
SUBHARMONIC FUNCTIONS AND SURFACES
OF NEGATIVE CURVATURE*

e. f. beckenbachf and t. radó

Introduction

0.1. Given a piece of surface in general parametric representation

x = x(u, v), y = y(u, v), z = z(u, v),

the Gauss curvature K of the surface is given by the familiar formulai

(- hGuv + Fuv — \EVV)    \EU    (Fu — fJ5,)

W*K = (Fv - JG.)
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where E, F, G are the first fundamental quantities :

E = x¿ + y2 + z„2, F = xuxv + yuyv + zuzv, G = xv2 + y2 + z„2,

and W2 = EG — F2. As is usual in differential geometry, we assume throughout

this paper that W¿¿0 for the representations to be considered.

Suppose now that the surface is given in an isothermic representation;

that is to say, suppose that E = G,F = 0. Put E = G=X(u, v). The assumption

W?*0 is then equivalent to X(m, î»)>0. The above formula for K reduces to

the form
1    .

K =-(Xu2 + A,2 - XAX),

where A is the symbol
2\3

d2        d2
A =-1-

dM2       dv2

0.2. By computation it follows that

* Presented to the Society, April 14,1933, under the title On the isoperimetric inequality; received

by the editors February 16,1933.

t National Research Fellow.

i See W. Blaschke, Differentialgeometrie, Berlin, J. Springer, 1930, p. 93.
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XAX- (Xu2 + X„2)
A loe X =-•

X2

Hence, we have the formula*

(1) £=--AlogX.
ZA

Consequently, if K = 0 on our surface, then AlogX = 0, that is to say, log X is

subharmonic in the terminology of F. Riesz.] Conversely, i/logX is subharmonic,

then K = 0 on the surface.

This relation between subharmonic functions and surfaces of negative

curvature suggests geometrical applications of the theory of subharmonic

functions. On the other hand, the geometrical interpretation suggests ques-

tions concerning subharmonic functions. The purpose of this paper is to

present a few results which we have obtained in this way.

0.3. One of our geometrical results is concerned with the isoperimetric

inequality. Among all simply-connected plane regions whose boundaries are

rectifiable and have a given length /, the circle has the maximum area. This

fact may also be stated as follows : if a is the area and I the length of the bound-

ary of a simply-connected plane region, then a and I satisfy the isoperimetric

inequality a^Z2/(4ir). Carleman proved that this same inequality holds for

every simply-connected rectifiable piece of a minimal surface. J We shall prove

that the isoperimetric inequality holds for every simply-connected recti-

fiable piece of every surface whose Gauss curvature K is = 0. This generaliza-

tion is, in a way, final§; indeed, it is almost trivial (cf. §2.7) that if a surface

has the property that every simply-connected piece on it satisfies the

isoperimetric inequality, then K = 0 on the surface.

We shall make in our work the assumption, customary in differential

* See for instance A. R. Forsyth, Differential Geometry, Cambridge University Press, 1912,

p. 84.
t See F. Riesz, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel (in two

parts), Acta Mathematica, vol. 48 (1926), pp. 329-343, and vol. 54 (1930), pp. 321-360. We shall
confine ourselves to the case of continuous subharmonic functions, though Riesz defines them more

broadly. For a systematic treatment of the elementary properties of these functions, see P. Montel,

Sur les fonctions convexes et les fonctions sousharmoniques, Journal de Mathématiques, (9), vol. 7

(1928), pp. 29-60.
X T. Carleman, Zur Theorie der Minimalflächen, Mathematische Zeitschrift, vol. 9 (1921), pp.

154-160.
§ That is, it is final in so far as the case of surfaces with K á 0 is concerned. It is known, however,

that for convex regions on a sphere with K=Ko>0 we have aá(/2+JCo<i2)/(4ir). See F. Bernstein,

Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene, Mathe-

matische Annalen, vol. 60 (1905), pp. 117-136. There are indications that perhaps the same in-

equality holds for simply-connected rectifiable regions on surfaces of constant negative curvature,

K = Ko<0. The question arises then as to whether or not for all real Ko the inequality og (P+Ki&?)

/(4x) characterizes surfaces with variable curvature K^K0.
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geometry, that the surfaces and curves to be considered are analytic. This

obviously unnecessary assumption serves the twofold purpose of avoiding

certain unessential complications which would obscure the unity and sim-

plicity of the method, and of dodgmg certain essential difficulties which

seem to require a thorough and presumably interesting study.

