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The present paper contains a number of results in the theory of finite

fields or higher congruences. The method may be considered as an appUcation

of the theory of /»-polynomials, which I have developed in a recent paperf

On a special class of polynomials. In this special case the /»-polynomials form

a commutative ring. However, this paper may be read without reference to

the former investigations and one may say that the method applied is the

representation of the finite field in its group ring. It should be mentioned at

this point that a number of the results have direct applications in the theory

of algebraic numbers.

In chapter 1 the special properties of the /»-polynomials with coefficients

in a finite field have been derived and the main results are the theorems that

every /»-polynomial has primitive roots and that every /»-modulus is simple.

A coroUary is the theorem of Hensel, that every finite field has a basis con-

sisting of conjugate elements. Through the introduction of a symboUc multi-

plication of elements in a /»-modulus we make every such modulus a ring

usuaUy containing divisors of zero. The results of this first chapter I have

previously given without proofs.J

In chapter 2 various theorems of decomposition and theorems on prime

polynomials belonging to a product of /»-polynomials have been derived.

Theorems 4 and 5 seem to be the most interesting of the results. In the next

chapter these results are applied to the construction of irreducible polynomi-

als. Theorem 1 gives a general type of irreducible polynomials. Next the com-

plete prime polynomial decomposition of the simplest /»-polynomials are

given, and it is shown how most known irreducible polynomials (mod /») can

be obtained in this way, thus obtaining a unified method for deriving various

formerly known results. In the last paragraph one finds a new class of irre-

ducible polynomials closely related to the Unear fractional substitutions. The

last chapter contains a few rudiments of the theory of finite fields considered

as cyclic fields and also a particularly simple proof for the general law of reci-

procity.

* Presented to the Society, October 28, 1933; received by the editors December 1, 1933.

t These Transactions, vol. 35 (1933), pp. 559-584.

X O. Ore, Einige Untersuchungen über endliche Körper, Proceedings 7th Scandinavian Mathe-

matical Congress, Oslo, 1930, pp. 65-67.
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Chapter 1. Theorems on finite fields

1. Fundamental properties of /»-polynomials. In the following, polyno-

mials with rational integral coefficients will be studied for a rational prime

modulus P; since almost all congruences occurring in this paper are taken

with respect to this modulus, we shall, when no ambiguity is to be feared, re-

place congruences (mod p) by equalities.

A polynomial of the form

(1) Fix) = aoxp" + aix"""1 +-h a^ix" + anx

shall be called a p-polynomial. Fix) is reduced when o0 = l. The polynomial

(2) /(*) = a0xn + aix»-1 + • • • + a„_i* + an

is called the polynomial corresponding to Fix) ; the degree » oí fix) is called the

exponent of Fix).

The system of all /»-polynomials forms a modulus, but not a ring, since

the ordinary product of two /»-polynomials is not a /»-polynomial. One finds,

however, that the /»th power of a /»-polynomial (mod /») is again a /»-polyno-

mial; this shows that if

(3) Gix) = b0x'm + bix"m'1 + • • • + bm^ix* + bmx

is a second /»-polynomial with the corresponding polynomial

(4) gix) = b0xm + bixm~l + ■ ■ ■ + bm-ix + bm,

then the result of substituting Fix) in Gix) is also a /»-polynomial G(F(x)).

We therefore are led to the definition of a symbolic multiplication

(5) Gix) X Fix) = GiFix)),

and a simple investigation of the symbolic product gives the following re-

sults :

Theorem 1. The symbolic multiplication is commutative and distributive

and the polynomial corresponding to a symbolic product is equal to the product

of the corresponding polynomials of the symbolic factors.

If consequently
Fi(*), • • • , Frix)

are /»-polynomials with the corresponding polynomials

fl(x),      ■   ■   , fr(x),

then the symbolic product

n(z) = Fi(x) X • • ■ X FT(x)
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has the corresponding polynomial

*■(*) = fi(x) ■ ■ ■ fr(x).

We shall say that P(x) is a symbolic prime polynomial, when it is reduced

and no symbolic decomposition P(x) =A(x)xB(x) exists except when one

of the factors has the exponent zero. One could also have used the corre-

spondence stated in Theorem 1 and defined P(x) as a prime /»-polynomial

when the corresponding polynomial p(x) is irreducible (mod />). This corre-

spondence immediately shows

Theorem 2. The decomposition of a p-polynomial in symbolic prime factors

is unique.

One could also have concluded this from the fact that there exists a Euclid

algorithm for the symbolic multiplication. When two /»-polynomials A (x)

and B(x) are given, one can find two others Q(x) and R(x) such that

(6) A(x) = B(x) X Q(x) + R(x)

where the exponent of R(x) is smaller than the exponent of B(x). From (6)

the existence of a Euclid algorithm follows; there exists a greatest common

symbolic factor for any two or more /»-polynomials. When A(x) and B(x)

have only the trivial symbolic common factor *, we say that A (x) and B(x)

are symbolically relatively prime.

It should be observed that when A(x) is symbolically divisible by D(x),

then A(x) is also divisible by D(x) in the ordinary sense and conversely.

From A(x) = Q(x)XD(x) foUows, namely, when Q(x) =qi(x)-x, that A(x)

= qi(D(x))-D(x). On the other hand, let A (x) be divisible by D(x) in the ordi-

nary sense; one can divide A(x) symbolicaUy by D(x) and obtain

(7) A(x) = Q(x) X Dix) + R(x) = qi(D(x))-D(x) + R(x).

Here the degree of R(x) is smaUer than the degree of D(x), and the second

equation (7) shows that R(x) =0. This reasoning also shows that the sym-

bolic EucUd algorithm will contain the same residues as the ordinary EucUd

algorithm. One obtains in particular

Theorem 3. The greatest common symbolic factor of two p-polynomials is

the same as the ordinary greatest common factor of the p-polynomials.

When therefore A (x) and B(x) are symbolically relatively prime, then the

ordinary greatest common factor of A(x) and B(x) is x and conversely. Let

us also observe that in this case one can determine two /»-polynomials X(x)

and Y(x) such that
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(8) X(x) X A(x) + Y(x) X B(x) = x.

The /»-polynomials of the greatest interest in the following are the well

known

(9) Fn(x) = x"n - x

with the corresponding polynomial

(10) fnix) = x"-l.

Theorem 1 shows

Theorem 4. WhenfJ^x) has the ordinary prime factor decomposition

(11) *" -   1   -  <Plix)   ■   ■   ■  <¡>r(x)

then Fn(x) has the symbolic prime factor decomposition

(12) x** - 1 - *i(*) X • • • X $,(*),

where cp,(x) (¿ = 1, 2, • • • , r) ¿5 the polynomial corresponding to <P,0r).

2. The roots of /»-polynomials. We shall now discuss the properties of the

roots of a /»-polynomial Fix) defined by (1). Since Fix) can be represented as

the ordinary product of prime factors, it is obvious that the roots will belong

to some finite field K. For a /»-polynomial one has F'ix) =an and this shows

that Fix) can only have equal roots when an = 0; this case will always be ex-

cluded in the following considerations.

Let p and v be roots of

(13) Fix) = 0;

due to the special form of a /»-polynomial one sees that p ± v is also a root of

(13) and, furthermore, that the /»th power pp will also be a root.

