary of minimal surfaces, Annals of Mathematics,

(2), vol. 33 (1932), pp. 658-664.
t See T. Radó, Some remarks on the problem of Plateau, Proceedings of the National Academy

of Sciences, vol. 16 (1930), pp. 242-248; J. Douglas, Solution of the problem of Plateau, these Trans-

actions, vol. 33 (1931), pp. 262-321.
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be a minimal surface given in typical representation, and let | 9ft | be bound-

ed. Let further x(u, v), y(u, v), z(u, v) remain continuous on the ray m>0,

v = 0, and let x(u, 0)-j>x0,y(u, 0)—>y0, z(u, 0)—»z0 as m—»+0. Then in every

angle
v

0 < arc tg — < a — a, where a > 0,
M

we have x(u, v)-+x0, y(u, z>)—>yo, z(m, v)—->zo as (u, v)—*(0, 0) in any manner.*

Proof. Apply §1.14 to the function

p(u, v) = [(x(u, v) — xo)2 + (y(u, v) — y0)2 + (z(u, v) — z0)2]112.

As in §1.14, the theorem is true if the domain of definition is only the sector

0<arc tg (v/u) <a, 0<M2+z»2<r02.

3.4. Besides the assumptions of §3.3, suppose x(u, v), y(u, v), z(u, v)

remain continuous on the ray arc tg (v/u) =a, m2+z>2>0, and let x(u, v)-+Xi,

y(u, v)-^yi, z(u, !>)—>Zi as («, v)—>(0, 0) along the ray arc tg (v/u) =a. Then

Xo = xit yo = yi, Zo-Zi, and x(u, v)—>x0 = Xi, y(u, v)—>y0 = yi, z(u, v)->z0 = zi as

(m, v)—>(0, 0) in any manner in the angle 0 <arc tg (v/u) <a.

Proof. Apply §3.3 to the angles

V        3a a v
0 < arc tg — < — and — < arc tg — < a

u       A A u

and compare results. As before, the theorem is still true if the domain of defi-

nition is only the sector

0 < arc tg — < a, 0 < u2 + v2 < r02.
u

3.5. The preceding result yields a new proof of the following lemma,

used by J. Douglas in his work on the problem of Plateau, f

Let the integrable functions £(</»), r¡(<p), f(c/»), substituted in the Poisson

integral formula, determine the (harmonic) coordinate functions of a minimal

surface

97Î:   x = x(u, v), y = y(u, v), z = z(u, v), u2 + v2 < 1,

in typical representation. Let further £(c6), r](<p), Ç(<p) approach definite

limit values £-(?r), r¡-(ir), Ç-(ir) and £+(tt), ri+(ir), Ç+(ir) according as c6—>7r in

clockwise and counterclockwise senses respectively. Then

(14) £_(x) = ?+(x), r,_(7r) = r,+M, f_(x) = f+(,).

* This generalizes a theorem of Lindelöf. Cf. Pólya und Szegö, loc. cit.

t J. Douglas, loc. cit., pp. 304-306.
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Proof. It is a well known property of the Poisson integral that, because

of the specified nature of the discontinuity of i-(<p) at <p = ir, the function

x(u, v) approaches a definite limit if (u, v)—*( — l, 0) along any straight line

in m2+z»2<1, this limit being a linear function of the angle from the M-axis

to the straight line and varying from £_(ir) to %+(ir) as the angle varies from

— 7r/2 to tt/2. Similar statements hold for y(u, v), z(u, v). But if we join two

such straight lines by a circular arc lying in u2+v2 < 1, we obtain a sector for

which §3.4 applies; consequently, (*, y, z)—> a definite (xo, yo, Zo) which does

not vary with the angle. That is, the linear functions mentioned above are

constants, whence (14).

3.6. Let

3JÎ:    x = x(u, v), y = y(u, v), z = z(u, v), (u, v) interior to R,

where R is a Jordan region,* be a minimal surface given in typical representa-

tion, and let | 2Jc-| be bounded. Let further x(u, v), y(u, v), z(u, v) remain con-

tinuous on the boundary of R except possibly at a single point (u0, v0), and

let (*, y, z)—*(xo, yo, z0) and (x, y, z)—>(*i, yi, Zi) as (u, v) converges on the

boundary to (m0, î»o) from one side and the other respectively. Then (x0, yo,

Zo) = (xi, yi, Zi) and x(u, v)—>x0 = xi, y(u, v)—>y0 = yi, z(u, v)-^z0=zi as

(u, v)—>-(u0, v0) in any manner in R.

The proof follows immediately from §3.4 by conformai mapping. It can

be obtained also by following step by step the proof, for the absolute value of

an analytic function of a complex variable, based on the rotation-method, f

4. On conformal maps of minimal surfaces

4.1. The most general definition (actually used in the literature) of a

minimal surface is as follows.f

A set of equations

(15) x = £(«, ß), y = r)(a, ß), z = f («, ß), (a, ß) in R,

where R denotes a Jordan region,* defines a continuous surface S of the topo-

logical type of the circular disc, if £(a, ß), n(a, ß), f(a, ß) are continuous in R.

The surface (15) is a minimal surface if the following condition is satisfied.

Given any point (ao, ßo) interior to R, there exists a vicinity V0 of (a0, ß0) and

a topological transformation ä = ä(a, ß), ß=ß(a, ß) of Vo, such that £(a, ß),

i)(a, ß), Ç(a, ß) are transformed into functions £(a, ß), rj(ä, ß), f(ä, ß) which

form a triple of conjugate harmonic functions in the image Vo of V (see

§0.2). Such parameters 5, ß are called local typical parameters.