Besides the isoperimetric inequality, we shall discuss briefly a few the-

orems which have been first proved for conformai maps of plane regions, have

then been extended to conformai maps of minimal surfaces, and will be shown

in this paper to hold for conformai maps of surfaces with K ^ 0.

0.4. The following notation will simplify our next statement. If g(u, v) is

a continuous function in a domain D, we shall put

A(g; Mo, vo;p) = —- I  I g(u0 + £, v0 + r¡)d£dv,
irp'J Jji+,.<p>

1   r2*
L(g; Mo, vo; p) = — I    g(uo + p cos <p,vo + p sin <¡>)dfa

2ir J o

where (m0, v0) is the center and p is the radius of a circular disc k: (m—m0)2

+ (v—Vo)2èp2 which is comprised in D.

An important inequality, due to Carleman,* can be stated then as follows:

if/(w) is an analytic function of w = u+iv in D, then

(2) [¿(|/|2;Mo,flo;p)]1/2=g£(!/|;M„,flo;p)

for every circular disc comprised in D. We shall show that a function g(u, v),

continuous and >i 0 in D, satisfies the inequality

(3) [A(g2; «o, »o; p)]112 ^ L(g; u0, v0; p)

for every circular disc comprised in D, if and only if log g(u, v) is subharmonic

in the part of D where g(u, v) > 0.

We shall use in this paper, as we did in a previous one,t the term function

of class PL, meaning a function g(u, v) continuous and 2:0, and such that

log g(u, v) is subharmonic wherever g(u, v)>0. Then the above inequality (3)

expresses a characteristic property of functions of class PL. On account of

the formula (1) for K, this analytic fact is then readily seen to be equivalent

to the geometric fact that the isoperimetric inequality is characteristic for

surfaces with negative curvature (as explained in §0.3).

0.5. It is natural to ask what happens if we replace in (3) the exponents 2

and 1/2 by ß and 1/ß respectively, where ß is any real number. At the end

of §1 we shall make a few very incomplete remarks concerning this question.

* Mathematische Zeitschrift, loe. cit.

t Subharmonic functions and minimal surfaces, these Transactions, vol. 35 (1933), pp. 648-661.
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1. A CHARACTERIZATION OF FUNCTIONS OF CLASS PL*

1.1. The familiar example of a function of class PL is the absolute value

of an analytic function/(w) of the complex variable w = u+iv. Indeed, as

is well known, log \f(w) | is a harmonic function of u and v, that is to say,

A log I/Ml =0.
We have the following theorem, due to Carleman.f

If f(w) is continuous in the unit circle \w | — 1 and analytic in \w \ < 1, then

(4) ff \f(w)\2dudv = — \   f    \f(e*)\d<b
J J u'+u>< 1 4iT L J 0

The sign of equality in (4) holds if and only if f(w) =F'(w), where F(w) is a

linear function
aw + b

cw + d

regular in \w\ — l.

1.2. If we write the inequality (4) of Carleman as we did in 0.4, then there

arises the following question. Given a domain D in the M^-plane, we ask for all

functions g(u, v), which are continuous and —OinD, and satisfy the ine-

quality (3) for every point (m0, v0) in D and for every p such that the circular

disc (u—Uo)2+(v—Vo)2úp2 is comprised in D. We shall prove the following

Lemma. A function g(u, v), continuous and —0 in a domain D, satisfies the

inequality

(5) [A(g2; mo, v0; p)]1/2 Ú L(g; u0, v0; p)

for every point (u0, v0) in D and for every p, such that the circular disc (u — Uo)2

+ (v—v0)2^p2 is comprised in D, if and only if g(u, v) is of class PL in D.

1.3. Let us first prove that if g(u, v) is of class PL in D, then the inequality

(5) is satisfied. Suppose first that g(u, v) >0 in D. Consider any circular disc k,

comprised in D, with center (u0, v0) and radius p. Denote by C the perimeter

Of K. Put

log g(u, v) = <p(u, v) ;

then by assumption 4>(u, v) is subharmonic. Let h(u, v) be the harmonic func-

tion in k coinciding with (p(u, v) on C. Then<f>(u, v)-=h(u, v) in k%, that is,

g(u, v)='ch(-u'v) in k. Consequently,

* For the precise definition and a discussion of elementary facts concerning these functions,

see the authors' paper just cited.

f Mathematische Zeitschrift, loe. cit.

t This is a general relation between a subharmonic function and a dominating harmonic func-

tion. See F. Riesz, Acta Mathematica, loc. cit., first part, p. 331.

