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1. Introduction. Sufficient conditions in the general problem of the cal-

culus of variations in parametric form are given here. The results are in

terms of the characteristic roots of a linear boundary value problem, and are

in close relation to the conditions recently given by Morsef in the correspond-

ing problem in non-parametric form.

An important feature of the results is that the usual "non-tangency"

hypothesis is not made. For example, if these results were applied to the

problem of minimizing an integral along curves joining a point to a manifold,

we would obtain sufficient conditions for a minimum even in the case that

the minimizing curve is tangent to the manifold.

The essential idea in the methods used in the paper is the treatment of

the parametric problem as the limiting case of a series of non-singular non-

parametric problems by means of a suitable modification of the integrand.

Although they lack the geometric invariance of methods now being developed

by Morse, in which the parametric problem is approximated by means of a

series of parametric problems of the same nature as the original problem, the

methods and results of this paper derive advantage from the non-singularity

of the approximating non-parametric problems and from the fact that the

cases of "non-tangency" and "tangency" are treated together. The work of

the author and that of Morse are thus complementary, and constitute the

first complete treatment of sufficient conditions in the general parametric

problem.

* Presented to the Society, March 26, 1932; received by the editors April 19, 1932.

t Certain results in the following papers will be used.

Morse, Sufficient conditions in the problem of Lagrange with variable end conditions, American

Journal of Mathematics, vol. 53 (1931), pp. 517-546.
Morse and Myers, The problems of Lagrange and Mayer with variable end points, Proceedings of

the American Academy of Arts and Sciences, vol. 66 (1931), pp. 235-253.

Bliss, Jacobi's condition for problems of the calculus of variations in parametric form, these Trans-

actions, vol. 17 (1916), pp. 195-206.
Further references can be found in the three papers just cited.
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2. The Euler equations and the transversality conditions. In the space

of the variables
(x) = (*i, ■ ■ ■ , xn)

let there be given an ordinary arc g

(2.1) Xi = Ht),    tW g t = *<2> (i - 1, • • • , »),

of class C.

We consider ordinary arcs of class D' neighboring g. The initial and final

end points of such arcs will be denoted respectively by

(*•) = (xi', ■■■ , x„>) (s = 1, 2)

and the end values of the parameter t will be denoted respectively by /*

(s = 1, 2), where s = 1 at the initial end point and s = 2 at the final end point.

An ordinary arc of class D' neighboring g will be said to be admissible if its

end points are given for some value of

(a) = (oti, ■ ■ ■ ,ar)

by the functions

(2.2) x? = x*(ai, • • • , ar),    0* g r g 2n   '(i = 1, • • • , n; s = 1, 2).

These functions of (a) are of class C" for (a) near (0) and reduce to the end

points of g for (a) = (0). We assume that the functional matrix of the func-

tions in (2.2)

ll*u|l   (h = 1, • • • , r; i = 1, • • • , n; s = 1, 2)

is of rank r for (a) = (0). Here and henceforth the subscript h attached to

x] shall denote differentiation with respect to ah.

We seek conditions under which the arc g and the set (a) = (0) afford a

minimum to the expression

(2.3) J =  f F(x, x)dt + 6(a)

among sets (a) near (0) and admissible arcs neighboring g with end points

determined by these sets (a). The function F(x, x) is defined for (x) in an

open region containing g and for (x) any set not (0), and is to be of class C".

The function 0 is to be of class C" for (a) near (0).

Furthermore, the function F is to satisfy the usual homogeneity relation

(2.4) F(x, kx) = kF(x, x), k>0.

* The case r=0 yields the fixed end point problem. This case will be treated separately at the

end of the paper, so that until then we shall assume that r>0.
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Certain necessary conditions are obtained immediately by treating the

problem as a non-parametric problem of minimizing / among curves of class

D' in the (ra + l)-space of the variables (t, x) whose end points satisfy (2.2)

and the conditions t = tw*

Theorem 1. If g affords a minimum to J in the problem, then along g the

following equations must be satisfied:

dF
- — = 0 (i = 1, • • • , ra),

ox,

while the following transversality relations must hold:

VdF  , I2
(2.6) -*<»+«» = Of    (h = 1, • ■ • ,r; i = 1, • • • , ra).

L3*¿     Ji

We shall now state and prove a theorem which will be useful later.

