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1. Introduction. In a recent paper§ the author has shown that if a func-

tion f(x) defined in a closed set A in »-space E satisfies certain conditions

involving Taylor's formula (in finite form), i.e. if it is "of class Cm in A,"

then its definition can be extended over E so that it will have continuous

partial derivatives through the wth order. In this paper we restrict ourselves

to the one-dimensional case. (For the above theorem in this case, see §4.)

Letzo, • • • , xm be distinct points of A. If P(x) = c0 + ■ • ■ +cmxm is the poly-

nomial of degree at most m such that P(xi) =f(xi)(i = 0, ■ ■ ■ , m), the with

difference quotient oif(x) at these points is A0... mf=Amf(x) =m\cm. The main

object of this paper is to prove (see §§2 and 3 for definitions)

Theorem I. A necessary and sufficient condition that f(x) be of class Cm

in A is that Amf(x) converge in A.

This theorem furnishes a direct definition of the differentiability of a func-

tion; the former definition (see §3) involved the existence of other functions

The necessity of the condition is easily proved. The definition oîf(x) be-

ing extended over the z-axis E, consider any m+l points Xo, • ■ • , xm

(x0<Xx< • • • <xm). DefineP(x) as above. As/(x¿) —P(rc,) =0(i = 0, ■ ■ ■ ,m)

there is a point x'(xa<x'<xm) such that (dm/dxm)[f(x')— P(x')]=0. But

dmP(x)/dxm=mlcm=A0... mf; hence A0... mf=dmf(x')/dxm. Therefore if

Xo, ■ ■ ■ , xm are in A and are sufficiently near a point x* of A, A0... „f

= dmf(x')/dxm = dmf(x*)/dxm approximately, and Amf(x) converges in A (in

fact, in E). This may be proved also from (2.6) for s = m.

We note that, for f(x) =fo(x) to be of class O in a general closed set A,

it is not sufficient that there exist functions f,(x) (s = l, ■ • • , m) in A such

that df,(x)/dx=f,+x(x) there. As an example, set/0(0)=0 and f0(x) = 1/2**

(l/2'á*á3/2i+1, i = l,2, ■ ■ ■), and set fx(x)=0 and f2(x)=0 in the same

point set A.

The majority of the paper is devoted to the proof of Theorem I. In the

t Presented to the Society, October 28, 1933; received by the editors July 27, 1933.

X National Research Fellow.

§ Analytic extensions ofdißerentiable functions defined in closed sets, these Transactions, vol.36

(1934), pp. 63-89; this paper will be referred to as A.E.
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last section we study Taylor's formula in finite form, when it holds in closed

sets, and when its validity implies differentiability of the given function.

2. Difference quotients.tIf*o, ■ • ■ , xm are distinct numbers, setf

i     i       * l
(2.1) Un = Xj — Xi,    ra =   \Uij\,    aoi...m =-•

Uoi • ■ ■ «<-i,»«í+-i,< ■ • • umi

Given a function/(#), we define the mth difference quotient by the formula

m

(2.2) A /(*) = A(*o, Xi, ■ ■ ■ , xm;f) = A0i...m/ = ml ¿2 «oi-■■mf(xi).
1=0

In particular, Aof=f(x0), A0i/= \f(xi)—fixo)]/ixi—x0). A0...m is symmetric

in the points x0, ■ ■ ■ , xm.

If *£2,

í       i i 1   /      1 1     \ i     Un— Un
-(ai2-... — a02....) =-1-—-) = —- = a0i2...s;

«oi «oi\«i<---      ««•••/       «oí   «o¿«i< • • •

hence

í si r       o i
-(Ai2..., — A02....) =-    — ao2-..,/(*o) + ai2-.../(*i)
«oi «oi L

(2.3) +  E («»....-«M..-.)/(*i)l
«ä2 J

g

=  S\   2Z «012-.-tfiXi)   =  A012...,.
i—0

Suppose * is a set of subscripts containing neither 0, 1, nor 2; then for

some m,

m m
Aoi2»  = -  (Al2* — ^02»)  = - (Al2« — Aoi») .

«01 «02

Solving for AM», we find

«02 «21

(2.4) A0l« =-Ao2*-|-A»*,
«01 «01

which may be written as follows: m0iAoi*+wi2Ai2»+W2oA2o* =0.

Let Xo, • • • , x, be distinct numbers.  If we solve the equations 5Z*-o

t Compare Nörlund, Differenzenrechnung, Berlin, 1924, pp. 8-9. It is seen that Am... » = »»!