We shall say that a finite modulus Mv is a /»-modulus, if it has the prop-

erty that the /»th power of every element is contained in it. This definition

implies that every /»-modulus lies in some finite field. We can now show

Theorem 5. The roots of a p-polynomial form a p-modulus and every p-mod-

ulus is the set of roots of a p-polynomial.

The first part of the theorem follows from the remarks made above.

Since a /»-modulus Mp always has elements in some finite field, and since pp

for each p is the conjugate of p it follows that the totality of elements of MP

will satisfy an equation with rational coefficients. In order to show that this

is a /»-polynomial, let

Mp = r:pi + • • • + rnpn (r,- = 0, 1, ■ ■ ■ , p — 1)
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be a representation of Mp by a basis. Then all elements of Mp are seen to sat-

isfy the equation

I   ßl       •   •  •  ßn X        I

l   ßl1"1  ■   ■   ■   ßnpn       X"n |

and the fact that the elements pi, ■ • ■ , pn form a basis shows that the highest

coefficient does not vanish.

Theorem 5 gives a correspondence between /»-moduli and /»-polynomials ;

we shall derive a few simple consequences. Let F(x) be a /»-polynomial with

the /»-modulus MP; when F(x) is symbolically reducible,

Fix) = Fi(x) X F2(x) = Fi(F2(x)),

it follows that Mp must contain as a sub-modulus the roots Mp' of Fi(x) (or

F2(x)). Conversely, if Mp contains a sub-/»-modulus Mp corresponding to a

/»-polynomial Fi(x), then according to §1, Fi(x) must divide F(x) both in the

ordinary and in the symbolic sense.

Theorem 6. The necessary and sufficient condition that F(x) be symbolically

reducible is that its p-modulus Mp contain a sub-p-modulus.

We shall say that Mp is a prime p-modulus, when it contains no sub-

/»-modulus except the zero modulus. The necessary and sufficient condition

that Mp be prime is that the corresponding /»-polynomial be symbolically

irreducible. When Mp and Np are two /»-moduli corresponding to F(x) and

G(x), it is easily seen that Mp+Np is also a /»-modulus corresponding to the

least common multiple [F(x), G(x)], and that the cross-cut (Mp, Np) is a

/»-modulus corresponding to the greatest common factor (F(x), G(x)).

Now let p be an arbitrary element of a finite field; all elements of the form

(14) Sp = k0p + kip» + k2p"' H-

obviously form a /»-modulus and a /»-modulus generated in this way by a

single element shall be called simple. There must exist a smallest exponent a

such that a relation

p*° + mip*»'1 + ■ ■ ■ + ma-ip» + map = 0

holds, and the elements of the simple /»-modulus (14) can then be represented

uniquely in the form

(15) Sp = k0p + kip» + ■ ■ ■ + ¿a-i/i""-1.
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From the definition of a prime /»-modulus it follows that every prime /»-modu-

lus is simple. It is one of the main results of this theory that

Theorem 7. Every p-modulus is simple.

This theorem will be proved in §4.

3. Polynomials belonging to a /»-polynomial. Let <p(x) be an arbitrary

polynomial of degree m; it will be shown that <p(x) always divides a /»-poly-

nomial Fix). In order to find the /»-polynomial Fix) of smallest degree having

this property, we divide the successive powers xpt by <p(x) and obtain a set

of congruences

(16) x*mafx~-l-\-+ a<¿~> (mod $(*))    (* = 0, 1, • • • ).

Through linear elimination one can obtain a relation (mod <pix)) between the

powers xpi, eliminating 1, x, x2, ■ ■ • , xm~i from the right-hand side of (16).

If i»+l is the first index such that there exists a linear homogeneous relation

between the first v+\ polynomials on the right-hand side, then cp(ic) will di-

vide a /»-polynomial Fix) with the exponent v. The construction of Fix)

shows that it is the /»-polynomial with smallest exponent divisible by <j>ix)

and we shall say that <j>ix) belongs to Fix). The following is then easily seen:

Theorem 8. Every polynomial cp(x) of degree m belongs to a unique p-poly-

nomial Fix) with the exponent v^m. Every p-polynomial divisible by <pix) is

symbolically divisible by Fix).

Let next Fix) be an arbitrary /»-polynomial without equal roots, and let

fix) be the corresponding polynomial. Since each prime factor of fix) divides

some xn — 1, it follows that there exists a smallest exponent N such that

xN — 1 is divisible by fix). This gives, when applied to Fix),

Theorem 9. There exists for each p-polynomial Fix) without equal roots a

smallest number N such that

(17) x"" - x = Gix) X Fix).

We shall call N the index of Fix); every irreducible ordinary factor of

Fix) has then a degree dividing the index.

Since every polynomial belongs to some /»-polynomial, it follows, in par-

ticular, that every prime polynomial cp(x) belongs to some Fix), and it is

easily seen that one can assume that Fix) has no equal roots. The degree N'

of <pix) is then a divisor of the index N of Fix), according to (17). On the other

hand, <pix) is a divisor of the /»-polynomial

FP«'(x) = x»"' - x,
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and F(x) is therefore also a symbolic divisor of the /»-polynomial Fpf'(x).

This shows, conversely, that A7 is a divisor of N', and we obtain

Theorem 10. An irreducible polynomial of degree N belongs to a p-poly-

nomial with the index N, and conversely, every irreducible ordinary factor be-

longing to a p-polynomial with the index N has the degree N.

At the close of these considerations I should like to make another observa-

tion. When one wishes to find the prime function decomposition (mod /») of

an ordinary polynomial f(x), one usually determines the smallest exponent N

such that f(x) divides xpN—x* In order to obtain this, one can construct the

system of congruences (16); instead of continuing the divisions until

xpN = x (mod /(*)),

it is usually simpler to eliminate the powers of x on the right-hand side and

find the /»-polynomial <£(#) which f(x) divides. When $(x) corresponds to

<p(x) it is only necessary to find the N for which <t>(x) divides xN — I.

4. Primitive roots. The problem now naturally arises to find the number

of irreducible polynomials belonging to a given /»-polynomial F(x). When

F(x) has the exponent N, these polynomials are all of degree N. One may

state the problem in a somewhat different form. We shall say that a root p.

is a primitive root of F(x) =0 when it satisfies no /»-equation of lower degree.

Our problem is then equivalent to the determination of the primitive roots.

Now let

(18) Fix) = cE>i(x)<ei> X • • • X *,(*)<*>

be the symbolic prime function decomposition of F(x), in which the expo-

nents signify the repetition of equal factors; the exponent of <&i(x) is «*,-. The

primitive roots of F(x) are obtained when one omits aU the roots of the poly-

nomials F(x)Xi^i(x)~1 and a common argument in number theory shows that

NF = pm - J2 pm"mi + J2 pm~mi-m> + ■ • •

(19)

\       pmi) \       pn'l

represents the number of primitive roots.

The expression (19) can also be interpreted in a different way. Let fix)

be the polynomial corresponding to F(x) ; then according to (18)

(20)_ f(x) = faix)" ■ ■ ■ faix)"

* See for instance A. Arwin, Über Kongruenzen von dem fünften und höheren Graden nach einem

Primzahlmodulus, Arkiv för Matematik, Astronomi och Fysik, vol. 14 (1918).
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is the prime polynomial decomposition of f(x). Now let * 0/0*0) denote the

number of residues (modd />, fix)) which are relatively prime to fix) ; one

finds then for this generalized i>-function exactly the expression (19). This

gives

Theorem 11. When the p-polynomial Fix) with the corresponding poly-

nomial fix) has the symbolic prime function decomposition (18), then Fix) has

exactly

(2i) $(/(,)) = ^(1_-L)...(1__L)

primitive roots; here the mt denote the exponents of the different prime factors of

Fix).

