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By means of a simple transformation suggested by Bliss, the problem of

Lagrange may be reduced to one in which the side conditions are integral

equations rather than differential equations, and no derivatives enter ex-

plicitly. A multiplier rule for the transformed problem is derived below, in

which the multipliers are all constants. When the inverse transformation is

applied to this multiplier rule, formulas are obtained for the non-constant

multipliers occurring in the ordinary form of the Lagrange multiplier rule,

and it is seen that the constant multipliers obtained here may be identified

with certain constants appearing in the ordinary form of the rule.

In connection with his applications of the calculus of variations to prob-

lems in economics, Roosf has been led to consider a generalization of the

problem of Lagrange in which integro-differential equations occur among

the side conditions. The transformation and analysis given below apply

with equal facility to Roos' problem.

For normal arcs an analogue of the Weierstrass condition is derived

for the transformed problem. It is not necessary to assume that the mini-

mizing arc is normal on sub-arcs. For such problems as that of Roos, no

generalization of the Jacobi-Mayer condition has to my knowledge yet been

obtained, though several attempts have been made.

1. The transformation of the problem. We shall start with the problem

suggested by Roos, in the following form: To find necessary conditions on

a curve

y i = y,(x)     (i = i, • ■ •, m; xi = x <; x2),

which minimizes an integral

f(x, y, y')dx
*i

in a certain class of curves satisfying the integro-differential equations

* Presented to the Society, December 31, 1930; received by the editors November 21, 1932.

t Generalized Lagrange problems in the calculus of variations, these Transactions, vol. 30 (1928),

pp. 360-384.
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<ba[x, y(x), y'(x), u(x)] = 0        (a = 1, • • • , m < ra),

uy(x) =   I    Py[x, s, y(s), y'(s)]ds (y » 1, • • • , q),

and the end conditions yi(xi)=yn, yi(x2)=ya. The functions/, fa, and P7

are supposed to have continuous first partial derivatives with respect to all

their arguments in a certain region R of (2ra+q+2) -dimensional space. The

curves admitted to consideration are supposed to be of class D', i.e., the

functions y¿(#) are continuous and their derivatives y/(x) have at most a

finite number of ordinary finite discontinuities. Admissible curves are also

supposed to have all their elements

[x, s, y(s), y'(s), u(s)] (xi ^ s g x g x2)

interior to the region R. We shall suppose also that along the minimizing

curve the matrix of partial derivatives faVi' (a = l, ■ ■ ■ , m; i = l, ■ ■ • , n)

has rank m. For simplicity we suppose that the minimizing curve itself is of

class C.

Then as Bliss* has shown, additional functions  fa(x, y')   (r = m+l,

■ ■ ■ , ra) may be adjoined, with the same continuity properties as the

original functions fa, so that the functional determinant \<piUj'\  does not

vanish along the minimizing curve. Hence the equations <pi(x, y, y', m)=z¡

have a unique continuous solution

(1) yl = fa(x, y, u, z)

with (x, y, y', u, z) near the values along the minimizing curve, and the

functions fa- have continuous first partial derivatives. If equations (1) are

used to eliminate the y/, the integral Z becomes

/I  X,

g[s,y(s),u(s), z(s)]ds

and the side conditions become

y¡(x) = yn +    I    fa[s, y(s), u(s), z(s)]ds    (i = 1, • • • , »),
J   X,

uy(x) =    I    Qy[x, s, y(s), u(s), z(s)]ds (y - 1, • ■ • , q),
J   X,

za(x) = 0 (a = 1, • • ■ , m).

The end conditions are yi(x2) =yi2 (i = l, • ■ ■ , ra).

* The problem of Mayer with variable end points, these Transactions, vol. 19 (1918), p. 312.
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2. The multiplier rule, and an analogue of the Weierstrass condition, for

the transformed problem. We shall now consider the new form of the problem

on its own merits, and in order to simplify the notation in this section, we

reformulate it as follows: To find necessary conditions on a "curve"

(2) yi = yi(x), zr = zT(x) (i = 1. • • • , n; r = 1, • • • , v),

which minimizes an integral

g[s, y(s),z(s)]ds
*l

in a certain class of curves satisfying the integral equations

(3) yi(x) = yn +  I    pi[x, s, y(s), z(s)]ds       (i = 1, • • ■ , n; Xi = x g x2)

and the end conditions

(4) yi(x2) = yi2 (i = 1, ■ ■ ■ ,p è n).