Theorem 2. For an arbitrary set of functions rn(t) of class D' such that

i?i(*(,)) =x'ihUh (i-1, • • ■ , n; h = l, ■ ■ -, r; 5 = 1, 2) for some set of numbers

(ui, ■ ■ ■ ,Ur), there exists a one-parameter family of admissible arcs

(2.7) Xi = x,(t, e),    ah = ah(e)      (i = 1, • • • , ra; h = 1, • • • , r),

containing g for e=0, with r¡i(t) and un as its respective variations; that is, the

functions in (2.7) will have the following properties:

Xi(t, 0) = Xi(t),

Xi(t', e) = x'i[a(e)],

(2.8) ah(0) = 0,       Xie(t, 0) = r,i(t),        ai(fl) = uh

(i = 1, • • • , ra; h = 1, • • • , r; s = 1, 2).

Furthermore, the functions Xi(t, e) and xie(t, e) are continuous and have con-

tinuous derivatives with respect to efor e near 0 and t in the interval i(1) g t ^ i(2),

while the functions Xu(t, e) and Xiet(t, e) have the same properties except possibly

at the values of t defining the corners of (rf). The functions ah(e) are of class C".

For the following is such a family :

Xi = Xi(l) + e[Vi(t) - V}h2(t) - r,?K(t)\ + [»fi» - x}]h2(t)

+ [x?(eu)-x?Mt),

ah = euh (h = 1, • • • , r; i = 1, • • • , ra),

* See Morse and Myers, p. 245, loc. cit.

t Here and henceforth [ \ shall mean the difference between the value of the bracket evalu-

ated for s = 2 and (x, x) at the final end point of g, and the corresponding evaluation at the initial

end point of g. Also, an index repeated in the same term shall always mean summation with respect

to that index. The notation 6h stands for (d8/dct\)(0).

d f dF 1

¿2Ld*J
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where A1 (i), h2(t) are any functions of class C such that

hl(tw) = 0,    hl(tw) = 0,   h2(t^) = 0,    h2(t™) = 0,

while r]i' is an abbreviation for í?,(í(,)) and x{ is an abbreviation for xi(t<-')).

3. The accessory boundary problem and a further necessary condition.

We assume now that g is an extremal satisfying the transversality conditions

(2.6). We shall use permanently the notations

m(t) = *..(*, 0),

Vi = Vi(t    ),

Uh = a* (0) (i = 1, ■ ■ ■ , n; s = 1, 2; h = 1, ■ ■ ■ , r).

Consider now a family of admissible arcs of form (2.7) satisfying the first

three conditions of (2.8) and possessing the differentiability properties of

Theorem 2. If we consider this family momentarily as a family of arcs in

(t, x) -space satisfying the end conditions

(3.1) *;=*/(a)'

f = *«•> (i = 1, • • • , n; s = 1, 2),

then we can apply known results* to obtain the second variation of / along

this family. We find that

(3.2) J"(0) = bhkuhuk + 2 \      u(ri,ri)dt      (h, k = 1, • • • , r),
J ((»

where
d2F d2F d2F

(3.3) 2co(i7, ij) = i?,17, + 2———rinij + -—-—rum (i, j = 1, ■ • • , n)
OXidXj dXidXj dXidXj

and

VdF  .   I2
(3.4) bhk =   -xlkk    + 0hk  (h, k = 1, • • • , r; i = 1, • • • , n).

L dxi      Ji

With the idea of dominating the sign of the second variation by adding

new terms, we are led to consider the accessory problem of minimizing

(3.5) 7(j?, M, <r) = bhkUhUk + [2co — o-(tj¿í)¡ + Vím)]dt
J «a)

(i = 1, ■ • • , n; h, k = 1, • • • , r)

for a given number a, relative to constants (m) and functions (rj) of class D'

satisfying

* See Morse, p. 521, loc. cit.
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(3.6) vi = xihuh       (i = 1, ••■,»; s = 1,2; h = 1, • • • , r).

A solution (r¡), (u) oí this new minimum problem in which the functions

(rf) are of class C" must satisfy the conditions of the following boundary

value problem :

(3'7) 7,1^}-^ = ° (•-«.-.-»■

râo , n2
(3.8) bhkuk + \-x,h      = 0 (*, £ = 1, • • • ,r),

Lot);       Ji

(3.9) v'i = *<»«» (i = 1, 2),

where

(3.10) 20(77, i), ff) = 2co(t7, »j) - o-(ViVi + ritfi)      (i = 1, ■ ■ ■ , n).