[*o*i •••*»].

X In the equations below, the numbers 0,1, • • • , when appearing as subscripts, are to be consid-

ered as variables. Thus, as a particular case of (2.1), aJ23 = l/(«2o«3o); in the second equation of §6,

2,1/«,', = 1/Wi-|- •'•'•. Without this notation, the equations would often get quite cumbersome.
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ixi—x)'Zi = o,:(j = 0, ■ ■ ■ , s), x being any fixed number, we find Zi=a\>- ■ •,.

Hence

J2 a\...,ixi — x)' = 0 (j = 0, • • • , î — 1),

(2.5) 7   t
¿Za'o...,(Xi - x)' = 1.
»-0

Suppose fix) =/oix), • ■ ■ ,fmix), Rix', x)=Roix', x) satisfy (3.1) below

for s=0. Then (2.2) and (2.5) give

*       r m fix) ~i
A0..../ = si  £ al...,\   53 —77" (Xi — x)' + R(xí, x)

<_o L i_o    J ! J

= f.(x) + si    ¿2    —— ¿2 «ô-.-.(Xi — x)   + f! ¿2 a'o...,R(xi,x).
-t+l       jl      i-0 ¿-0

If fix) =Co+ ■ ■ ■ +cnxm is a polynomial of degree at most m, then (3.1) is

satisfied with/„.(a:) =mlcm and R,ix', x) =0. Setting s = m in (2.6) gives

(2.7) A0...m/ = mlcm.

We say Am/(ar) converges in the set A if for. each point x of A and every

« >0 there is a 8 >0 such that if x0, ■ ■ ■ , xm, Xo>, ■ ■ ■ , xm- are any two sets of

distinct points of A, all within 8 of x, then

| A0...m — A0'...m>| < «.

Amfix) of course converges at all isolated points of A. We say Amfix)—♦/„(*)

in A if | A0.. -m—fmix) | < « whenever Xo, ■ ■ ■ ,xm are in A and within 8 of ¡e.

Evidently if Amfix)—>fmix) in A, then fmix) is continuous in the set of limit

points of A.

DIFFERENTIABLE FUNCTIONS

3. Definition of differentiable functions. Let fix) =foix) be defined in the

closed set A. We say fix) is of class Cm in A (see A. E.) if there exist functions

/i0*0> • • • ,fmix), Rix', x)=Roix', x), ■ ■ ■ , Rmix', x) in A such that

(3.1) /.(*') =   ¿ rßZL f¿ - xy~. + Rtrxrt x)     t, = 0; . . . , m),
i-, (* - s) I

and for each s, each point x of A, and every e>0 there is a 5>0 such that

R,jx", x')

ix" — x')m-'

lifiix), ■ • ■ ,fmix), Riix', x) satisfy (3.1) and (3.2) for s = i, we say /¿(z)

(3.2) <€ ix',x"mA;\x'-x\,\x"-x\<8).
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can be expanded in a Taylor's formula to the (m—i)th order locally uniformly

in terms of fi(x), ■ ■ ■ ,fm(x). If f(x) is defined throughout an open interval

and has a continuous mth. derivative there, then it is of class Cm, by Taylor's

theorem.

4. Extension of differentiable functions. If fo(x) is of class Cm in terms of

fo(x), • • • , fm(x) in A, then the definitions of these functions can be extended

throughout E so they will be continuous and so that df,(x)/dx=f,+x(x) there

(s = 0, ■ ■ ■ , m — l) (see A. E., Lemma 2). As the proof can be given more

simply in the one-dimensional case, we give it here. We can assume A is un-

bounded on both sides; otherwise, take a point a beyond A on either side, and

set/,(a;)=0 (s = 0, • ■ ■ , m) beyond a.

For each interval (a, b) of E—A, let P(x) be the polynomial of degree

at most 2m+ 1 such that

(4.1) —- Pia) = Ma),       ~ P(b) =f.(b)     is = 0, • • • , m) ;
dx" dx'

we set

d-
(4.2) f,ix) =-—P(x)  in  (a, b).

dx'

df,(x)/dx=f,+x(x) (s = 0, ■ • • , m — 1) in E—A; we must show that this holds

also at any point x0 of A.

Suppose each/,+i(a;) is continuous in E. Then given Xo in A and e>0,

take 5 >0 so small that

I f,+1(x') - f¡+x(x0) | < y ( | x  - xo | < S).

