
THE LATIN SQUARE, OR CYCLIC, FUNCTIONS*

BY

E. T. BELL

1. Introduction. Special cases of the Latin square functions defined in

this paper have recently come into some prominence in connection with

generalizations by Humbert and others (references in §5) of the partial dif-

ferential equations of mathematical physics. In solving the equations, the

functions of r — 1 independent variables defined by Appell3f in 1877 appear,

and these in turn are intimately connected with Olivier Vf functions

fo(x), ■ ■ ■ ,fr-i(x), whose generating identity is

(1.1) exp ax = fo(x) + afi(x) + • ■ • + a'-l/r_i(a;),

where a is an imaginary rth root of unity,

(1.2) /,(*) =   2>"0»/!,

the summation referring to all integers n¡ — 0 such that «, =j mod r. We shall

call r the base of/,(«). Appell's functions At can be defined by expanding the

left member of the following identity as a power series in a, and reducing the

result modulo ar — 1,

(1.3) expi  J^a'xA =  J2atAt(xu ■ - ' > xr-i).
\ s—1 / (=0

The r functions At(xi, ■ ■ ■ , xr-i)=A, are connected by the identical alge-

braic relation

(1.4) N(A0, ■ ■ ■ , Ar-i) = 1,

where N(y0, • • • , yr-i) is the norm of the algebraic number

yo + ayi + ■ ■ ■ + aT~1yr-i.

As the partial differential equations mentioned have no immediate phys-

ical significance, there is no apparent reason for stopping short of the general

case. In a previous paper7 the functions defined by reducing the left of (3)

modulo P(a), where P(a) is any polynomial in a, were introduced and some

of their properties discussed. The norm property (1.4) does not hold for these

functions, except in the very degenerate case when they become Appell's

* Presented to the Society, March 18, 1933; received by the editors December 27, 1932.

t Numbers refer to bibliography in §5.
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It will be interesting to see what replaces the norm property, and how it de-

generates in the special case.

We shall see that the generalized norm property is intimately connected

with Latin squares. A Latin square of degree ra is a square array of ra distinct

elements such that no element occurs twice in the same column. The number

of Latin squares of degree ra, no two of which can be derived from one another

by a permutation of rows or of columns, will be denoted by X(ra). This number

has not been determined for general ra, and even for small ra the labor of a

direct determination is prohibitive (see MacMahon6). As observed by Cay-

ley,6 not every Latin square of given degree can be generated by a group of

substitutions on the elements of a given row. Thus there exist (even for ra

small) Latin squares with which no group is associated.

The norm relation is replaced for the generalized functions of r independ-

ent variables by X(r) algebraic relations, each of which is derived from a Latin

square of degree r. When the functions degenerate to Appell's (based on rth

roots of unity), the X(r) relations coalesce in the norm relation, and the single

Latin square corresponding to this relation is generated from its first row by

the cyclic group of degree r.

Appell's functions are a simple generalization to functions of r independ-

ent variables of the circular and hyperbolic functions. The Latin square

functions pass at once to the most general situation possible of this kind,

namely to the functions of r independent variables constructed from poly-

nomials in the members of sets of r linearly independent solutions of equa-

tions of the type
d'y dr~1y

-h Ci-- + ■ ■ ■ + cry = 0,
dxT dxr~l

where ci, • • ■ , cr are arbitrary constants, instead of from the degenerate case

cr= —1, Cj — Ojj^r. The coefficients in the power series for Olivier's functions,

on which Appell's are based, are periodic. In the generalized functions perio-

dicity, c6(ra+r) =4>(n) for all integers ra, is replaced by

4>(n + r) + Ci<t>(n + r - 1) H-+ cr<j>(n) = 0,

which becomes periodicity in the degenerate case.

All the functions defined are obviously continuous and convergent ab-

solutely for all finite values of the variables.

2. Generalized Olivier functions. Consider first the generalization of Oliv-

ier's functions. Let

(2.1) P(a) m a' + Cia'-1 + - ■ - + Cr

be irreducible in the rational domain. Reduction modulo P(a) of the expan-
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sion of exp a'x, where s is an integer, defines the functions/,^) uniquely,

(2.2) exp a'* =   ¿a'// * J,
3=o      \s /

since P(a) is irreducible. We write

(2.3) //(*)-/K*) C/-0,«««,r-l).