This boundary problem we shall call the accessory boundary problem. By

a solution of the accessory boundary problem is meant a set of functions

r]i(t) of class C" which with constants (m) and cr satisfy the conditions of

the problem. A characteristic solution is one for which (77) ̂ (0).

The corresponding value of a will be called a characteristic root.

The following lemma and theorem can be proved in a manner similar to

that used by Morse in his proof of the corresponding results for the non-

parametric problem.f In the proof of Theorem 3, Theorem 2 must be used.

Lemma 1. If (77) is a characteristic solution with constants (u) and a, I(r¡, u,

a)=0.

Theorem 3. If g furnishes a minimum for the given problem, there can exist

no characteristic root a<0.

4. The function 7(a) and the quadratic form H(u, tr). By the Legendre

sufficient condition we mean the condition

d2F
(4.1) Ki-Kj > 0 (t, j = 1, • • • , n)

OXiOXj

along g, for all sets (ir) ?± (0) and not proportional to (dx/dt).

By the Weierstrass sufficient condition we mean the condition

dF
(4.2) E(x, x, y) = F(x, y) - yi—-(x, x) > 0      (i = 1, ■ • • , n)

OXi

for all (x), (x) on g, and for all (^^(O) and not proportional to (x').

t See Morse, p. 254, loc. cit.
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We shall assume henceforth that g is an extremal along which the Le-

gendre sufficient condition holds. Among the well known consequences of

this assumption are the following :

(1) The determinant
d2F

dXidXj
x.

0

5¿0

along g.

(2) The functions Xi(t) are of class C

(3) The characteristic determinant

d2F

dXidXj
— abi

does not vanish for o-<0, where tV is the Kronecker delta.

A set (a) neighboring (a) = (0) determines through (2.2) two end points

P and Q near the respective end points of g. If we assume for the moment

that the end points of g are not conjugate, then P and Q can be joined by a

unique extremal E, which is thus determined by the set (a). We can thus

obtain a family of extremals determined by values of (a) near (0), and this

family can be represented in the following form :

(4.3) Xi = x*(t, a) a = i, n),

where x* and xit* are of class C" in (a) and satisfy the following conditions:

(4.4)

(4.5)

x*(t, 0) = Xi(t)

x*(tw, a) = **(a)

(i = 1, • • • , »),

(s= 1,2).

The expression / taken along the extremals of the family (4.4) becomes a

function J(a) of class C".

The Euler equations (2.5) and the transversality conditions (2.6) enable

us to prove that J(a) has a critical point for (a) = (0).

The terms of the second order of J(a) are obtained by means of the

following identity in the variables («i, • • • , ur) :

(4.6) /,
hak

d2J
(0)uhuk = —(eu),

de2
(e = 0)       (A,Ä = l,-..,r).

The right hand side of (4.6) is nothing but the second variation of the one-

parameter family of extremals obtained from the family (4.3) by setting

ah = eUh, where uh is fixed and e is variable. This one-parameter family has the

form
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(4.7) x-i = Xi(t, e), ah = euh (i = 1, • ■ • , ra; h = 1, • • • , r),

where

(4.8) *i(<(,)> e) = x,'(eu)       (i = 1, ■ ■ • , ra; s = 1, 2).

The second variation of the family (4.7) has the form (3.2), so that

rtw
(4.9) Ja.aiO)uhuk = bhkuhuk + 2 I      u(r¡, r¡)dt    (h, k = 1, ■ ■ ■ , r).

J i»)

A curve i)i = r)i(t) of class C" in the space of the variables (t, n) will be

called a secondary extremal if the functions (v) satisfy (3.7) for some cr. At

present we are concerned only with secondary extremals for <r = 0.

To show the complete relation between (u) and (77) in (4.9), we need the

following lemma.

Lemma 2. The integral f% udt has the same value if evaluated along any two

secondary extremals joining the same end points A : (h, a) and B: (k, b).

Suppose that (fj) and (jj) are the two secondary extremals. Then

Vi = Vi + e(vi — Vi) (i = 1, ■ ■ ■ , n)

is a one-parameter family of secondary extremals joining A and B and con-

taining (rj) and (f). But the value of an integral taken along the members of a

one-parameter family of extremals joining the same end points is the same

for each extremal.