This theorem permits a series of applications. It shows the following,

first of all:

There exist primitive roots for all p-polynomials.

Furthermore:

The number of irreducible polynomials belonging to Fix) is il/N)$(Jix)),

where N is the index of Fix).

Since there always exist prime functions of degree N dividing Fix), it fol-

lows that every /»-polynomial has the following property in common with

x^-x:

The degrees of the ordinary irreducible factors of a p-polynomial always di-

vide the degree of the prime divisor of highest degree.

Since every /»-modulus Mp forms the set of roots of a /»-polynomial Fix),

and since Fix) has primitive roots, it follows that Mp can be generated in the

form (15) by a primitive root of Fix). This gives the proof of Theorem 7:

Every p-modulus is simple.

An important special case is the case where the /»-modulus is a finite field

with /»" elements; the corresponding /»-polynomial is then xp"—x. Theorem

11 shows that there exist $(*" —1) numbers p such that every element can

be represented in the form

co = a0p + öiPp + • • • + ön-ipP"-1.

We have therefore proved

Theorem 12. In a finite field of degree n there exist (l/«)$(a;n —1) different

bases consisting of conjugate elements :

p, pp, • ■ • , p
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Theorem 12 gives the answer to a problem proposed already by Eisen-

stein*, and partly solved by Schönemann.f The first complete solution was

given by Henself ; it should also be observed that the existence of such a basis

is a consequence of a much more general theorem by Noether and Deuring§,

proving the existence of a basis consisting of conjugate elements for an arbi-

trary Galois field.

5. Symbolic multiplication. Let Fix) be a /»-polynomial with the expo-

nent n,fix) the corresponding polynomial and Mp the /»-modulus of the roots.

All elements of Mp are then of the form

(22) Qip) = aoß + ■ ■ ■ + an-ip*"-1

where p is a primitive root. The number Qip) belongs to some divisor Fiix) of

F(x) and this divisor can easily be found. If namely F(x) =Fi(x) XF2(x) and

Pi(Q(m))=0, then one must have Fi(x)xQ(x)=0 (mod F(x)) or Q(x)=0

(mod F2(x)), and one finds

Theorem 13. When Fi(x)XF2(x)=F(x), then an element (22) in Mp be-

longs to Fi(x) if and only if

Q(x) = Qi(x) X F2(x),

where Qi(x) is relatively prime to Fi(x).

The primitive elements of Mp consequently consist of those Q(jx) for which

Q(x) is relatively prime to F(x).

The existence of a primitive element also permits us to introduce a sym-

bolic multiplication in a /»-modulus and make the /»-modulus a ring; and this

can even be done in several ways. Let p as formerly be a primitive element;

to define the product of two elements

a = A(p),       ß = B(p),

we put

(23) a X ß = ß X a = [A(x) X B(x)]x=.,.

This product is associative, distributive and commutative; it should be ob-

served that the definition (23) depends essentially upon the choice of the

primitive element p, because p must be the unit element of the symbolic mul-

* G. Eisenstein, Über irreduzible Kongruenzen, Journal für Mathematik, vol. 39 (1850), p. 182.

t Schönemann, Über einige von Herrn Dr. Eisenslein aufgestellte Lehrsätze etc., Journal für Mathe-

matik, vol. 40 (1850), pp. 185-187.

X K. Hensel, Über die Darstellung der Zahlen eines Gattungsbereiches für einen beliebigen Prim-

divisor, Journal für Mathematik, vol. 103 (1888), pp. 230-237.

§ M. Deuring, Galoissche Theorie und Darstellungstheorie, Mathematische Annalen, vol. 107

(1932), pp. 140-144.
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tiplication. The ring Mp defined by a particular p is seen to be isomorphic to

the ring of all residue-classes (mod f(x)), where/(x) is the polynomial corre-

sponding to F(x) ; Mp is a field only when F(x) is symbolically irreducible.

When applied to a finite field, one obtains in particular

Theorem 14. Let ß be a primitive element in a finite field K», such that the

conjugates of p form a basis. Each element in K» is then a p-polynomial in p and

the symbolic multiplication of these p-polynomials introduces a new definition

of multiplication in Kß. With regard to this multiplication Kß is a ring isomor-

phic to the ring of residue-classes for the double modulus (modd />, xn — 1).

Now let F(x) be a /»-polynomial with the symbolic prime polynomial de-

composition

(24) F(x) = *i(x)c*l) X • • • X Mx)M

and let us put

Aiix) = F(x) X #<(*)<"«> (i = 1, 2, • • • , r).

The primitive roots of í>¿(x)(ei) =0 are then Q¿(p) X^4<(p), where Qiix) is not

divisible by 3»,0*0, and where p as before denotes a primitive root of Fix) = 0.

Every root « of P(x) is representable uniquely in the form

r

« =  Z Rib) X Aiiß),
>-l

where the degree of Riix) is smaller than the degree of $iix)("\ This shows

that each root is uniquely representable in the form

O)  = pi + P2 +   •  •  •   + Pr,

where p, is a root of

(25) *<(*)<«> = 0.

The root co is primitive if and only if all p, are primitive roots of their corre-

sponding equations (25).

Now let

(26) Gix) = #!(*)"»> X • ■ • X 4v(*)(/r)

be a second /»-polynomial and

v = Vl + vt + • • • + Vr,        $<(v<)<"> = 0,

the representation of one of its primitive roots. The number

p   +   V   =   (pi  +   Vl)  +   •   ■   ■   +   (pr  ±   Vr)
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is then a root of the union [F(x), G(x) ]. When for an index i we have e< >/,-,

then the element \í=pí + ví is a primitive root of $,(a;)(e*') = 0 as one easily

sees, and correspondingly for /<>«,-. When «,=/< it may happen, however,

that X¿ is not a primitive root, but when p 5= 2 it is always possible even to a

fixed pi to choose a Vi such that X,- is a primitive root, for instance Vi= ±p¡.

When /» = 2 and $i(x) has the exponent 1, one finds that no primitive root

Vi with the property indicated exists.

Theorem 15. Let F(x) be two p-polynomials with the symbolic prime poly-

nomial decompositions (24) and (26), and let p and v be two primitive roots.

When for all i ei y^fi, then \=p±vis a primitive root of the least common multiple

[Fix), G(x)]. If ei=fifor some i and p9£2, one can always to every primitive p

find a primitive v such that \is a primitive root of the union.

6. /»/-polynomials.  We shall finally make a slight generalization of the

former theory by considering /»'-polynomials

F(x) = a0xpfn + aixpnn-» + ■ ■ ■ + an^ixpf + anx,

where the coefficients a¿ are elements of a finite field Kf of degree/. The poly-

nomial corresponding to F(x) is

F(x) = aaxn + aix"-1 + ■ ■ ■ + an-iX + an.

One can define the symbolic multiplication by substitution as in §1, and one

finds that the symbolic multiplication is commutative and that the polyno-

mial corresponding to a symbolic product is equal to the product of the corre-

sponding factors; Theorems 2 and 3 also hold without change.

The decomposition of
xp,n — x

into /»/-factors corresponds uniquely to the decomposition of xn — I into ir-

reducible factors in K¡.