"
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(6) [A(g2; Mo, v0; p)]1'2 á [A(e2h; u0, v0; p)]1'2.

Also, g(u, v) = eHu'v) on C, so that

(7) L(eh; u0, v0; p) = L(g; u0, v0; p).

Let h*(u, v) he the conjugate harmonic function of h(u, v). Then f(w)

= eh+ih* is an analytic function of w = u+iv, and \f(w) \ = «*<«,«), J3y Carle-

man's inequality (2) then

(8) [A(e2h; u0, v0; p)]1'2 g L(e\ u0, v0; P).

(5) follows from (6), (7), and (8).

Suppose now only that the function g(u, v) of class PL is ^0 in D. Con-

sider g(u, v) + e, where e is a constant >0. Then g(u, v) + e is >0 and of class

PL.] Accordingly, the above discussion can be applied to g(u, v) + e, so that

(5) holds for this function. As g(u, v) is the uniform limit of g(u, v) + e as

e—>0, we have (5) for a general g(u, v) of class PL.

1.4. We shall show now that if g(u, v) is a non-negative function defined

and continuous in D, and if for every circular disc k comprised in D, the in-

equality (5) holds, then g(u, v) is of class PL.

Suppose first that g(u, v) has continuous derivatives of the first and second

order, and let these derivatives be denoted by their standard symbols /», q, r,

s, t. We assume for convenience that the point (m0, v0) under discussion is (0,

0) and denote by />0, etc., the value of /», etc., at (0, 0). Finally we shall denote

by a,- certain quantities such that o-,/p2—>0 as p—>0, where p2 = u2+v2.

We have then, by the finite Taylor expansion,

g(u, v) = go + pou + qov + |(r0M2 + 2s0uv + t0v2) + o-1

= go + (po cos <j> + do sin 4>)p

+ |(ro cos2 4> + 2so cos <j> sin <f> + to sin2 <j>)p2 + a\,

g(u, v)2 = go2 + 2go(po cos <b + do sin <t>)p

+ [(K + goro) cos2 <b + 2(/»0do + goSo) cos <b sin <f>

+ (qo2 + goto) sin2 c6]p2 + <r2,

so that

1   f2'
L(g; 0,0; p) = — I      g(p cos <b, p sin <b)d<b = go + \p2(ro + k) + o-3,

2t J o

[L(g; 0, 0; p)]2 = go2 + h2go(ro + h) + <r4,

f For the fact that the sum of two functions of class PL is again a function of class PL, see the

authors' paper in vol. 35 of these Transactions, pp. 648-661, §1.10.
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1        /. p /.2t

A(g2; 0, 0; p) = —-        rdr j    g(r cos d>, r sin d>)2dd>
irp* J o J o

= go2 + \p2[(po2 +qo2)+ go(ro + /o)] + cr6.

By assumption, then,

go2 + ÍP2[(¿o2 + ?o2) + go(ro + to)] + <r6 = go2 + %p2go(ro + k) + o-4,

or

(¿o2 + ?o2) - go(ro + to) = 4(<r4 - <r6)/p2.

The right-hand member of this last inequality —>0 as p—»0, so that the

left-hand member is =0. Since any point of D can be taken as (u0, vQ), we

have then
g(r + t)- (p2 + q2) = 0

in D. Hence g(u, v) is of class PL, since by computation (cf. §0.2)

g(r + t)-(p2 + q2)
A log g =-,

g2

wherever g>0.

1.5. Suppose nowf that g(u, v) has continuous derivatives of only the

first order, but otherwise satisfies the conditions of §1.4. For a small fixed

t>0, put

g(u, v;t) = —- \  \ g(u + £,v + r,)dtdin.

(Of course g(u, v; t) can be defined thus for only a subdomain D' of D, but

this is of no consequence since r is arbitrarily small.) That this function

g(u, v;t) also satisfies (5) follows from Minkowski's inequality. J Furthermore

g(u, v; t) has continuous derivatives of the second order.§ Hence g(u, v; t)

f The assumptions of §1.4 are sufficient for the applications to differential geometry which we

shall make in §2, so that the reader interested primarily in those applications can omit §1.5 and §1.6

without loss of continuity in the discussion.