The functions g(s, y, z) and \pi(x, s, y, z) are supposed to be continuous

and to have continuous partial derivatives with respect to their arguments

3»¡ and zr in a certain region R of (*, s, y, z) space. The curves (2) admitted

to consideration are supposed to have all their elements (*, s, y(s), z(s))

interior to R, and the functions y{(x) are supposed to be continuous, while

the functions zr(x) have at most a finite number of ordinary finite discon-

tinuities.

Under these circumstances, the equations (3) have a unique solution

yt(x) = Yi[z \x] for each set of functions zr(x) near those associated with the

minimizing curve, and the functionals F¿ have differentials* r¡i(x) =d¥i[z;

Ç\x] which satisfy the equations of variation

(5) Vi(x) =        PiVj(x, s)r¡i(s)ds +  I    pizr(x, s)Çr(s)ds.
"   X, J  I,

Here and elsewhere we abbreviate such expressions as \¡/iVj [x, s, y(s), z(s) ] to

tyiVj(x, s). When the functionals Yi[z] are substituted in the integral /, it

becomes a functional J[z], which is to be minimized in the class of functions

zT(x) for which F,-[z|*2]=;yi2 (i = l, ■ • ■ , p). The functional J[z] also has a

differential given by

dJ[*\ f] =   f \g„(s)li(s) + g*(s)Us)}ds,

* See, e.g., Graves, Implicit functions and differential equations in general analysis, these Trans-

actions, vol. 29 (1927), pp. 514-552.
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where the n¡ are determined by equations (5). If / [z] is a minimum, the usual

argument shows that there exist constants /0, Ci, • • • , cp, not all zero, such

that

(6) hdJ[z; f ] +   2ZddYi[z; f | *,] = 0
i=l

for all functions f r having only a finite number of finite discontinuities. If we

set

V

(7) G(s, y, z) = log(s, y, z) +  2~2,Cifa(xi, s, y, z),
¿-i

equation (6) becomes

(8) f  )GVj(s)V](s)+GZr(s)Us)}ds = 0.
•J   X,

Let Si,-(x, s) denote the reciprocal kernel matrix for the Volterra system (5),

so that its solution is given by

r,i(x)   =     I        fazr(x,  s)Çr(s)ds
(9) J x,

—   I    Sij(x, t)  I    pjZr(t, s)Çr(s)dsdt.
J x, J X,

By substituting (9) in (8) and making certain interchanges in the order of

integration, we find

J       \r(x)\r(x)dx  =   0

for all f r(x), where

\r(x) = GZr(x) +   J    GVj(t)fa,r(t, x)dt

(10) r*>   ru
—   j        I   GVj(u)Sjk(u, t)\¡/kZr(t, x)dtdu.

J   X J   X

Hence we have proved the

Analogue of the Lagrange multiplier rule. If the functions yi(x),

zr(x) minimize the integral I in the class of all such functions satisfying the

integral equations (3) and the end conditions (A), then there exist constants h,

Ci, ■ ■ ■ , cp, not all zero, such that
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G,r(x) + j GVi(t)Pitr(t, x)dt

I    GVj(u)Sjk(u, t)pkZr(t, x)dtdu = 0
x        J X

(xi Ú x S x2; r = 1, • ■ • , v),

where G(s, y, z) is defined by equation (7), and S,k (x, s) is the reciprocal kernel

matrix for the system (5).

We shall say that a curve y< = y<(*), zr = zr(x) (xi = xfix2) is normal in

case there exist p sets of variations nu(x), Çr*(x) (<r = l, ■ ■ ■ , p), satisfying

the equations of variation (5) and such that the determinant \r)i,(x2) \ (i,

o- = l, • ■ ■ , p) does not vanish. The usual considerations show that an arc

is normal if and only if it has no set of multipliers l0, C\, • • • , cv, with U=0,

with which it satisfies the equations (11). For a normal minimizing arc we

may always assume U = l, and then the remaining multipliers are uniquely

determined.

Analogue of the Weierstrass condition. // the minimizing curve

for our problem is normal, and ifl0 is taken equal to unity, then for every element

(x, y, z) of the minimizing curve and for arbitrary numbers Zr, the expression

G(x, y, Z) - G(x, y, z)

+ j Tg„(0 - j Gw(s)5i)(s, t)ds\[P,(t, x, y,Z) - *,(<, x, y, z)]dt

cannot be negative.

This theorem may be proved by the method of the author's paper The

Weierstrass condition for the problem of Bolza in the calculus of variations^,

as follows. Let v¡„ f„ (<r = l, • • • , p) be an admissible set of functions satis-

fying the equations of variation (5), and such that the determinant \rn,(x-¡) \

5¿0, where«, cr = l, • • ■ ,p.Letxi<x3<x2,a.nd

z*(x, ß, e) = zT(x) + t^r<,(x) on xy g x ^ x3, x3 + ß < x g x2,

= Zr on x3 < x = x3 + ß.