The roots of a /»/-polynomial form a pf-modulus, i.e., a modulus with the

following properties:

1. When p belongs to Mpj, then ap also belongs for all elements a of Kf.

2. When p belongs to Mp/, then jup/also belongs. Every ^/-modulus forms

the set of roots of a /»/-polynomial.

One finds that every polynomial with coefficients in K¡ belongs to a

/»/-polynomial. The smallest exponent N such that F(x) divides

x*'* — x

is called the index of F(x), and Theorem 10 will hold unchanged. One can

then prove the existence of primitive roots for a /»/-polynomial and obtain
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similar formulas for their number. It follows that every /»/-modulus is simple

and can be represented in the form

Mp, = «op + «ipp/ + • • • + «„-ip^"-".

When applied to a finite field of degree ff this gives

Theorem 16. In a finite field Kf/ of degree ff one can always find bases

with respect to Kf consisting of conjugate elements

ß,p.*', ...,/ip'<"->.

The analogue of Theorem 15 can easily be deduced.

Chapter II. Decomposition theorems

1. Identities for x"n—x. Let Fix) and Gix) be two /»-polynomials, and

let a be an arbitrary root of Fix) =0 and ß an arbitrary root of Gix) =0.

From the definition of the symbolic multiplication it follows that the following

identities must hold :

(1) Fix) X Gix) =   u (F(x) - ß) =   II (Gix) - a).

This simple remark gives, when applied to xpn —x,

Theorem 1. Letf(x) and g(x) be two complementary divisors of xn — \ such

that

(2) x" - 1 = f(x)g(x),

and let F(x) and G(x) be the corresponding p-polynomials. Then

(3) x~ - x =   u (F(x) - ß) =   II (Gix) - a)
ß "

where a runs through all the roots of F(x)=0 and ß through all the roots of

G(x)=0.

Using /»/-polynomials one obtains a similar theorem for the decomposition

of xp,n—x. Since xn — 1 always has the two factors

f(x) = x"-1 +...+* + 1,        gix) = x - 1,

one obtains as a special case of the decomposition (3) the decompositions

given by Mathieu* :

* E. Mathieu, Mémoire sur l'étude de fonctions de plusieurs quantités etc., Journal de Mathé-

matiques, (2), vol. 6 (1861), pp. 241-323.



1934] THEORY OF FINITE FIELDS 255

p-i
x*" — x =  u (*pn_1 + • • • + xp + x + a)

(4)
=   Jl(x*-x-ß),

ß

where ß runs through all solutions of

(5) x**-1 + x*"-2 + ■ ■ ■ + x" + x = 0.

When /»/-polynomials are applied one obtains

xpin - x = u (*p/<"_1> + ■ ■ ■ + xpf + x + a)
a

= IT (*" -*-ß),
ß

where a runs through all elements of Kf, while ß runs through the roots of

(7) x"/'"-1' + xpfi"-2) + ■ ■ ■ + x*f + x = 0.

The significance of the conditions (5) and (7) is seen to be the following:

When ß is a root of (7) it is an element of the finite field Knf of relative degree

n with respect to Kf, and it therefore satisfies an irreducible equation in K¡

of degree n&, where nß divides ». When ai^ denotes the coefficient of xnß~l

in this equation, one finds

0p/<»-« -j-+^^4-/3= —^ aiw>,
nß

and the condition (7) is equivalent to

(8) — aiw s 0 (mod p),
n0

or simply «i<W =0 (mod /») when « is not divisible by p.

2. Decomposition theorems. The object of the following considerations

is to give a method to determine the prime polynomials belonging to a prod-

uct F(x)=Fi(x)xF2(x) of two /»/-polynomials, when the prime factors of

Fi(x) and F2(x) are known. According to (1) we have the decomposition

(9) F(x) =  u iFiix) - ai) -  u (Ftix) - ai),
a, ai

where «i and a2 run through the roots of Fi(x) =0 and F2(x) =0 respectively.

Each root of F(x) then satisfies an equation

(10) F2(x) = «i.

We shall determine all equations (10) satisfied by primitive roots of Fix);
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first, it is obvious that a primitive root can only satisfy (10) when ai is a

primitive root of Pi (a;). Next let p be a primitive root of Fix) ; then according

to Theorem 16, «i must have the form «i = Q(p) XF2(jjt), where Q(x) is rela-

tively prime to FiO*0; when P(p) denotes an arbitrary root of (10), then one

obtains
F2(x) X (R(x) - Q(x)) = 0 (mod F(x))

or

(11) R(x) =Q(x) - K(x) XFi(x).

The relation (11) gives the general form of a root of (10), including also the

case where c*i is not a primitive root of FiO*0-

Let us next write

(12) Fi(*) = Gi(x) X Di(x),       F2(x) = G,(*) X D»(*).

where Gi(x) and G2(x) are relatively prime and Diix) and D2ix) contain only

prime factors which are common to FiO*0 and F2(x). When Qix) is relatively

prime to Fi(x) it follows from (11) that any common factor of Rix) and Fix)

must be a divisor G2(aO of G2(x), and this shows that every root of (10) belongs

to a polynomial

(13) G2(x) X D2(x) X Fi(x),

where G2(x) =G2ix)XG2ix).

In order to determine the exact number of roots of (10) belonging to a

given polynomial (13), we observe that P(x) must be of the form Riix)

X32(ï), where Riix) is relatively prime to (13) ; comparing this with (11) one

finds

(14) Riix) X G2ix) + Kix) X Fiix) = Qix)

and our problem is equivalent to the determination of the number of solutions

Riix) of degree less than the degree of (13) and relatively prime to this poly-

nomial, i.e., relatively prime to G2ix) since no solution of (14) can have a fac-

tor in common with Pi(x). Since G2ix) is relatively prime to FiO*0, it follows

that (14) has a special solution Pi(0> (x) such that the general solution is

(15) Ri(x) = Ri^(x) + M(x) X Fi(x),

where M(x) is an arbitrary polynomial whose degree is smaller than the de-

gree of G2ix)xD2ix). The total number of polynomials Mix) is then p> ,

where f* =fig2+d2) and where g2 and d2 are the exponents of G2ix) and

D2ix). One finds by the usual argument in number theory that the number of

solutions of (15) which are relatively prime to G2(x) will be
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(16) N = p'^iHx)),

where g2ix) is the polynomial corresponding to G2(x) and 3» is the generaUzed

Euler function introduced in §4, chapter 1. A well known property of the i>-

function shows that the sum of all numbers (16) taken over all divisors

g2(x) of g2(x) is equal to the degree of F2(x) as one should expect.

Theorem 2. Let F(x) =Fi(x) XF2(x) be the product of two p>-polynomials

and

Fix) =  u iFzix) - ai)
°i

the corresponding decomposition, where ai runs through all roots of Fi(x). The

primitive roots of F(x) are roots of the equations

(17) F2(x) = ai,

where «i rwws through the primitive roots of Fi(x). When

Fi(x) = Gi(x) X Di(x),       F,(x) = G2(x) X D2(x),

where Di(x) and D2(x) contain the prime factors which are common to Fi(x) and

F2(x), then every root of (17) belongs to a polynomial

(18) Dix) X D2(x) X Fiix),

where Dix) is a divisor of G2(x). The exact number of roots belonging to a given

polynomial (18) is

(19) N(D) = ptd*<S>(d(x)),

where d2 is the exponent of D2(x) and d(x) the polynomial corresponding to D(x).