J The necessary inequality follows, by a familiar passage to the limit, from the inequality

2 \ 1/2 / \ 1/2

(s(S-)) *l(5*)
which has the geometrical significance that the length of a polygonal line is at least as great as that

of the line segment joining its end points.

§ Concerning the properties and applications of this approximation by integral means, see E.

Levi, Sopra una proprietà caratleristica dette funzione armoniche, Atti della Reale Accademia dei

Lincei, vol. 18 (1909), pp. 10-15; H. E. Bray, Proof of a formula for an area, Bulletin of the American

Mathematical Society, vol. 29 (1923), pp. 264-270; T. Rad6, Remarque sur les fonctions subhar-

moniques, Paris Comptes Rendus, vol. 186, pp. 346-348; T. Radó, Sur le calcul de l'aire des surfaces

courbes, Fundamenta Mathematicae, vol. 10 (1927), pp. 197-210; F. Riesz, loc. cit., second part,pp.

342-345.
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satisfies all the conditions of §1.4 and so is of classPZ,. Since g(u, v;r)zXg(u, v)

as t^O it follows that g(u, v) is of class PL.

1.6. Suppose finally that g(u, v) is only continuous, but otherwise satisfies

the conditions of §1.4. Then g(u, v; r), defined as above, has continuous first

derivativesf, and hence it satisfies the assumptions of §1.5. According to

§1.5, g(u, v; t) is of class PL and consequently its uniform limit g(u, v) is of

class PL.

1.7. With regard to an application which we shall make in §2, we need a

slight (and incomplete) discussion of the sign of equality in (5). Suppose that

g(u, v) is continuous and positive in (u—uo)2+(v—Vo)2úp2 and that g(u, v)

is of class PL in (u—Uo)2+(v—v0)2<p2. Suppose that

(9) [A(g2; mo, vo; p)]1'2 = L(g; uQ, v0; p).

Then g(u, v) = \F'(w) |, where F(w) is a linear function

aw + b

cw + d

which is regular in \w—wQ \ up and which does not reduce to a constant.

Indeed, if we go through the discussion in §1.3, we find that in order to

have (9), we must have (with the notations of §1.3)

g(u, v) = | f(w) | ,

where f(w) satisfies the inequality (4) of Carleman with the sign of equality.

On account of the theorem of Carleman, we have then/(7f) =F'(w), where

F(w) has the desired form. This F(w) cannot reduce to a constant at present,

since then it would follow that g(u, v) = | F.'(w) | =0, while we supposed that

g(u, v)>0 throughout.

1.8. The question arises as to the significance of the inequality (5) if we

replace the exponent 2 by a general (real) exponent ß. The case ß = 1 can be

settled easily; the reasoning used above in the case ß = 2 applies directly4

There follows

A function g(u, v), continuous in a domain D, satisfies there the inequality

A(g; Mo, vo; p) á L(g; u0, v0; p)

for every point (u0, v0) in D and for every p, such that the circular disc (u —Uo)2

+ (îi—Vo)2 Up2 is comprised in D, if and only if g(u, v) is subharmonic in D.

1.9. For values of ß other than 1 and 2, the method of §1.4, §1.5, §1.6

yields theorems whose statements vary according to the location of ß with

t See third footnote on p. 667.
} Actually, though, there is a much simpler way of handling the case ß— 1.
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respect to the special values 0, 1,2. By way of illustration, we mention the

following statements.

Suppose g(u, v) is continuous and =0 in a domain D. Suppose that for a

certain exponent ß the inequality

(10) [A(g?; mo, vo; p)]1'" Ú L(g; m„, r0; p)

holds for every point (m0, v0) in D and for every p such that the circular disc

(u—Uo)2+(v—Vo)2^p2 is comprised in D.

If 1 <ß<2, then it follows that g2~ß is subharmonic in D.

Ifß > 2, it follows that l/gß~2 is super harmonic.

In a general way, the greater ß, the stronger the inference will be as to the

subharmonic character of g(u, v). For ß<l, g(u, v) need not be subharmonic.

For ß = 1 and ß = 2 the inequality (10) has been shown, in what precedes,

to be a necessary and sufficient criterion for a certain subharmonic property.