* That is, the set of points in and on a Jordan curve.

f Cf. C. Carathéodory, Conformal Representation, pp. 21-24.

% See T. Radó, Contributions to the theory of minimal surfaces, Acta Szeged, vol. 9 (1932), p. 9.
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4.2. According to the fundamental theorem in the theory of uniformiza-

tion,f a minimal surface in the general sense defined above admits also of

typical parameters in the large, in the following sense. If

(16) S:    x = f(a, ß), y = r,(a, ß), z = f(o, ß), (a, ß) in R,

is a minimal surface, in the sense of §4.1, then there exists a topological trans-

formation

(« = «(«, ß),    i> = v(a, ß),   (a, ß) interior to R,

\ a = a(u, v),    ß = ß(u, v),    u2 + v2 < 1,

of the interior of R into u2+v2<l, such that £(a, ß), n(a, ß), f(a, ß)

are carried into three functions

x(u, v) = £(a(u, v), ß(u, v)), y(u, v) = v(a(u, v), ß(u, v)),
(lo)

z(m, v) = f (a(u, v), ß(u, v))

which form a triple of conjugate harmonic functions in u2+v2<l. Our pur-

pose in this section is to study the situation on the boundary.

4.3. Using the same notations as in the preceding paragraph, §4.2, sup-

pose that the functions £(a, ß), v(a, ß), f(a, ß) in (16) do not all three reduce

to constants on any arc of the boundary of R.

Then the transformation (17) remains continuous and one-to-one on the

boundaries. As a consequence, the functions x(u, v), y(u, v), z(u, v) in (18) re-

main continuous on u2+v2 = l.

4.4. The preceding assertion will be established if we disprove the fol-

lowing two possibilities.

(i) Suppose there exist in the interior of R two sequences («„', ßn),

(«„", ßn') converging to the same point (cv0, ßo) on the boundary of R, such

that the corresponding sequences (uñ, vñ), (uñ', vñ') converge to two dis-

tinct points (mo', vó), (mo", vó') on m2+z>2 = 1. Denote then by /„ an arc in

the interior of R, connecting (añ, ßn) and (a„", ßn'), such that /„ converges

to («o, ßo) ; and denote by C„ the image of ln in u2+v2 < 1. Then the theorem

of §1.15 applies to the function

p(u, v) = [(x(u, v) - £(ao,ßo))2 + (y(u, v) - v(<*o,ßo))2 + (z(u,v) - f(«o^o))2]1/2,

and it follows that p(u, v) vanishes identically. Hence x(u, v), y(u, v),

z(u, v) and consequently |(a, ß), rj(a, ß), f (a, ß) all reduce to constants. This

contradicts the assumption stated in §4.3.

(ii) Denote by (ah ß,), (at, ß2) any two distinct points on the boundary of

f See C. Carathéodory, Conformai Representation, chapter VII, and also the biblioeraohical

notes given there on p. 105.
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R, and by C a Jordan arc in the interior of R connecting (au ß}) and (a2, ß2).

On account of the preceding result, the image C* of C is a Jordan arc in

u2+v2<l with definite end points on u2+v2 = l. We have to disprove the

possibility that these end points coincide. Suppose they do coincide. Then

C* is actually a closed Jordan curve, which has a unique point (mo, v0) in

common with u2+v2 = l. Denote by D* the interior of C*. Then x(u, v),

y(u, v), z(u, v) satisfy in D* the assumptions of §3.6. Hence x(u, v), y(u, v),

z(m, i») converge to definite limits x0, yo, z0 if (u, v) converges to (m0, v0) from

within D*.

D* is the image of a domain D in R which is bounded by C and by a cer-

tain arc a- of the boundary of R. If (a, ß) converges, from within D, to any

point of a, then (u, v) converges to (u0, v0) from within D*. Hence

£(«, ß) = x(u, v) -> Xo, v(a, ß) = y(u, v) -» y0, f(«, ß) = z(u, v) -* z0.

That is to say, £(a, ß), r¡(a, ß), f(a, ß) all three reduce to constants on a, in

contradiction with the assumption made in §4.3.

4.5. We mention the following two special cases of the theorem of §4.3.

Suppose that £(a, ß) =a, v(a, ß) =ß, f (a, ß) =0 in the Jordan region R. Then

the assumptions of §§4.2 and 4.3 obviously are satisfied and the theorem of

§4.3 reduces to the so-called Osgood-Carathéodory theorem: If the interior of

a Jordan region R is mapped in a one-to-one and conformai way upon u2+v2

<l,the map remains continuous and one-to-one on the boundary of R.\

4.6. Suppose next that the equations (16) carry the boundary of R in a

topological way into a Jordan curve T. In this case we say that the surface

5 is bounded by T. The theorem of §4.3 implies then the following result.

A minimal surface S (in the general sense of §4.1), bounded by a Jordan curve

r, admits of a representation

(19) x = x(u, v), y = y(u, v), z = z(m, v), u2 + v2 ^ 1,

with the following properties:

(i) x(u, v), y(u, v), z(u, v) form a triple of conjugate harmonic functions in

u2+v2<l;

(ii) x(u, v), y(u, v), z(u, v) are continuous in u2+v2^l, and the equations

(19) carry u2+v2 = 1 in a topological way into the Jordan curve T.

By way of explanation, let us recall that a Jordan curve might bound

several minimal surfaces, as follows from classical examples. The preceding

result expresses a property common to all these minimal surfaces.

t See C. Carathéodory, Conformai Representation, chapter VI.
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