The notation in (2.1) is fixed throughout the paper.

The jth fundamental sequence <f>j(n), n=0, ±1, ±2, ■ ■ • , defined by the

difference equation

(2.4) <p(n + r) + Cl<b(n + r - 1) -\-\- cr<p(n) = 0,

whose characteristic equation is P(a) =0, is determined by

(2.5) <pj(k) = 8jk (Kronecker delta),    j, k = 0, ■ ■ ■ , r - 1.

The <pj(n) are a set of r linearly independent solutions of (2.4), and the general

solution <p(n) is

r-l

(2.6) 4>(n) =   SXyte/to«
1=0

The notations in (2.4), (2.5) are fixed henceforth.

For all integers n we have

r-l

(2.7) a« =   ][>''c6,(»).
i-o

Hence, by (2.2),

(2.8) /,•( *) =   ZtAsn)-, (j = 0, • • • , r - 1).
\s/       „_o «!

To find the differential equation satisfied by the functions (2.8), let P,(a)

be the polynomial with leading coefficient unity whose roots are the sth

powers of the roots of Pi(a) =P(a),

(2.9) P.(a) mß'+ Ci(s)ß'^ + ■■■ + cT(s) (ß m a').

Then, by (2.2), (2.9), r linearly independent solutions of

dry dr~1y

(2.10) ~ + Ci(s)—^T+ ■■    +cr(s)y = 0
dxT dx^1

are the functions (2.8), and the general solution of (2.10) is
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(2.11) =  !>,//* \
,-_o       \s /

where the k¡ are arbitrary constants.

The exponential forms of the functions (2.8), corresponding to those of the

circular, hyperbolic, and Olivier functions, are obtained at once from (2.2).

If ao, ■ ■ ■ , ar-i are the roots of P(a) =0, and aij denotes the cofactor of a{

in the determinant

D(a) =

1     ao

1    ai

r-l

ao
r-l

ai

we have

(2.12)

r-l

1    at-i ■ ■ ■ ar-i

D(a)fj(~   )=   X)«"'exp a»*',
\s /        ¡_o

since D(a) ^0, P(a) being irreducible.

Corresponding to the period recurrence of the derivatives of the circular,

hyperbolic, and Olivier functions, we have here

(2.13)
d'

dxl
;/*(*) - X>*(* +./)//(*)   (* - o, ■ • • , r - 1),

on differentiating (2.2) t times and applying (2.7).

Applying (2.7) to the product of exp a"x and exp a'y, we get the addition

theorems

(2.14) fi(X+y)=  2ZZfa(P + k)fp(X)fk(y).
\     s     / „=o *=0 \ s /      \ s /

There is no algebraic addition theorem with respect to s.

Let a he any root of P(a) = 0. Then

exp [xa'P(a)] = 1,

and hence, by (22), the identical algebraic relations between the functions are

obtained by reducing the expression on the left of the following, modulo P(a),

to that on the right (c0 = 1),

(2.15)

the relations are

a[£.<./,( « ,)i-&»,(•>
k-o L ,t_o V + r - k/J       ,-_o        \ í /
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(2.16) No(X)=l,   NP(X) = 0      (p= !,•■■,r- 1).

For Olivier's functions it is easily seen that (2.16) are equivalent to the single

norm relation (the last r — 1 relations are absent).

If P(a) is such that, for some integer s>0, Ci(s) =0 in (2.9), the functions

fi(*)> i=0) " • • , r~ 1, are more simply connected. Let the roots of P„(a) =0

be ßo, ■ • • , ßr-i- If ß is any one of the roots, we may define functions gj(*)

by the process for (2.2) with P(a) replaced by the right of (2.9),

expß'x =   ¿ZßigA*)-
,_o        \ t /

(2.17)

Apply (2.7) to ß'=a's. Then

(2-i8)        f'O- s*'üí)si0)

gii     ) = gi(x).