This theorem shows, in particular, that the number of roots of the various

categories of an equation (17) is the same for all primitive «i and the number

of primitive roots is pfd2^(g2(x)), where g2(x) is the polynomial corresponding

to G2(x).

Instead of considering (17) one could have determined the primitive roots

of F(x) as a root of an equation

(20) Fi(x) = a2.

The common roots of two equations (20) and (17) can be obtained in the fol-

lowing manner: one can write a2 in the symbolic form a2 = Qi(p)xFi(u) and

one finds as in (11) that the general root of (20) has the form

(21) Ri(x) = Qi(x) - Lix) X F2ix).
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The comparison of (21) with (11) shows that in case of a common root the

polynomials K~ix) and Lix) must satisfy the condition

(22) Qix) - Qiix) = Kix) X Fiix) - Lix) X F2ix).

This equation is solvable if and only if

(23) Qix) m Qiix) (mod Tix)),

where Tix) is the greatest common factor of FiO*0 and F20*0 ; when the condi-

tion (23) is satisfied, one obtains exactly p*' common solutions from (22),

where / denotes the exponent of Tix). A special case of particular importance

is the following:

Theorem 3. Let FiO*0 and ft(*) oe lwo P'-polynomials without common

factor; the equations

(24) Fiix) = oi,       F2ix) - «i,

where «i is a root of Fiix) and a2 is a root of F2ix), have then exactly one root in

common.

The common root can be found from (22) ; when ai is a primitive root of

FiO»0 and a2 is a primitive root of F2ix), then the common root p in (24) is a

primitive root of Fix) =Fiix) XF2ix), and this remark gives a simple method

for determining all primitive roots of Fix).

3. Applications. The theorems derived in §2 have a number of applica-

tions. Let us use the former notation and let <piix) be an irreducible poly-

nomial in K/ belonging to the /»/-polynomial FiOe). When ai is an arbitrary

root of 4>i0*0, then

(25) *i(F.(*)) = (F»(*) - oi)(Pi(*) - «i") • • • (FjM - «l*/W,~°))

where ¿Vi is the degree of faix). We now join all factors in (9) in the form (25)

and Theorem 2 gives the following result :

Theorem 4. Let faix) be an irreducible polynomial of degree Ni belonging

to the ^-polynomial Fiix); let F2ix) be a second pf-polynomial and

Fiix) = dix) X Diix),       F2ix) = Gtix) X D2ix),

where D^x) and D2ix) contain the prime factors common to Fiix) and F2ix).

The polynomial faiF2ix)) is then equal to a product of prime polynomials belong-

ing to pf-polynomials

(26) Dix) X Diix) X Fiix),
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where D(x) is a divisor of G2(x). The number of prime polynomials belonging

to a given polynomial (26) is

~p"**(d(x)),
N

where N is the index of (26), d2 the exponent of D2(x) and d(x) the polynomial

corresponding to D(x).

There are several cases of Theorem 4 which are of special interest. Since

aU prime factors of <f>i(F2(x)) belong to a multiple of Fi(x), it is clear that the

degrees of all prime polynomials are divisible by Ni. In the case where Fi(x)

is relatively prime to F2(x), all prime factors of <f>i(F2(x)) belong to some

D(x) XFi(x), where D(x) is a divisor of F2(x) and the number of prime factors

belonging to such a given polynomial is simply

Ni     _
— *(d(x)),
ff

where Ñ is the index of D(x) XFi(x). There will be exactly

(Ni, Ni)

N2
*(M*))

irreducible factors belonging to Fi(x) XF2(x), where N2 is the index of F2(x),

while there will be only one prime polynomial belonging to Fi(x) and dividing

<pi(F2(x)). The roots of this prime polynomial can easily be obtained from

(11).
Theorem 3 gives a surprisingly simple method for determining the prime

polynomials belonging to a product of /»/-polynomials when those of the fac-

tors are known :

Theorem 5. Let Fi(x) be relatively prime to F2(x) and let <t>i(x) be a prime

polynomial belonging to Fi(x) while <p2(x) belongs to F2(x). The greatest common

factor of the two polynomials

(27) <t>i(F2(x)),       4>2(Fi(x))

is then a prime polynomial belonging to Fi(x) XF2(x) and all prime polynomials

belonging to the product can be determined in this way.

Chapter III. Construction of irreducible polynomials

1. A class of irreducible polynomials. One of the most interesting but also

most difficult problems in the theory of higher congruences is the determina-

tion of irreducible polynomials of a given degree in explicit form. At the près-
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ent time this problem has only been solved for very special cases, but it is of

interest to observe that almost all of the results obtained are closely related

to the theory of /»/-polynomials.

Before we illustrate this fact, we shall however use some of the former

results to obtain a new class of irreducible polynomials. Let fix) be an ordi-

nary irreducible polynomial of degree « with coefficients in a finite field K¡.

We shall suppose in addition that/0*:) is a primitive polynomial, i.e. />/" —1

is the smallest exponent such that

x""'-1 = 1 (mod fix)).

For the /»/-polynomial Fix) corresponding to fix) one then has symbolically

xpt<rf°-» - x = 0 (mod F{x))

and the index of Fix) is /»/" — 1. Theorem 10 then shows that any ordinary

prime polynomial^x dividing Fix) has the degree p,n — 1. This gives

Theorem 1. When

f(x) = Xn + CLiX"-1 +•••+«„

is an irreducible primitive polynomial in K,, then

fax) = xpfn~l + aixpn"-» + • • • + a»-!**/-1 -1- a„

is an irreducible polynomial in the same field.

A consequence of Theorem 1 is obviously that the polynomial

faix) = *Cp*-i>/<»M> + aia;<p/<»-»-i)/(P/-i) -|-+ an_lX + Un

is irreducible.

As an illustration of Theorem 1 we may take/0*0 =x—a and we obtain

the well known result that

fax) = X^-1 — a

is irreducible when a belongs to the exponent p*— \ and hence

fax) = Xs — a

is also irreducible when S is any divisor of pf — 1.

2. Substitution of a prime polynomial. Our next considerations are based

on Theorem 4, chapter 2, and this theorem shall be applied particularly for

the case where P2(x) is an irreducible /»-polynomial. We use the former nota-

tions, letting Ni and N2 be the indices of Fiix) and F20*0> while fiix) and

f2ix) denote the polynomials corresponding to FiO*0 and F2ix).
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Let us first deal with the case where F2(x) symbolicaUy divides Fi(x) and

Fi(x) contains F2(x) symbolically e times. Furthermore let Nx=pANi, where

Ní is not divisible by /». The exponent A is obviously the smallest number

such that pA is not surpassed by any of the exponents occurring in the sym-

bolic prime function decomposition of Fi(x). If now e+l^pA, then

F2(x) XFi(x) still has the index Ni, and when </>i(x) is a polynomial belonging

to Fi(x) and hence of degree Ni, then according to Theorem 4 <j>i(F2(x)) de-

composes into irreducible factors of degree Ni. If however e+l >pA, then e

is the largest exponent occurring in Fi(x) and the index of Fi(x) XF2(x) must

be pNi, and hence <f>i(F2(x)) decomposes into factors of degree pNi.

Next let Fi(x) not be divisible by F2(x). The index of the product

Fi(x)xF2(x) is
NiN2

[Ni, Nt] = fw    „,
(Ni, N2)

and each irreducible factor of <f>i(F2(x)) will, according to Theorem 4, belong

to Fi(x) XF2(x) or to Fi(x), and there will be one prime polynomial of degree

A7i belonging to Fi(x) and

—-— *(/■»(*)) = —-— ipf" - 1)
N2 Ni

polynomials of degree [A7!, N2] belonging to Fi(x)XF2(x), where n2 denotes

the degree of f2(x).