An equally complete discussion for a general exponent might lead to interest-

ing questions.

2. Applications to surfaces of negative curvature

2.1. Let there be given a piece of surface S in a representation

(11) S: x = x(u, v), y = y(u, v), z = z(u, v), u2 + v2 = p2,

with the following properties.

(a) x(u, v), y(u, v), z(u, v) and their first partial derivatives are continuous

inM2+îi2^p2.

(b) In u2+v2<p2, x(u, v), y(u, v), z(u, v) have continuous partial deriva-

tives of the third order.

(c) The representation (11) is isothermic, that is to say, E = G, F = 0, in

u2+v2úp2. We put E = G=\(u, v). Then X^O; but we suppose that X>0 in

U2+V2Sp2.

2.2. Lemma. // the Gauss curvature K of the surface S, given in a represen-

tation as described in §2.1, is ¿0, then the area a and the perimeter I of S satisfy

the inequality a^l2/(A-ir). The sign of equality holds if and only if K=0, and

S is a geodesic circle (that is to say, S is a developable and there exists a point O

on S such that the geodesic distance of O from every point of the perimeter of S is.

the same).

The proof is as follows. With the notation of §0.4 we have

(12) a = irp2A(X; 0, 0; p), I - 2ttpL(X1'2; 0, 0; p).

On account of the assumption K^0, the function X(m, v) is of class PL (see
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§0.2 and the definition of functions of class PL). Hence f the function

X(m, v)112 is also of class PL. From §1.2 it follows, therefore, for g =X1/2, that

(13) [i(\;0,0;ri]'''¿ir;0,0;p).

The inequality a^Z2/(47r) follows now immediately from (12) and (13).

Suppose now that we have a=Z2/(47r). Then we must have the sign of

equality in (13). Consequently (see §1.7) we have

(14) \(u,vy<2 = \F'(w)\,

where F(w) has the form (aw+b)/(cw+d), and F(w) is regular and not con-

stant in | if \úp- Hence the equation w* = F(w) carries the circle [if |gp

in a one-to-one and conformai way into a certain circular disc k* in the

w* = u*+iv* plane. Introducing m*, v* as new parameters, we obtain the

equations of S in the form

(15) S: x = £(m*, i»*), y = jj(m*, »*), z = {•(«*, v*), («*, v*) in k*.

Since we passed from the isothermic parameters m, v to the new parameters

m*, v* by a conformai map, it follows that m*, v* are also isothermic pa-

rameters. Hence if we denote by E*, F*, G* the first fundamental quantities

relative to the representation (15), we have E* = G*, F* = 0. If we put

E*-G* =X*(m*, v*), then we have, by simple computation,

X*1'2 = X1'2
dw

dw*
= V'2/\F'(w)\ = 1,

on account of (14). Hence E* = G* = 1, F* = 0. That is to say, the representa-

tion (15) is an isometric map of S (every arc on 5 has the same length as its

image).

2.3. In order to apply the lemma of §2.2 to a given piece of surface, we have

to represent the surface as required in §2.1. Thus it is necessary to refer to

existence theorems on conformai mapping, and the validity of the isoperi-

metric inequality a?¿l2/(Air) is made to depend upon the available results

concerning the theory of conformai mapping. Since we are unable at this

time to prove the most general statement which is likely to be true, we re-

strict ourselves to the following theorem which might be considered as per-

fectly general according to the usual standards in differential geometry.

2.4. Theorem. Let there be given an analytic surface in the xyz-space, that

is to say, a surface which admits, in the vicinity of every one of its points, a

representation x=x(u, v), y=y(u, v), z = z(u, v), where x(u, v), y(u, v), z(u, v)

f Every positive power of a function of class PL is again a function of class PL; see the authors'

paper in these Transactions, vol. 35, pp. 648-661, §1.8.
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are analytic functions of u, v, and where EG—F2>0. Denote by K the Gauss

curvature of the surface. Then K¿0 is a necessary and sufficient condition that

the area a and the perimeter I of every simply-connected portion, bounded by an

analytic curve, of the surface satisfy the isoperimetric inequality a^l2/(4cir).