Returning now to (4.9), we note that the functions r¡i(t) in the argument of

co define a secondary extremal E', since they are the variations of a family of

extremals. The set (u) in (4.9) determines the end points of E'; for upon

differentiating (4.8) with respect to e and setting e = 0, we obtain

(4.10) tu = xihuh     (i = 1, • • • , ra; h = 1, • • • , r; s = 1, 2),

and it is in this sense that the set (u) determines the end points of E'.

From (4.9) and Lemma 2 we obtain the following theorem:

Theorem 4. Under the assumption that the end points of g are not conjugate,

let J(a) represent the value of J taken along the extremal determined by (a). Then

the terms of second order of J(a) have the form

rtw

(4.11) Jahak(0)uhUk = bhkUhiik + 2 I      co(j), r¡)dí   (h, k = 1, • • ■ , r)
J jU)

where (17) razdy be taken along any secondary extremal with end points deter-

mined by (u).
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In order to bring the parameter cr into the second variation as in (3.5),

we replace the integrand F by a one-parameter family of integrands

(4.12)   F = F -— {[xi- Xi(t)][xi- Xi(t)] + [xi- x!(t)][xi- */(*)]}

(i=l,---,n)

which we consider only for a — 0. For a = 0 we have our original problem in (x)-

space, but for each o-<0 we consider a non-parametric problem in (t, x)-

space, the problem with the integral

Fdt
¡m

and the end conditions

J id

(4.13) Xi" = Xi°(a), f = tM       (i = 1, • • • , n; s = 1, 2).

When we talk about extremals, conjugate points, etc., for <r<0, these

terms will always be understood to refer to the non-parametric problem in

(t, x)-space.

For each cr<0, g:xt = Xi(t) is still an extremal. We note that the problem

for each tr<0 is non-singular; that is, along g the determinant

(4.14)
d2F

dXidXj

d2F j
—   cr5¡

dXidXj
^ 0, <r < 0.

This is a consequence of the Legendre sufficient condition. If, then, we as-

sume momentarily that for each o-<0 the end points of g are not conjugate,

a set (a) neighboring (0) will determine for each <r<0 a unique extremal, and

the expression
rtw_

J = Fdt + 0(a)
J («)

becomes a function J(a, a). The following theorem is proved as was Theorem

4.

Theorem 4a. Under the assumption that the end points of g are not conjugate

for any a ^0, let J(a, a) represent the value of J taken along the extremal deter-

mined by (a) for any cr = 0. Then the terms of second order of J(a, a) have the form

(4.15)        H(u, cr) = 7aAai(0, ff)M*Mi = bhkuhuk + 2 I      0(77,17, <r)dt
J id)

(h,k= 1, ■■■ ,r).

For o-<0, (77) is taken along the secondary extremal determined by (u) through

(4.10), while for cr = 0,(77) may be taken along any secondary extremal with end

points determined by (u) through (4.10).



754 S. B. MYERS [July

5. Sufficient conditions for a minimum. Consider the expression

rt™
I(r¡, u, a) = bhkukuk + 2  I       fi(?7, 77, a)dt     (h, k = 1, • • • , r).

J (d)

By an admissible set (u, n) will be meant a set of constants (u) and a set of

functions (77) of class D' which together satisfy (3.9).

Theorem 5. For sufficiently large negative values of a, the expression

I(n, u, <r) is positive for all admissible sets (u, 77) 9e (0, 0).

First we note that since ||;e<Ä|| is of rank r, equations (3.9) can be solved

for uh in terms of a subset of the variables Vi". Hence for all admissible sets

(«, v)

(5.1) I(v, u, a) = q(V) + 2 Q(V, 77, a)dt
J id)

where 67(77) is a form quadratic in the variables 77^. From this it followsf that

for all admissible sets («, 77)

(5.2) I(r¡, u, a) ^   I       [2co(t7, 77) + ilf (77, 77) - ar\{r\i - arnrn)dt   (i = 1, • • • , »),
J «a)

where M(t7, 77) is a suitably chosen form quadratic in the variables (77, 77)

with coefficient continuous in t.

But any such form as the integrand in (5.2) can be made positive definite

by making or negative and sufficiently large, independently of t.

Thus for such a cr,

(5.3) Z(tj, u, a) > 0

for all admissible sets (u, r¡) ̂  (0, 0).

Lemma 3. Let (u, if) be any admissible set. If there is no point on g conjugate

to its initial point for a =cr0<0, then

(5.4) ZZ(«, 0-0) á Z<77, u, ao),

the equality holding if and only if (77) is a secondary extremal for a = o-0.