Theorem 2. Let Fi(x) and F2(x) be two pJ'-polynomials with the indices

Ni and N2; we shall suppose that F2(x) is symbolically irreducible and that

<f>iix) is a prime polynomial belonging to Fi(x). When F2ix) divides Fi(x), then

<f>i(F2(x)) is the product of prime polynomials of degree Ni except when Ni is

divisible exactly by pA and Fi(x) contains F2(x) to the same power pA; then

4>i(F2(x)) is the product of prime polynomials of degree pNi.

When F2(x) does not divide Fi(x), then (¡>i(F2(x)) contains one prime factor

of degree Ni, while the remaining factors have the degree [Ni, N2\.

3. Prime polynomials whose degrees are divisible by /». We shall now

apply the first part of Theorem 2 to obtain various irreducible polynomials

whose degrees are divisible by /». We shaU suppose for the moment that all

polynomials have rational coefficients, and we put

F2(x) = xp — ax,        ad = 1,

where the exponent d of a divides /» — 1 and is identical with the index of

F2(x). Since we shall suppose that Fi(x) is divisible by xv — ax, we must have
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xN' — l divisible by x — a, which in turn shows that A/1=0 (mod d). To insure

that the exceptional case of Theorem 2 occurs, we shall have to suppose fur-

thermore that Fiix) divides xpNl—x but not

ixpNl - x) X ixp - ax)~l = a;"*1-1 + axpN^' + • ■ • + aN^lx.

This shows

Theorem 3. Let abe a rational integer belonging to the exponent d and fax)

a prime polynomial of degree N divisible by d. Then fax" —ax) is a prime poly-

nomial of degree pN, when fax) does not divide

xp»-1 + axvN~2 + • • • + a*-1*.

When a = 1, then d = 1 and the last condition of Theorem 3 is equivalent

to ai^O, where ax is the coefficient of xN~1 in fax). This gives the following

well known result :

When fax) is a prime polynomial of degree N in which the coefficient of xN_1

does not vanish, then faxp—x) is a prime polynomial of degree pN.

When applied to fax) =x+a, this shows that

xp — x + a,       a 5¿ 0,

is irreducible. I observe without proof that Theorem 3 can be modified to hold

in an arbitrary field Kf.

We shall also make an application of the first part of Theorem 2 to obtain

in a simple way the results of Serret* and Dicksonf on prime polynomials in

a field Kf, whose degrees are powers of /». Let us denote by nr(x) the product

of r equal symbolic factors xpt—x

(1) nr (x) = ixpl - *)<'> = xp" - (   j «p/<r"1) + •••+(- l)rx.

For r=/»n one obtains simply

(2) LV (*) = xpfpn - x.

The polynomial corresponding to II r ix) is (* — l)r and all symbolic divisors

of HP"(x) are of the form IIr(x). Since a prime polynomial of degree pn must

divide (2) every prime polynomial having this degree must belong to a

unique polynomial

n,(«) (r = #-»+ l,/»»-1 + 2, ••• ,P').

* See Serret, Cours d'Algèbre.

t See Dickson, Linear Groups.
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In this way one obtains a division of all prime polynomials of degree pn into

pn — pn-i classes. The class corresponding to r=/»n_1 + l shall be called the

first class and the class corresponding to r=/»" the last class of degree /»". Since

n,(*) = nr_i(x) x (xpf - x) = nr_i(x)"/ - nr_i(*),

and since all polynomials dividing, but not belonging to, Tlr(x) must divide

IIr_i(¡c), it follows that

rr(«) = nr_i(x)^-» - i = II ( nr_i (*) - A

where a¿¿0 runs through all of the elements of K¡, represents the product of

all prime polynomials belonging to Hr(x). The first part of Theorem 2 gives

immediately

Theorem 4. When <f>(x) is a prime polynomial of degree pn belonging to the

class p, then <p(xpf—x) is the product of pf different prime polynomials of the

class p + l except in the case where <j>(x) belongs to the last class of degree pn,

when <j>(xpf—x) is the product of />/_1 prime polynomials of the first class of

degree pn+1.

4. Further applications. The second part of Theorem 2 may also be used

to obtain results on irreducible polynomials. We saw that, with the same no-

tation as before, <¡>i(F2(x)) contains one irreducible polynomial of degree A7i

belonging to Fi(x) and

(Ni, Ni)
T =        ' (ff+ - I)

N2

irreducible polynomials of degree [Ni, N2] belonging to Fi(x) XF2(x). We see

that T = l only when the indices Ni and N2 are relatively prime and

N2 = plnt — l. We can then write (¡>i(F2(x)) =\(x)-p(x) where \(x) has the de-

gree NiN2 and p(x) divides Fi(x). Hence we can write

nix) = (*i(F,(*)), Fi(x))

and this gives the following: Let f2(x) be an irreducible primitive polynomial

of degree n2 and let fi(x) be an arbitrary polynomial belonging to the exponent

Ni, where (Ni, pfm — l) = l. When Fi(x) and F2(x) are the corresponding />/-.

polynomials and <pi(x) a prime polynomial belonging to Fi(x), then

=        <t>i(F2(x))

(MF2(x)),Fi(x))

is a prime polynomial of degree A7!(/>/"» — 1). It may be observed that this
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result contains Theorem 1 for Fiix) = x. We shall give a further application

to the case where

Fi(x) = x"   - x.

One then has iVi = l and fa(x) =x—a. Let us suppose

Fi(x) = x»'" + /Si**'0-1» + • • • + ßnx,

and hence

faiFiix)) = xpl" + ft*"""-" + • • • + ßnx - a.

According to the general result this polynomial must contain a linear factor

x—y and we find
a

7 " 1 + ßi + ■ ■ ■ + ßn '

Theorem 5. Let fix) be an irreducible primitive polynomial of degree n and

let Fix) be the corresponding p>'-polynomial. Then

Fix) - a
fax) = -^-

a
x-

F(l)

is an irreducible polynomial of degree p,n — 1.

This theorem may be considered as a restatement of Theorem 1.

5. Decompositions of /»/-polynomials. We shall now give the complete

decomposition into prime factors of a few simple /»/-polynomials, thus also

illustrating the general theorems.

1. In the simplest case

Fix) = xp   — ax,

let 8 be the smallest exponent such that as = 1. The index of Fix) is S and one

finds the prime polynomial decomposition

Fix) = x n (** - ß),
ß

where ß runs through all of the roots of

ßlpf-l)lt = a.

2. When
Fix) = ixp< - x) X ix"  - x)
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the irreducible factors must have the degrees 1 and /», and since

Fix) =  u (** - x - a),
a

where a runs through all of the elements of K¡, it is sufficient to decompose the

factors of this product. One finds

xpf — x — a =   u ix" — ap-1x — ß),    a 7± 0,
ß

where ßa~p runs through all solutions of

xpt~l + • ■ ■ + Xp + X = 1.

One can also show that

fix) = xp — a?-lx — ß

is reducible if and only if ßa~p satisfies

xpf-i j-+ x» + x -> 0.