If now Ci(s)=0, ß0+ ■ ■ ■ +j8r_i = 0, and exp (ß0+ ■ • • +ßr-i)x = l. Hence

(k = 0, r- 1);

(2.19) M0(go(x), ■ ■ ■ , gt-i(x)) = 1,

where M0(yo, • • • , yr-i) is the norm of y0+yiß +

s = l, (2.16) hence becomes

+yr-ißr~1. If further

(2.20) No(f0(x),---   ,fr-l(x))   =   1,

where iVo(yo, • • • , yr-i) is the norm of yo+yia+ • • • +yr-iar-1. A linear

transformation on thefi(x) will always reduce (2.16) when 5 = 1 to (2.20).

Since there are precisely r functions /,•(*) of the single variable x, they

must be connected by r — 1 relations. These are contained in the r relations

(2.12), which are not independent, or in the equivalent dependent set ob-

tained from (2.2) by putting a0, ■ ■ ■ , ar-i successively for a. The dependence

for the last set of r is evident from — Ci(s) =a0'+ ■ • • +aí-ij Ci(s) is a ra-

tional function of Ci, • • • , cT~i. The r — 1 independent relations are transcen-

dental.

3. Functions with periodic coefficients. A special case of the functions (2.3)

is of particular interest as it can be completely specified with remarkable sim-

plicity. In a previous note10 it was shown that the only difference equations

(2.4) whose solutions have the proper additive period m (integer >0) are

those in which r = r(m), the totient (Euler's function) of m, and P(a) =0 is
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the equation whose roots are the r(m) primitive mth roots of unity. In this

section m is a constant integer >0, r = r(m), and

(3.1) ar + Ciar~l+ ■ ■ ■ + cr = 0

is the equation for the primitive raîth roots of unity. All of §2 necessarily

holds in this case, with special features not valid in §2. The notation is as

before; in particular the general solution of

(3.2) fan + r) + Cifan + r - 1) + • • • + cT<p(n) = 0

is fan). The sequence fan) (ra=0, ±1, • • • ) is determined by (3.2) when

<p(0), ■ ■ ■ ,<p(r — l) are given constants.

From what has just been recalled it follows that the only functions

(3.3) f(x) =■  2>(«)*7»!,

in which ^(ra) has the proper additive period m and is determined by a linear

difference equation with constant coefficients, are those in which \p=fa

oo

f(x) =   2~^(«) *"/»!,

and hence

rn-l r-    °° xnm+t       -I

(3.4) /(»)-   X>(0     }2-—TT  .
(=0      L „=.o (nm + t) U

The functions in square brackets, say

00 „nm+l

(3.5) ht(x) a   X
„_o (nm + /)!

are the m Olivier functions to the base raj; see (1.2). Hence, by (2.6), the gen-

eral function (3.3) with periodic coefficients of the kind described is

r-l r   m-1 -1

(3.6) /(*)=   2X/)     2>i(flA«(*)   .
,_o L [=o J

Consider the functions in the square brackets in (3.6),

(3.7) Hj(x) s  5>,(0Ai(*) 0" = 0, • • • , r - 1).
(=0

The generating identity is
r-l

exp ax =   y^.a'Hi(x).
j-o
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where a is any root of (3.1). Hence, taking the rath derivative, we get

(3.8) —-Hj(x) =  2>i(» + i)Hi(x);
dxn i=0

and therefore, by the periodicity of </>,-,

f^knx+n Jn

(3.9) ——Hj(x)=-—Hj(x)
¿xkm+n ¿%n

(ra = 0, • • • ,m - l;j - 0, • • • , r-l)

for all integers k ^0. Thus the derivatives of the Hj(x) recur with the period

m. Since c6(0), • • ■ ,c<>(r —1) in (3.6) are arbitrary constants, (3.9) implies

rfkm+n <7n

(3.10) TTT-fW - T~-A*).
¿xkm+n ¿%n

and f(x) is the most general function with recurring derivatives of period m.

Consider next the functions (3.3) in which \p(n) has the proper multiplica-

tive period m+1 (m integer >0), and in which \[/(n) is determined by a linear

difference equation with constant coefficients. It follows from the theorem

recalled for additive periodicity that the only such \p(n) with multiplicative

period m+1 >1 are the fan) defined by (3.1) as before. Hence the properties

of these functions follow from those just discussed.