By Theorem 4a the equality holds if (77) is a secondary extremal for a = <r0.

If (77) is not a secondary extremal, let (77) be the secondary extremal deter-

mined by (u) for a =a0.

We note that along any arc (77) (i«1' ̂  / g t™),

d2ti d2F d2F
-(77, 7), 0-o)7ri7r,-   =   —--TiTCj   =   —-TTiTTj —  (ToXi^i (¿, j  =   !,•••, «),

dr)idr)j dx¡dXj dXidx,-

t See Morse, p. 534, loc. cit.
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which, by the Legendre condition, is positive for all (ir) ¿¿ (0). Also, if we use

Taylor's formula we see that the Weierstrass E-function

dSl
^t(v, v', ffo) — Œ(tj, 77, <r0)--(7?, 77, <ro)(v! — 7j¡)      (i = 1, • • • , n)

dr¡i

is equal to

d2Q
.. .. (v, V, <ro)(v!  - Vi)(vi — Vi) (i,j ~ 1, " * « , »)
driidrij

and so is positive along any arc (77) and for all (rjr) =* (77).

These facts, together with the hypothesis that there is no point on g

conjugate to its initial point for ff=<7o, enable us to infer that the secondary

extremal (77) minimizes 7(77, u, <r0) in the fixed end point problem; that is,

I(ij, u, tr0) <I(y, u, ffo). The lemma follows from Theorem 4a.

Lemma 4. If I(n, u, <x0) (<ro<0) is positive for all admissible sets (u, 77)^

(0,0), then there is no pair of conjugate points on gfora = a0.

For if t2 were conjugate to h on g for a = cr0, there would exist a secondary

extremal (77) ̂ (0) vanishing at h and t2. Then 7(77, u, <r0) would be zero if

evaluated for (u) = (0) and for (77) taken along the broken secondary extremal

consisting of (77) in the interval iife and the ¿-axis in the remainder (if any)

of the interval taHi2). This is contrary to hypothesis.

Lemma 5. If there is no point on g conjugate to its initial point for a = cr0<0,

then there is no point on g conjugate to its initial point for <r in the neighborhood

Of (So-

For each cr<0, the points conjugate to t = t<-1) are defined by the zeros

t-5¿ta) of the determinant D(t, a)= |i7»,(i, ff) |, where ||77¿,(í, <r)|| is a matrix

each column of which represents a secondary extremal for cr = cr, and which

satisfies the conditions

lhi,(i-(l),ff)ll = ||0||, hij(tm, ff)|| = hé (i,j = 1,   • • ,n;5é = Kronecker delta).

Now by means of the integral Law of the Mean, the function 77^, a)

can be expressed in the form

va(t, o-) = (t- |(«) f  Vii[t + 0(t - *»), o-]d0 (i, j = 1, « • • , »)
Jo

= (t - t^)aa(t, a),

where a¿,(í, a) is continuous for ¿(1) =t = /(2) and tr<0, and where

lk,-(*(1), «Oil = UiÁ*m, ff)ll = ^     (i, >=!.-■■•. ♦»)•
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Thus

D(t,a) = (t-t^)"\au(t,c)\ .

Since D(t, aa) ^0 for ta) <t^t<-2) by hypothesis, we see that \au(t, do) \^0

for í(1) i¿t^t(2). It follows from the continuity of a¿,(í, cr) that \au(t, a) \

is 5¿0 in the interval /(1) g¿^¿(2) for a near o-0. Hence D(t, a) 5^0 for a near cr0

in the interval ¿(1)</fi/(2), and the theorem is proved.

Theorem 6. If there exist no negative characteristic roots, then Z(t?, u, 0) =0

/or a/i admissible sets (u, v).

For d negative and sufficiently large, Z(t7, u, a) is, by Theorem 5, positive

for all admissible sets (u, 77) 5= (0, 0). Suppose we now increase cr towards

zero. Then Z(t7, u, a) either remains positive for d<0 and for all admissible

sets (u, 77) ?¿ (0, 0), or else there is a least upper bound cr0<0 of the values of a

for which Z(t7, u, a) is positive for all admissible sets (u, 77) y^ (0,0). We shall

show that the latter case is impossible.