3. In the case

Fix) = ix* - ax) X ix* - x),    ae = 1,

it follows from the general theory that the irreducible factors are of degree

1 and 8. One obtains

Fix) =   u (xp! -ax- ß),
ß

and putting a=ß/(\ — a) one finds

xpt — ax — ß = (* — <r) H ((* — o-)8 — 7),

where 7 runs through all solutions of

y(pf-l)lt      —      „

At this point it may be of interest to determine the decomposition of a poly-

nomial
fix) = xp — ax — ß.

This problem occurs in connection with the determination of prime ideal

decompositions in relative Kummer fields. The number

a = a(p/-i) / (p-i)

is rational and we can suppose a^l since this case has been treated under 2.

One finds that fix) has the root
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1        /
"22 ßp,'ia<-p,-p,~i+1^np-i)

1 - a <_i

in Kf and consequently

xp-ax-ß= (x-a)H((x- a)* - X),
x

where

a» = 1,        A =r , />- lY        \<p-i>/a = «.

6. Irreducible polynomials and linear substitutions. Now let

(3) F(x) = xvv + axv1 + ßx

be a /»/-polynomial whose corresponding polynomial

(4) f(x) = x* + ax + ß

is irreducible in Kf. In order to study the prime polynomial decomposition

of F(x) we put t=xpf~l and obtain

(5) $(/) = F(x) ■ x~l = xpV~l + axp'~l + ß = t»'+l + at + ß.

Any root of #(/) must satisfy the relation

/p/= -a-—,

and so we are naturaUy led to the study of irreducible polynomials whose

roots are connected by linear substitutions

ax + ß
(6) xV =--^ ■

yx + 8

Such prime polynomials are obviously divisors of

(7) *(x) = yxp/+1 + 8xv' — ax — ß.

In (6) and (7) we can always assume 7^0 since the polynomials

(8) xvf + \x + p

have been completely decomposed in Nos. 2 and 3 of the preceding section.

We are also mainly interested in the case where the linear substitution (6)

leaves no element of Kf unchanged. We suppose then that the equation

ax + ß
x =-

yx + 8
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has no solution in K, and this is equivalent to the statement that the equation

(9) fax) = yx2 + iS - a)x - ß = 0

is irreducible in Kj.

If namely fax) in (9) has the root p in K,, then *(a;) in (7) also has the

root p and one finds after putting y=x— p

*(*) = iy\ y' + (p + —)ypf-1 + p-~ .

The second factor in this product is again of the type (8) when z is substi-

tuted for 1/y.

We suppose, then, that (9) is irreducible and has the two roots fa and fa.

This corresponds in our first special case to the assumption that the poly-

nomial (4) is irreducible. In this case ¥(a;) has no linear factors.

From (6) one obtains through iteration

,   , /.      a»x + 0«
(10) xpln =-

ynx + 8n

and one verifies that the coefficients of this substitution are given by*

(coi — 032)an = (a — co2)coi" — (a — wi)a>2a ,

(coi - «2)/3„ = /3(coi" - o)2B),

(coi — co2)7„ = 7(coi" — co2n),

(coi — co2) 5„ = (coi — a)a»in — (co2 — a)co2" ,

where coi and w2 are the roots of

(12) fax) = x2 - (a + S)x + aS - ßy = 0

and hence
oil = 7^i + 8,       cos = yfa + 8.

Now let « be the degree of an irreducible factor oi^ix). Then » is the small-

est number such that the roots of the factor satisfy the equation

anx + ßn
(13) xp,n = x =

ynx + 8„

If 7„?i0 one finds that a solution p of (13) is also a solution of (9), and since

* These expressions were given by Serret, Sur les fonctions rationnelles linéaires prises suivant un

module premier etc., Comptes Rendus, Paris, vol. 48 (1859), pp. 112-117.
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such a root cannot be a root of ^(x), we shall have to suppose yn = 0 and hence

according to (11)

(14) Ml"   =  0}2n .

In this case one obtains from (11) that the right-hand side of (10) reduces to

x and it follows that the degree of any factor of ^(x) is the smallest exponent

such that (14) is satisfied. Since the number ui/u2 = fa is a root of the congru-

ence

/(a + sy     \
(15) <*>(*) = *3 + (--+ 2)x+l

\ßy - a8        /

and since the irreducibility of (9) follows from the irreducibility of (15), we

conclude:

Theorem 6. Let

*(x) = yxp,+l + 8xv' — ax — ß,        y ?¿ 0,

be a polynomial with coefficients in Kf chosen such that the polynomial

/(a + 8Y        \
*(*) = *2 + L     ,        +2)»+l

\ßy + a8 )

is irreducible in K¡. When <¡>(x) belongs to the exponent », then ~>fr(x) is the prod-

uct of (p*+l)/n irreducible factors of degree », and when <p(x) belongs to thé

maximal exponent pf+l,it(x) is irreducible.

It is also possible to give the complete prime polynomial decomposition

of ^(x) and hence to exhibit explicitly irreducible polynomials having a de-

gree equal to an arbitrary divisor oí pf+l. One finds, namely, that ^(x) may

be brought into the form

(16) ¥(*) = ai(x - fa)p,+1 + a2(x - fc)pf+1,

where fa and fa as formerly denote the roots of (9), while —ai/a2 is a root fa

of (15). From (16) we obtain the decomposition

(i7) *(*) = n ip"\* - *i)n+p"'(* - w")
»

where pii} and P2(<) are two conjugate elements in the field K2f such that the

quotient —pi^/pi^ runs through all m = (pf+l)/n solutions of the equation

(18) xm = fa.
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The actual determination of the roots of (18) may be done in the following

way. Any solution can be represented in the form

« = (r + w2)/(r + &>i)

and the equation (18) takes the symmetric form

(19) coi(r + coi)m = ü»2(r + a>¡>)*\

If we suppose /»^2 we can write

coi = A + B1'2, coa = A - B1'2,

a + 8 ia-8)2
A-—, 5 = __- + p>,

and to satisfy (19) we must have

)ir + A)m-2-B + [-   )ir + A)m-*-B2+ • •■

(20) 2Jm UJm
+ A ((™Xr + A)">-i + (m\r + A)*"-*-B + • • • \ = 0.

This congruence must have m different solutions and each solution deter-

mines a factor of S^Ot) in (16).

One can, however, derive these irreducible factors in rational form in a

different way, which more clearly shows their relation to the linear substitu-

tions. Let the numbers a, ß, y, 8 satisfy the conditions of Theorem 6 and let

us construct the expression

_ , . ax + ß an-ix + /3n_i
Rix) = x +-— + • ■ • +-—- •

yx + 8 7n-ia: + 8n-i

For a root X of ^ix) we have

i?(X) = X + \pf + ■ ■ ■ + \pH"-" = - oí,

where di is the coefficient of xn~x in the corresponding irreducible factor in

(16), hence

Pi^i + p2fa-      n
ûi = «-= — (r + a).

Pi + Pt y

Since the equation of »th degree

Rix) = - oi
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is satisfied by aU roots of the irreducible factor of ty(x) having the coefficient

fli, we have

Theorem 7. Let p9i2, and let a, ß, y, 8 be chosen such that the polynomial

(15) is irreducible in Kf, while the order of the linear substitution

,       ax + ß
x  =-

yx + 8

is », where nm = pf+l. The equation of nth degree

aX + ß «n-l* + (8n-l n
Qi(x) = x +-— + ■■• + 1 + -(r«> + a) = 0

yx + 8 yn-\x + 5„_i      y

is then irreducible for all r(<) satisfying (20).