2.5. To prove this theorem, suppose first that K = 0. Let S be any simply-

connected portion of the surface, bounded by an analytic curve. Take a

simply-connected open portion S* of the surface, such that S is interior to

S*. On account of general theorems, S* admits of an isothermic representa-

tion

S*: x = £(«*, v*), y = r¡(u*, v*), z = Ç(u*, v*), u*2 + v*2 < 1,

where E* = G*>0, F* = 0, and £, n, f are analytic functions of m*, v*. The

portion 5 appears in this map as a Jordan region R* in m*2+zj*2 < 1, bounded

by an analytic Jordan curve C*. We map then R* in a one-to-one and con-

formal way upon u2+v2 2¡ 1 ; on account of the analyticity of C*, this map re-

mains analytic on u2+v2 = 1. Thus we obtain a map of S as required in §2.1,

and then the lemma of §2.2 gives the desired inequality <z:£/2/(47r).

2.6.f Suppose, conversely, that we have afil2/(i-ir) for every portion 5

of a surface as described in §2.4. Take such a portion S. Applying the con-

struction of §2.5, we obtain for S a representation

(16) 5: x = x(u, v), y = y(u, v), z = z(u, v), u2 + v2 — 1,

with the properties required in §2.1. If k:(u — u0)2+(v — v¿)2úp2 is any cir-

cular disc comprised in u2+v2<l, then there corresponds to k, by means of

(16), a portion So whose area a0 and perimeter l0 satisfy by assumption the

inequality a0úlo2/(4ir). If we use again the notation E = G=X(u,v), then

a0 = 7rpM(X; Mo, v0; p), lo = 2irpL(X112; u0, v0; p),

and hence a0 = ¿o2/(47r) implies that

[¿(X; Mo, vo; p)}1'2 ^ L(X1'2; u0, v0; p).

Since this holds for every circular disc (u — u0)2 + (v — v0)2^p2 comprised in

u2+v2<l, it follows (see §1.2) that X1'2 and consequentlyj X is of class PL

in u2+v2 < 1. Hence (see §0.2) K = 0 on S. Since 5 was any portion of the given

surface, this proves that K ^ 0 on the whole surface.

2.7. The reasoning of §2.6 can be replaced by the following argument.

Take any point O on the surface and denote by S„ the portion of the surface

which consists of the points of the surface within and on the geodesic circle

f A differential geometer will probably find the proof of §2.7 preferable.

% See footnote on p. 670.
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with center O and radius p. Then the area and perimeter of S9 are functions

of p which admit of developments beginning as followsf :

1
a(p) = 7rp2 — —-tKop* + ■ ■ ■ ,

l(p) = 2wp — \irKop3 + ■ ■ ■ ,

where K0 is the Gauss curvature at the point 0. We have then

a(p) - -1(p)2 = -ttZCop4 + • • • ,
4x 4

or

a(p) - j-l(p)2
A     _ 47T

Zlo = — hm-•
IT   P->0 p4

Since, by assumption, the numerator is ^0, this proves that ZT0áO. Since O

is any point on the surface, we have then K ^ 0 on the whole surface.

2.8. Let us now consider the sign of equality in the isoperimetric in-

equality. In order to illustrate a very trivial point, let us consider a Jordan

region in the plane, bounded by a rectifiable curve which is not a circle. Then

we have a<l2/(Air). Putting some hills on this plane region, we can keep the

perimeter I fixed and increase the area until we have a = I2/(Air). Since our

hills were otherwise quite arbitrary, it is clear that from a =l2/(Aw) alone we

cannot conclude anything concerning the surface. On the other hand, if we

restrict ourselves to analytic surfaces with K iS 0, and if we use the fact that

K^O on such a surface as soon as ZC^O on any sub region, then the lemma of

§2.2 yields immediately the following result.

If an analytic surface with K^O contains some portion for which the sign of

equality holds in the isoperimetric inequality a < I2/(Air), then K=0 on the

surface, and a = I2/(Air) holds only for the geodesic circles.

2.9. In what precedes, we extended a theorem, previously proved only for

minimal surfaces, to surfaces with ZigO. A systematic study of similar gen-

eralizations might lead to interesting results. We mention here a few im-

mediate facts.