By (3.1) and (3.2), we can also take 5 so small that if a is in A, \a—x0\ <5,

and

f.(a) = f.(xo) + fs+x(x0)(a - x0) + R'(a, x0),

then \R'(a, x0)/(a—Xo")\ <e/2. Now take any point x within 5 of x0. If x is

in A, set a=x; otherwise, let a be the end point nearest x0 oí the interval of

E—A containing x. Now for some x', a^x'^x,

Uix) =J.ia)+f,+xix')ix-a).

Adding this to the last equation and dividing by x—Xo, we find

f.jx) - f.jxo)      ,,».,.,-      ,   ,   vT*-g   ■   *'0>*o)
-= /.+i(*o) + LA+i(* ) - /«+i(*o)J-1-

x — Xo a; — a;o        ^ — *o
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As \x'—Xo\ <8, \x—a\ S \x—Xo\ and \x—x0\ è \a—x0\,

f*(x) - f.(xo)

X —   Xo
- f.+i(x0) < e

373

i |x — x0\ < S),

as required. (We have given here the details of A. E., Lemma 1.)

We must prove stiU that each f,(x) is continuous at each point x0 of A ;

it is of course true in E—A. As f,ix) is continuous in A, it is sufficient to

prove that for every e>0 there is a S > 0 such that if (a, £>) is any interval

of E—A lying within 5 of x0, then

\f.ix) - f.ia) | < « (agïl b).

Take e'<e/[2im+l)2K], where if is a number to be determined later. Let

M be the maximum of |/t-(*)| in A (\x—x0\ ¿1, i — 0, • • • , m). Take

ô < e/(2mM) and < 1 so smaU that (3.2) holds with e replaced by e' for any x,

x' within 5 of #0- Now take any interval (a, b) of E—A lying within 5 of x0.

In (a, b),f(x) equals

Fix)
./<(«)

2m+l
7*

(* - a)' +  22-  -77 (* - «)',
i-O        »1 i-m+l     1

where the 7,- are determined by the relations

d' A    /<(«)
-P(b) = 22
dx' t:a-s)i

hence

am+i

(6-a)*-+  22
,_m+i (t — í) !

(b-ay-=f.(b);

22 -J2-(»-.)*-.-/^)-fJ^
i-m+l   (*—*)! i-.    (»  —  i) I

(i-a)«-«- Ä.(*,a).

Solving for the 7<, we find

A _     RM, a)
7.- =   2^Kij--—,

,-_o        (* - a)* '

where the Ki, depend on m alone. Set K = max | Ki, \ ; then

It* I
K

J-0

gA a)

(b — a)m~>

(m + l)K   f

\b — a\i~m

Now if x is any point in (a, b), then [ a;—a| ^ |Z>—a\, and
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!/.(*)-/.(«)! =

"       Ma) »*t>       7.-      ,
=   22 -—r.(x-ay->+ ¿2 -—-(*-«)*-

Í-.+1   (t — s)l ,_m+l   (i — s)l

2m+l        \x  _   a\i-t

< mM\x-a\ + (m+\)Kt'     £   T-—
,-_m+1   \b - a|*--

< «¿75 + (m + \)2K \b - a\ —V < e,
as required.

ThEOEEM I, .4 PERFECT

5. A succession of lemmas culminates in Lemma 7, which is the suffi-

ciency part of Theorem I for perfect sets.

Lemma 1. Let A be a closed set, and let A'f(x) converge on A. Then we can

define f,(x) on the set of limit points A* of A so that the following is true. Given

x in A* and e>0,we can choose a 8 >0 so that if Xo, ■ ■ • , x, is any set of dis-

tinct points of A lying within 8 of x, then \ A0..., —f,(x) \ < e.

The proof is simple.

Lemma 2. If A*/0(*) converges in the perfect set A, then for each point x of

A and every e > 0 there is a 8 >0 such that

(5.1) | Ao...<_i,(...,_i — A0'...(i_i)',<...,_! | <«

(0 ^ t ^ s) whenever all the points concerned lie within 8 of x.

This is trivial if ¿ = 0. We assume it holds for numbers 0, • • • , t — 1, and

shall prove it for ¿. Given a point x, distinct from all former points, the equa-

tions

Ao-..(-i,<...,-i,« =-(Ai... «-i,!..., — Ao...«_i,í...,_i),
«o.