One sees from the proof of this theorem that ^(x) may be represented as

the product of factors Pi(x) where

Pi(x) = (yx + 8) ■ ■ ■ (t„_i* + 8„-i)Qi(x).

It should also be observed that one can obtain similar results through a con-

sideration of the product of the linear transformations.

Chapter IV. Miscellaneous theorems on higher congruences

1. Elements with unit norm. We shaU now deduce a few results which

may be considered as the rudiments of the class field theory in finite fields.

We show first

Theorem 1. The necessary and sufficient condition that a number a in the

field Kff satisfy the relation

(1) a(.pff'-V I (pf-l) =  i

is that a be representable in the form

(2) a = ßp'/ß.

It is obvious that every element of the form (2) satisfies (1). On the other

hand, one finds that (1) represents the necessary and sufficient condition that

x*11'—x be symbolically right-hand divisible by xp'—ax, and hence when (1)

is satisfied the equation

(3) xp/ - ax = 0

has a solution pVO in Kfr.

If one wishes to determine the form of the number ß in the representation

(2), we divide x*"'—% left-hand by x^—ax and find
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(4) xp"' - x = ixpt - ax) X Qix),

where
qi^ _ j-p/i/'-i) _|_ apfu>-i)Xptu>-t>^_apiU'-i)+pttj'-i)xPnf'-x) _|_ . . . (

The relation (4) shows that
ß = Qio>),

where co is an arbitrary element in K,/ such that QÍw)t¿0.

The condition (1) may also be written

Nfia) = a-a*.a"'"'-» = 1,

and Theorem 1 is seen to be the analogue of the well known theorem on cyclic

fields, that every element whose norm is unity may be represented as the quotient

of two conjugate elements. The ordinary proof for this theorem could not be

applied in our case, since it requires that the field contain an infinite number

of elements.

One may also state Theorem 1 in the following equivalent form:

Theorem 2. The necessary and sufficient condition that an irreducible poly-

nomial fix) of degree n with coefficients in K, belong to an exponent N dividing

ipin — \)/{pf — \) is that the last coefficient an infix) be unity, and in this case

every root p of fix) may be represented in the form

p = ffp,/cr

where a is an element of KnJ.

One may also express Theorem 1 in a somewhat more general form. Let

namely

(5) Fix) = xp" + 71**/"-1) + • • • + 7r-l*p/ + 7r*

be a /»/-polynomial dividing x*1'—x, and let

(6) ***"- x =Fix) XGix).

Expressing the condition that xpf'—ax be a right-hand symbolic divisor of

Fix), we find

Theorem 3. Let Fix) be a p>'-polynomial given by (5) and let Gix) be its

complementary polynomial such that (6) is satisfied. An element a in K//> satis-

fying the condition

a(p/r-l)l(.pf-l)   _|_ 7ia(p/<-l)-l)/(p/-t)   +   .   .   .   -|- 7r_ia -f 7f.   =   0

is then representable in the form

a = ßp'/ß,

where ß is a root of Fix) =0, hence /3 = G(co) for a primitive element u of K,f.
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2. The law of reciprocity. There exists for higher congruences a very

simple and general law of reciprocity. This was first pointed out by F. K.

Schmidt*, although special instances of it were already known to Dedekind.f

Recently the theorem has been rediscovered by CarlitzJ, who seems to have

overlooked the paper of Schmidt. Carlitz gives two different proofs mapped

on the proofs for the quadratic law of reciprocity. In the following I give a

new and very simple proof for the law of reciprocity in its most general form.

Let d be a divisor of />/ — 1 and let

d-8 = pt - 1.

The equation

(7) x* = 1

is then solvable and has the d roots

(8) 1   =   €i, €2,  •   •  •   , id

in Kf. We define the field Knf over Kf through a root w of the irreducible

equation

f(x) = a0x" + ■ ■ ■ + a„_!X + an

where we do not, as usual, suppose that a0 = 1. Let then

g(w) = /30a>m -|-+ j3m_ico + ßm

be an arbitrary element in K„f, and hence

(9) gÇuy(pf-i)i(pf-i) = tj

where « is one of the roots (8). One may obviously write (9) in the form of a

congruence

grx)Hpt«-i)Upt-i) = e (mod/(*')),

and when we introduce the ¿th power residue symbol

(10) (-^l)   = e - g(*)i(î"*,-1)'<î"-1) (mod f(x)),
\f(x)/d

we find that it has the property

* F. K. Schmidt, Zur Zahlentheorie in Körpern von der Charakteristik p, Erlangen Sitzungs-

berichte, vols. 58-59 (1928), pp. 159-172.
t R. Dedekind, Abriss einer Theorie der höheren Kongruenzen in Bezug auf einen reellen Prim-

zahlmodulus, Journal für Mathematik, vol. 54 (1857), pp. 1-26; Werke, vol. 1, pp. 40-67.

X L. Carlitz, The arithmetic of polynomials in a Galois field, American Journal of Mathematics,

vol. 54 (1932), pp. 39-50. See also On a theorem of higher reciprocity, Bulletin of the American Mathe-

matical Society, vol. 39 (1933), pp. 155-160.
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/ gjx)-hjx)\   = /gix)\  /hjx)\

\     f(x)     )a     \ fix)) X fix)) ifix)     l i     \ fix)/A fix)/*
and

(g(x)\   m

\ fi»)) 4./(a

is the necessary and sufficient condition that g(x) be a ¿th power residue

(mod f(x)).
This definition (10) gives the dth power residue symbol only for prime

f(x). In the general case, where f(x) has the prime factor decomposition

f(x) = fi(x) ■ ■ ■ fr(x),

we put

\f(x))d \fl(x)/d \fr(x)/d

To prove the law of reciprocity, let us first consider the symbol for a

prime f(x). Then according to (10) we obtain

(12) (^~)   = (*(<*)*(«-") • • • g(co*"<-»))s = ao-^Rifix), «(*))«,
\fix)/d

where R(J, g) denotes the resultant of the two polynomials. The definition

(11) then shows that the same formula (12) holds for an arbitrary/(a;). For

the inverse symbol we obtain in the same way

//(*)\

\g(x))ä
ßo~"sR(g(x),f(x)Y = (- l)"»ßo-nSR(f(x),g(x)Y,

.£(*)/

and hence

Theorem 4. For the dth power residue symbol one has the law of reciprocity

aDm<-pf-
( f(x)\ ( g(x)\■Did I   J)    '.]     =   (—UmnQnipf-DId   I ±1_1 \

\g(x))d      ^     } \fix))

where » and m are the degrees and a0 and ß0 are the highest coefficients of the

relatively prime polynomials fix) and gix).

This proof also suggests generalizations of the law of reciprocity using

some other symmetric function than the resultant. Let

S„,miUl, ■ • ■ , un; Vl, • • ■ , vm)
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denote a symmetric function in each of the sets «< and v,, and let us suppose

in addition that

(13) S»,m(u,v) -Su.»(»,«).

Various symmetric functions having these properties may be constructed.

Now let f(x) and g(x) be two polynomials with the roots Xi, • • ■ , xn and

y~it ' • ' > y<*> and let us define

( g(*))
S-ZT^l = S».m(g(xi), ■ ■ ■ , g(xn),f(yi), • • • ,f(ym)).
Kf(x))

It is then obvious according to (13) that

g(*)\ m Í /(*))
/(*)/       I !(*)/"

Yale University,
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