Let 5 be a piece of surface with ZC ̂ 0, which admits an isothermic rep-

resentation

(17) S: x = x(u, v), y = y(u, v), z = z(m, v), u2 + v2 ^ p2,

with the properties described in §2.1. Put again E = G=\(u,v), and suppose

t See for instance L. P. Eisenhart, Differential Geometry, Ginn and Company, 1909, p. 209.
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that X(0, 0) = 1 (that is to say, that the linear magnification is unity at the

origin). Denote by l(r) the length of the image of u2+v2=r2, and by a(r) the

area of the image of u2+v2<r2. Then

(a) l(r) is an increasing function of r\;

(b) l(r) = 2irrt;

(c) a(r)=irr2.%

We have

n 2t

l(r) =   I    X(f cos 4>, r sin d>)1/2rdd>.
•J a

Since K^O, it follows§ that X(m, v)112 is of class PL. Also (see §1.1), r =

\u+iv\ isof classPL. Therefore|| rX1/2isof class PL, and consequently^ rX1'2

is subharmonic. (a) follows then from the above expression for l(r) and from

the fact that the integral mean of a subharmonic function is an increasing

function of r.ft

To prove (b) and (c), observe that

a(r) = xr2A(X;0, 0;r),

(18)
l(r) = 2irrL(X112; 0,0; r).

On account of K^O, X and consequently X1/2 are subharmonic. Hencejf

1 = X(0, 0) ÚA(X;0, 0;r),
(19) 1 = X(0, 0)1/2 ^i(X1/2;0, 0;r).

Thus (b) and (c) follow from (18) and (19).

t For the plane case, see L. Bieberbach, Über die konforme Kreisabbildung nahezu kreisförmiger

Bereiche, Berlin Sitzungsberichte, 1924, pp. 181-188; for minimal surfaces, see T. Radó, Some re-

marks on the problem of Plateau, Proceedings of the National Academy of Sciences, vol. 16 (1930),

pp. 242-248, and On Plateau's problem, Annals of Mathematics, vol. 31 (1930), pp. 457-469.

X For the plane case, see L. Bieberbach, Palermo Rendiconti, vol. 38 (1914), pp. 98-112; for

minimal surfaces, see E. F. Beckenbach, The area and boundary of minimal surfaces, Annals of

Mathematics, vol. 33 (1932), pp. 658-664.
§ See the authors' paper in these Transactions, vol. 35, pp. 648-661, §1.8.

|| The product of two functions of class PL is again a function of class PL; see the authors'

paper in these Transactions, vol. 35, pp. 648-661, §1.8.

If Ever/ positive power of a function of class PL is a subharmonic function; see the authors'

paper in these Transactions, vol. 35, pp. 648-661, §§1.7 and 1.8.

ft See F. Riesz, Acta Mathematica, loc. cit., first part, p. 338.

XX These inequalities express two of several clearly equivalent definitions of subharmonic func-

tions. See J. E. Littlewood, On the definition of a subharmonic function, London Mathematical So-

cietyjournal, vol. 2 (1927), pp. 189-192.
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Corollary. If the sign of equality holds in (b) or (c) for any value of r,

0<r^p, then X(m, v) = 1, so that (see §2.2) the map (17) is isometric. In other

words, S is a developable piece of surface and is a geodesic circle given in iso-

metric representation.

To see this, consider for instance the sign of equality in (c) ; then

X(0, 0) =- \  \ X(m, v)dudv.
irr    J  J ui+ri<r>

Consequently X(0, 0)=A(0, 0), where h(u, v) is the harmonic function in

u2+v2<r2 coinciding with X(m, v) on M2+i»2 = r2, and therefore! X(m, v)

= h(u, v), so that

AX(m, v) = 0.

But X(m, v) is also of class PL, so that (see §0.2)

XAX - (Xu2 +X„2) ^ 0.

Consequently X„2+X„2^0 and therefore X(w, v) is constant. But X(0, 0) = 1,

so that X(m, r)al. The same argument holds for the sign of equality in (b),

with X(m, îi)1'2 in place of X(m, v).

t X(m, v) is subharmonic, and therefore, by the definition of subharmonic functions (see F. Riesz,

Acta Mathematica, loc. cit., first part, p. 331) <fr(u, v) = \(u, v)—h(u, v) is subharmonic. We have

$(r cos <t>, r sin <¿>)=0, ̂ (0, 0) = 0. But a subharmonic function cannot attain an interior maximum

unless it is identically constant (see above reference to F. Riesz, p. 331). Therefore \j/(u, v) = 0,

X(«, v) = h(u, v).
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