When the functions z* are substituted for z in equations (3) these equations

determine functions yi = y*(x, ß, e) defined for Xi^x^x2, (ß, e) near (0, 0),

which are continuous and have partial derivatives with respect to ß and t,

which are continuous except that the partial derivatives yi* may be discon-

t Annals of Mathematics, vol. 33 (1932), pp. 747-752.
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tinuous in x at x = x3+ß. Set I(y*, z*) =I(ß, «)• We are supposing that I(ß, e)

has a minimum for ß = e„ = 0. Then if the equations

(12) I(ß, a) = Z(0, 0) + v, yi*(xt, ß, e) = yi2 (i = 1, • • • , /»)

have a solution ß(v), e„(i>) near i> = 0, we must have ß'(0) 2:0. By differentiat-

ing equations (12) with respect to v, we find for ß = «, = 0,

Ieß' + I,¿ = 1,

6i(x2)ß' + T,i,(xt)tJ =0 (i - 1, • • •, p),

where di(x) = yiß*(x, 0, 0). Multiply the last /» equations by the constants

Ci, ■ ■ ■ , cp respectively, and add to the first. By equation (6) the result is

ß'[lß+2Zd0i(x2)] = i.
¿-i

Hence

E = h+  £cMx2) è 0.
«=i

Now the functions 9i(x) satisfy the equations

di(x) = 0 (xi ^ x < x3),

6i(x) = A{(x) +   I    faVj(x, s)dj(s)ds (xz Si x g x¡),
J x3

where Ai(x) =fa(x, x3, y3, Z) —fa(x, x3, y3, z3), y3 = y(x3), z3=z(x3). Hence by

use of the reciprocal kernel S^ oí faVj,

Bi(x) = A¡(x) -  f   Sij(x, t)Aj(t)dt.

By direct calculation

gVj(s)dj(s)ds.
*3

Combining these results we find

E = G(x3, y3, Z) — G(x3, y3, z3)

+   j    'Gyi(x)   Aj(x) - j   Sjk(x, t)Ak(t)dt   dx,

which reduces by an interchange of order of integration to the expression

given in the theorem.
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3. Application of the inverse transformation to the new multiplier rule.

Returning now to the problem of §1, we shall for simplicity consider only the

case when the functions <pa are independent of the m's, that is to say, the or-

dinary Lagrange problem with fixed end points. Then the functions fa- of

§2 are independent of *, and /» = ra. We shall understand that the indices used

here have the following ranges: i, j, k, 1 = 1, ■ ■ • , ra; a = l, • • ■ , m; r =

m +1, ■ ■ • , ra. From the definitions of the functions fa, S a, and G, we obtain

the following relations :

(13) fa-zi4>iy¡   = hi,

(14) Pkz^iyi =   - fa-yi,

(15) fa-vi(x) -   I    Sik(v,t)dtfa-yl(x) = -Su(v,x),
J x

(16) Gti = (/„/,; + ci)falt,

(17) GVj   =  lofy. +  (hfy'k + Ck)fa-yr

The analogue of the Euler-Lagrange equations may be written

G,t(x) + fa,((x) f Tc„(/) - GVi(t) f   Sik(t, v)dv\dt = \((x),
(18) Jx   L Jx J

\T(X)   =   0.

If we multiply equations (18) by <piyi> and add, use equations (13) and (16),

and interchange the order of integration in the double integral, we find

(19) lofy; + c,+  f   Gvi(t)dt-  I   ' J     Gyj(v)Sjl(v,t)dvdt = \a<¡>av¡.
J x J x     v t

Also if we multiply equations (18) by <£»„, and add, we find with the help of

equations (14), (15) and (16),

Gvj(l>)Sil(v,  X)dv  =   (lofyj  + Cj)fay, + \a<t>ayr

Combining equations (20) and (17) with (19) we find

(lofyi   ~  ^a<t>avi)dt   =   XaCbcy^

which may be written in the familiar form
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(21) Fv; =   f  Fy.dx - a
J   Xf

by setting F = l0f—Xa<j>a.

If we apply the inverse transformation in the more general problem con-

sidered in §1, we find in place of equations (21),

F,A*) = f  \_PyAs) + j Fuy(t)PyVi(t, s)dt

+ FUy(s)PyV.,(s, x) \ds — Ci.

University of Chicago,

Chicago, III.