Ao'...ii_i)\<...t_i,, —-(Ai». ..(«-i) m..., — Ao'...<i_i)',«...,_i)
«0'.

give

Ao...i_i,j...,_i — Ao>...((_i)',<...,_i = (Ai...(_!,(..., — Ai'...(i_D',|...,)

1
(5.2) -(«o,Ao...(_i,i..., — «o'iAo'. ..(t-t) ',(•••«) •

s

AsA0..., converges, we can take M>0and 5'<e/(4M) so that |A0....| <M

whenever x0, ■ • ■ , x, are within 5' of x. By induction, we can take ô<ô'so

small that the first term on the right in (5.2) is in absolute value <e/2 when-

ever all points concerned are within 5 of x. Now given the points x0, • ■ ■ , *«-i,

— Pix)-Ma)
dx"
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xo1, ■ • • , #(«-«' within S of x, let *, be another such point; then (5.2) gives

(5.1).
The lemma with t = s shows that A"_1/0(x) converges in A.

Lemma 3. IfAmf0(x) converges in the perfect set A, then there are continuous

functions fx(x), ■ ■ ■ ,fm(x) in A such that A»/0(#)—>•/«(#) in A (s = l, ■ • • , m).

We prove this successively for s = m, m — 1, • ■ • ,1 with the help of Lem-

mas 1 and 2.

6. We proceed to the following lemma.

Lemma 4. // Apg(x)—ygp(x) and A1g(x)-*g1(x) in the perfect set A, then

A'~1gx(x)-*gp(x) in A.

Set q=p — 1. If we apply the relation A14>(xi)—*d<i>(xi)/dxi to ocq...<...„

as a differentiate function of xif we find

1 i
a0. ..<-...„ — aro...« ,-       ^^     1
-= - «(,...„ ¿_-r e(Xi-),

Un- Jpn   U,i

where t(xi>)—»0 as Ov—>#,-. Hence

1             al..i-...q        i            / 1         1 \
Ofl...a 2-1 - =-r a0...q ¿.I-1 + e(*v)

,     «,'< Uu> j*i \Uj>i Uji/

a0...i>..

+ f¿(*o<, • • • , a;»'),

where Çi(x0>, • • • , *4<)—»0 as x,—>x,(j = 0, • ■ ■ , q). Consider the 2q points

*o, av, • • • , xq, xq'. We have

["   «    a0...q                 a0. ..,-...„ "j
A0...„'...qg = pi     2-, -«(*<) H-«(*>')   .

L t-o      «j'i «,i' J

- ¿Ao... «....,« - o - Di[ ¿«í...,«(*o ¿ — + ¿ aa,<'"V*o1
P   j—0 L  i-0 í-0   U,'i j_o M,V J

,fT   ••' gi*f) - g(*i)   .    .   .„ , ,"l
= ?! 2J ao-.-i'.-.«-+ g(Xi)Çi(xo-, ■ ■ ■ ,xq.)   .

•-o L Un- J

As A1g(x)-^gx(x), this gives, letting *,-.—>*,■ (/ = 0, • • • , q),

I « «     .
(6.1) — lim 22 Ao.-.i,'..•„£ = qr.22a'o.--tgx(xi) = A0...egi.

^ »-0
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Now given a point x of A and an e>0, take 5>0 so that if xa, • • • , x,-,

Xj>, ■ ■ • , xq are within 8 of x, then

\A0...ir...qg - gPix)\ < e.

Then if x0, ■ ■ ■ , xq are within S of x, we find by adding points Xo-, • • • , xq>

within S of a; and letting Xi—>Xi (¿ = 0, • • ■ , q) that

|Ao...«gi - gpix) | < e,

as required.

Lemma 5. If Amfoix) converges in the perfect set A, then there are continuous

functions fiix), ■ ■ ■ , Mix) such that Apfqix)-^fp+qix) in A.

This follows from Lemmas 3 and 4.

7. We now present the two final lemmas needed for the proof of Theorem I

when A is perfect.

Lemma 6. Let gix) =goix), • ■ • , g.ix) be defined in the perfect set A, and

suppose A'gix)^>g.ix). If gix) can be expanded in a Taylor's formula to the

is — i)th order in terms of goix), • ■ • , g.-iix), then it can be expanded in a

Taylor's formula to the sth order locally uniformly in terms of goix), ■ ■ ■ ,g.ix).

Given a point x of A and an e >0, take 5 >0 so that

(7.1) |A0....-f.(*o)| <~~

whenever x0, • • • , x, are within 8oix (recall that g.ix) is continuous, by §2).

Take any two points xa and x, of A within S of a;; we must show that

\R"ix.,Xo)\/rs0,<e.