4. Latin square functions. In this section the notation is as in §2. We shall

need particularly (2.1)—(2.4). As a basis for the numbers of the field K(a) we

shall take 1, a, ■ ■ ■ , ar~x, and we shall denote the element of K(a) whose

coordinates are x0, ■ • • , av-i by (;*;),

(4.1) (x) = (x0, • • • , av_i) = Xo + axi + • • ■ + a'~lXr-i.

The sum of (x), (y) may be written either as (x) + (y) or (x+y),

(4.2) (x + y) = (x0 + yo, ■ ■ ■ , xr-i + yr-i);

their product, (x)(y) or (xy), is

(xy) = ((xy)0, ■ ■ ■ , (xy)r-i),

(4.3) r-l r-l

(xy)i =   2 Ufaii + P)xiyP.
i—0 p-O

More generally, the product of any finite number of elements (x), (y), ■ ■ ■ ,

(z) of K(a), in a similar notation, is given by

(4.4) (xy ■ ■ ■ z)j =  X^X* + P + ■ ■ ■ + t)x(yp ■ ■ ■ zt,

0= i, p,-- ■ ,t ir- 1.
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The element (x)' of K(a) defined by

(x)' = (x) — Xo + xTar m (x¿, • • • , Xr-i),

(4.5) xó = — crXr, xk  = xk — cT-kXr (k = 1, • • • , r — 1),

(x)' = axi + a2x2 + • ■ ■ + arxT

will be called the curtate of (x). Accents as in (x) ', (y) ', ■ ■ ■ shall denote the

curtatesof the corresponding (x), (y), ■ ■ ■ .

The Latin square functions of degree r in the independent variables xi,

■ ■ ■ , xr are denoted by L¡(xi, • ■ ■ ,xr), and are defined by the identity (4.6),

in which the right is the reduction modulo P(a) of the expansion of the left as

a power series in a,

r-l

(4.6) exp (x)' =  ¿Za'Ej(xi,---,xr).
j=0

To find the algebraic relations between the £,- mentioned in §1, we pro-

ceed as described presently from the Latin square (4.7) to its "bordered

mate" (4.8). We assume r = l. Let x^, • • • , xrf) be the ith row of the Latin

square (4.7) of degree r constructed from Xi, ■ ■ ■ , xr, so that afp, ■ ■ ■ , x^p

is some permutation of Xi, • ■ • , xr :

cu  tu     en
Xi  , X2    ,  ■   ■   ■   , Xr

..    „. (2)    (2) (2)
(4.7) Xy    ,     X2    ,  ■   • • , Xr

C)    (r) (r)

X\     ,     X2    ,  '   '   '   ,   XT

Write — s=Xi+x-¿+ ■ ■ ■ +xT. Multiply the elements in the jth column,

/>1, of (4.7) by Cj-i. Apply ar, a'-1, • • • , a as top border to the result, and

5, Cis,c2s, ■ ■ ■ , Cr-iS as a bottom border :

(4.8)

en a)                   a)
Xl    , C\X2   ,  •   ■ ■   ,  Cr-lXr

(2) (2)                                  (2)
Xl     , ClX2    ,  •   ■ ■   ,  Cr—lXr

(r) (r) (r)

Xl    ,    C\X2    ,  •   •   ■   , Cr—lXr

S, ClS,  ■   ■   ■  ,      Cr-lS

Consider the rows of (4.8) as vectors and take the inner product of the vector

whose coordinates are the top border by each of the remaining r+1. The sum

of these r + 1 inner products vanishes, as it is (xi+ ■ ■ • +xr) P(a), from the
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construction of (4.8). These products are the curtates

,M      s (Cr-lXr    , Cr-2Xr-l, • « « , ¿1*2    , Xi    )' (* =  1, • • •      r),

(4"9) , V
(Cr_i5, Cr_25, •  ' - , CiS, S)  .