Suppose there does exist such a least upper bound cr0. Then either I(n, u,

d0) is positive for all admissible sets (u, 77)^(0, 0), or else Z(t7, u, ao) is zero

for some such sets. If Z(t7, u, d0) is zero for an admissible set (ü, rj)^(0, 0)

then (ü, 77) must minimize Z(t7, u, <t0) among admissible sets (u, 77). Hence (¿j)

must be a secondary extremal for o- = do satisfying (3.8) and (3.9), contrary

to the hypothesis that there exist no negative characteristic roots. Thus

Z(t7, u, <r0) must be positive for all admissible sets (u, 77) ̂ (0, 0).

Lemma 4 then enables us to set up the quadratic form H(u, o0), which

must be positive definite. By Lemma 5, we can set up H(u, a) for a slightly

greater than d0, and it must be positive definite for a slightly greater than

ao- By Lemma 3, I(r¡, u, a) must then be positive for all admissible sets

(u, 77) =¿ (0, 0) for a slightly greater than cr0. This contradicts the hypothesis

that cr0 is the least upper bound of the values of a for which I(r¡, u, a) is posi-

tive for all admissible sets (u, 77) ̂ (0, 0).

We conclude, then, that I(n, u, a) is positive for all d<0 and for all

admissible sets (u, y)¿¿(0, 0).

It follows, then, that Z(?7, u, 0) SgO for all admissible sets (u, 77).

A set of functions (77) will be called tangential if they are of the form

(5.5) m = p^xid)

where p(t) is any function of class D'.

Lemma 6. A set of tangential functions of class C" represents a secondary

extremal for a = 0.
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The one-parameter family

Xi = Xi[t + ep(t)] (i = 1, ■ • ■ , n),

where p(t) is any function of class C"', is certainly a family of extremals, for

its members are simply different representations of the same extremal g.

Hence the variations 77^/) of this family represent a secondary extremal. But

for this family

Vi = x'(t)p(t) (i = 1, • • • , n)

and so the lemma is proved.

Such a secondary extremal we shall call tangential.

Lemma7. A tangential secondary extremal(not the t-axis)vanishing at i(1) and

/(2) is a characteristic solution for cr = 0.

That such a secondary extremal satisfies (3.8) for cr = 0, (m) = (0), follows

from the relation
d2F

rr*' = ° (i,j = i,--- ,«)•
dx<dx,-

Theorem 7. If there exist no negative characteristic roots, and no non-

tangential characteristic solutions for a=0, there is no point on g conjugate to its

initial point for cr=0.

In the first place, i(2) cannot be conjugate to ¿cl) on g. For if it were, there

would be a normal* secondary extremal .(77) f= (0) vanishing at f2) and /(1).f

This curve (rj), with the set (u) = (0), would make 7(77, u, 0) vanish. Now by

Theorem 6, 7(tj, m, 0) is positive or zero for all admissible sets (u, 77) and so

(77) with the set (u) = (0) would minimize 7(77, u, 0) among admissible sets

(m, 77). Hence (77) would have to satisfy conditions (3.8) and so be a charac-

teristic solution for <r=0. Since (fj) is non-tangential, this is contrary to

hypothesis.

Next suppose that J=^i(2> were conjugate to 2(1) on g. Then there would

exist a normal secondary extremal (77)^(0) vanishing at ¿(1) and t. The ex-

pression 7(77, M, 0) would be zero if evaluated along the broken secondary

extremal (77) consisting of (77) in the interval ¿(1) i and of the /-axis in the re-

mainder of the interval i(1)/(2). The curve (77) would actually have a corner

at t, because the only normal secondary extremal through a point on the

/-axis in the direction of the /-axis is (77) == (0) 4

* A normal secondary extremal is one which satisfies the relation

Xi iji = 0 (»' = 1, • • • , n).

t See Bliss, loc. cit., p. 200.

i See Bliss, loc. cit., p. 199.
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The arc (77) with the set (u) = (0) would minimize 7(77, u, 0) among ad-

missible sets (m, 77), and so would have to satisfy the corner conditions

r<5co-|'+        d2F .    -+
— - TTrfo'K--0      ttJ-i.••■.*)■

Lo77¿J( dXidXj

From this it would follow, due to the actual presence of a corner at /, that

(5.6) [»,,•]£ = kx'j(t) k*0   (j=l,---,n).