To simplify the writing, let the r+1 curtates in (4.9) be equal respectively to

(4.10)
(yi >y* ,-•• >yr Y (*- i,• • •,r),

(y\    ,yi   ,■■• ,yr   ) ■

Then

r     r+1 -|

expl    Z^i2", • ' • . yrP))'\ = 1

and hence, by (4.6),

(4.11) n[ 2>%(*w.---,*w>l-i.
p-i L   j'p-o J

When distributed and reduced modulo P(a), the left of (4.11) is of the

form N0+aNi+ ■ ■ ■ +ar Nr-i, where A7,- is a homogeneous polynomial of

degree r+1 in functions £0, £i, • • • , £r_i wrhose variables are given in (4.10).

For the moment the structure of the A7, need not be considered. Starting then

with the particular Latin square (4.7), we reach the identical relations

(4.12) No=l,N, = 0 (j= 1, ...,r- 1).

We indicate the structure of the N's presently.

From (4.5), (4.6) we find explicit forms for the £,-. The expression for the

Lj corresponding to (2.12) is obvious and can be omitted. Let 0O, • • • , 0r-i

be the r conjugates of (x)', including (x)'. Form the equation

(4.121) 6' + bid'-' + • • • + br - 0 (0 = do, ■ ■ ■ , 0r_i)

whose roots are these conjugates. Then bj = bj(xi, ■ ■ ■ , xr) is a homogeneous

polynomial of degree j in Xi, ■ • • , x„ whose coefficients are polynomials in

Ci, ■ ■ ■ , cT with rational integer coefficients. Similarly to the discussion for

(2.3)—(2.5) we consider the difference equation

(4.13) {(» + r) + hl(n + r - 1) + • • • + b¿(n) = 0,

whose characteristic equation is (4.121). The r fundamental sequences £,•(»)

for (4.13) are determined by

(4.14) ííW-aj 0",*-0,«.«,r-l);
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the general solution £(ra) is

(4.15) f(n) = xk/)íí(«);

and we have

r-l

(4.16) 8" =   2>fc(»)-

The powers of 0 on the right of (4.16) must be reduced modulo P(a) independ-

ently. Let

(4.17) 8> = pjo + apn +-h a'-ipj.r-i     (j = 1, • • • , r - 1).

Then pji=pji(xi, ■ • • , xr) is a polynomial in Xi, • • • , xr whose coefficients

are polynomials in Ci, ■ ■ ■ , cr with rational integer coefficients. From (4.16)

we now have

(4.18) 0"=   E«,-|I>ii&(»)l;

hence, by (4.6),

r-l ■     t.(n)

(4.19) L,(xi, ■■■ ,xr) =   2ZPu Z —V    0' = 0, • • • , r - 1).
»=o      n=o    ra!

The pa are defined by (4.17), and the £,-(ra) are the fundamental solutions

of (4.13).

Since the variables Xi, • • • , x, are independent, the differential relations

of §2 go over, by (4.6), to corresponding relations for the L¡. Thus from (2.10),

(4.6) we have

r dr dr~l 1
(4.20) -+ ci(s)- +••- + cr(s) \Lj(xi, ■ ■ ■ , xT) = 0

L dx.r dx,'~l J

(j = 0, • • • , r - 1; j = 1, • • • , r);

and corresponding to (2.13),

d' r_1

(4.21) -Lk(xi, ■ ■ ■ , Xr) =   J^M^ + J)Li(x\, ■ ■ ■ , xr);
dx,' ,=.0

whence
/ dm d" \
(-nr )Z*(xi, • • • , Xr) = 0      (m, n = 1, • ■ • , r).
\ dx?       dxl /
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The expressions for the Lk as polynomials in the functions defined in

(2.8) follow at once from (4.4)-(4.6),

Lk(xi, ■ ■ ■ , Xr) = 2>*0'o + • ■ • + jr-i)fi0 (  ° J  ■ • • /,;.

the sum extending to all 0^/0, • • ■ , jr_i^r—1. The N's in (4.12) have a

similar structure in terms of L's. The addition theorems are of the same

type, but simpler,

Ft(xi + yi, ■ ■ ■ , Xr + yr) =  XaO' + k)Fj(xh • • ■ , xr)Fk(yi, ■ ■ ■ , yr),

summed for 0 &j, k^r — 1.

From this point on, the connection with partial differential equations is

of the same kind as that for the Appell functions and the equations discussed

by Humbert and others in the papers cited in §5. The note u sufficiently

indicates the start.
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