Hence

(5.7) $/(Q = -**/(!) 0'=1. ■•■,»)•

But this is impossible; for along the normal secondary extremal (77) we have

(5.8) x/7jy = 0 (;"= 1. ••',»),

and hence, by differentiation,

(5.9) x/(í)tj/(D = 0 (; = i,--   ,»),

which contradicts (5.7).

Thus there is no point on g conjugate to ¿(1).

We come now to the final theorem. The arc g and the set (a) = (0) shall be

said to furnish a proper, strong, relative minimum to J if there exist a neigh-

borhood N of g and a neighborhood M of (a) = (0) such that the value of J

is less when evaluated for g and (a) = (0) than when evaluated for any other

admissible arc in N with ends determined by a set (a) in M.

Theorem 8. In order that the extremal g, without multiple points, and the set

(a) = (0) afford a proper strong relative minimum to J it is sufficient that the

transversality conditions (2.6) be satisfied, that the Legendre and Weierstrass

sufficient conditions hold, that there be no negative characteristic roots, and that

there be no characteristic solutions for <r = 0 except the tangential solutions van*-

is hing at both ends.

Under the hypotheses of this theorem, Theorem 7 tells us that the end

points of g are not conjugate, and so we can set up the function J(a, 0),

and hence the quadratic form 77(u, 0). According to Theorem 4, H(u, 0) is

equal to 7(tj, m, 0), where (77) is any secondary extremal with ends determined

by (m) through (3.9). By Theorem 6, H(u, 0) =0.

Now if 77(m, 0) were 0 for some (u) ¿¿ (0), then 7(77, u, 0) would be zero

if evaluated for (m) and any secondary extremal (77) with ends determined by

(u). Hence (77) would minimize 7(77, u, 0) and so would satisfy (3.8) and be a

characteristic solution for ff = 0 not vanishing at both ends. This contradicts

the hypotheses. Thus H(u, 0) is positive definite.
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Now the Legendre and Weierstrass sufficient conditions are assumed to

hold along g. Also, by Theorem 7, there is no point on g conjugate to its initial

point. Hence g furnishes a minimum to J in the fixed end point problem.

Furthermore, there exists a neighborhood N of g such that if an extremal E

determined by a set (a) lies in N, then, if (a) is sufficiently near (0), E will

afford a minimum to / in the fixed end point problem, with respect to admis-

sible arcs in N joining the end points of E*

Let g' he any admissible arc in N, its end points being given by a certain

set (a). Then if (a) is near enough to (0) the extremal determined by (a)

will lie in N, and

(5.10) Jç'.a^J(a).

But H (a, 0) gives the terms of second order in J(a), so that for (a)

sufficiently near (0) we have

(5.11) J(a)^J(0),

the equality holding only if (a) = (0)...

Hence for g' sufficiently near g and (a) sufficiently near (0),

(5.12) JB',a^J(0).

This inequality becomes an equality only if g' is identical with g.

Thus the theorem is proved.

6. The fixed end point problem. This is the case that r = 0 and 0 = con-

stant, the end conditions being

xf = constant (i = 1, • • • , ra; s = 1, 2).

The expression Z(t7, u, a) is replaced by

I(i), a) = 2  I      Sidt,
J tm

(i = 1, • • • , ra),

1, ••■ ,n;s = 1,2).

The necessary condition of Theorem 3 holds as stated.

To prove Theorem 8 in the fixed end point case, we shall prove that

under the hypotheses of the theorem there is no point on g conjugate to its

* Cf. Morse, loc. cit., p. 535, and Bliss, Annals of Mathematics, April, 1932, p. 267, Lemma 1.

and the accessory boundary problem has the form

dt\_dr¡iJ      diji

v,' = 0 (» =
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initial point for d = 0. This will follow if we can prove Theorem 7, which in

turn is based on Theorem 6.

The first two paragraphs in the proof of Theorem 6 hold as before. Next,

Lemma 4 shows us that there is no point on g conjugate to its initial point for

tr=cr0, and Lemma 5 extends this property to values of a slightly greater than

d0. Hence (77) = (0) furnishes a proper minimum to Z(?7, a) (see proof of Lem-

ma 3) for these values of a, and so Z(t7, a) > 0 for these values of a for (77) ¿¿ (0).

This contradicts the hypothesis that do was the least upper bound of the

values of a for which Z(t7, a) is positive for all admissible sets (77)^(0).

Theorem 6 follows, and hence Theorems 7 and 8.

Harvard University,

Cambridge, Mass.