Take 8' so small that if \x'—Xo\ <8', then

F<'-1>(*', *o) ro»    e
<->

22's  3ix' - xo)'-1

where Ä<-»(*', x0) =gix')-J2'jZogi(.xo)(x'-xo)'/jl Take M> \g,ix0)\. Take

a point £,_! in A within 8' of x0 and so close to x0 that

r0,—i        si     « 1
-<-and     < —,

r0. 2'M   3 2

and (if s>2) take in succession points x,_2, • • • , xi in A so that

(7.2) r0,(_i < hrot it = 2. • • • , s - 1) ;

let these points lie within 5 of x. Then if i<s,
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i                         *_1                                       ii  i      „(«-i)/         > i        l                          roi                          rot    «          le
\aa...,R       (Xi, Xo)\ <-<-

r.i  f« • • • r<-i,^i+i,< • • • r,-x.i 22>s  3       2's   3

Now

—-A0..., = a'g(x.) +   2^ «      2, —;— Mo< + ^        (^i, *o)
íl .-o     L ,-_o     j! J

= ̂ W-«.g^^W.+ Z^('-%^o),
i-o     /! <-o

on account of (2.5). Therefore

Rw(x.,xo)=g(x.)-±^-uit

(7.3) *-    J[ .

sla' si ,_o a*

and as ru/r0. á (f o.+ro<)Ao. = 1 +ro.Ao„

\RM(X8, xo) I      fo, • • > r._i,. . .       |g,(*o) |     fo. • • • r.-i,
' |A0.... - g,(xo) | -I-;—

' r* ç 11*
'o. •>-7o<

-1

+ 22ro,'"r"u'WR^(xi,xo)\
.-o r0,

2«   il   €       Mr/        r0Q\ /       r0,_A        1 1     «
<-+—1+ — )••• (l+-=—)- 1 \ + s-2>-<e,

j! 2«   3       il LA       ro.) \ ro. /        J 2's   3

as required.

Lemma 7. If Amf(x) converges in the perfect set A, then fo(x)=f(x),

fi(x)> • • • >fm(x) can be defined in A so thatf(x) is of class Cm in A in terms

of thef,(x) (s = 0, ■ ■ ■ , m).

We define/i(a;), • • • ,fm(x) by means of Lemma 5. Taylor's formula for

each f,(x) holds to the 0th order, as/„(s) is continuous (see §2). We prove in

succession that it holds to the kth order for k = 1, • • • , m—s. This completes

the proof of the lemma, and therefore of Theorem I for the case that A is

perfect.

P-SETS AND Q-SETS

8. We shaU prove a lemma which will be needed in the next part. Let

A' = oi, (h, • • • be a set of isolated points, at least m+l in number. With

each point a,- we shall associate m other points a<„ • • • , a<„; these m points
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together with a, we say form the Q-sel Qia/). Take a Q-set Q„ and let

a)i, • ' ' , ai. De a^l those points such that Q(ai() =Q,; these points form the

P-sel Pi corresponding to Q,. Each point of P, is in Qi. Each point a< fies in

just one P-set Pia/), as a¿ is associated with just one Q-set Qia/) ; however, a,-

may lie in several Q-sets. Let Ô(Q<) be the greatest distance between pairs of

points of Qi.

Lemma 8. The P-sets and Q-sets may be so chosen that for any two points

ai and a,-,

SiQiad) + oiQiaj))
(8.1) if   -—-f--^— > 2m,   then P(a.) = Pia,).

I a,- — a,-1

We first associate sets of points with certain of the limit points of the

points ai, Ou, • • ■ as follows. Let c< be a point such that there is a sequence of

points of A ' approaching it from one side, say the left, while there is a nearest

point of A' to d on the other side of c<. Let ß equal m+\, or the number of

points a,- between c¿ and the next limit point ck to the right of e, if that num-

ber is smaller, and let a,,, • • ■ , a¡ be the points nearest c, on the right (count-

ing from left to right). Let t be the smallest of the numbers \a,- — o,J

is, t = 1, • ■ ■ , ß) which are > [ a,-,—c, |, if there are such. Let Oi(c.) be a point

of A ' to the left of c< such that

(8.2) | d — aiid) | <  \ah — a\,    and     \au — ai(c<) | < r

if t is defined. Let a2(c,), • • • , am(c.) be points of A' lying between c< and

Oiid).

We now define the Q-sets. Given a point a,-, we associate another point

with it as follows. Suppose, Case I, there is a point a, whose distance from

a,- is less than or equal to the distance from any other ak to a¿ ; then we asso-

ciate a,- with Oi, or that one of the pair a,-, ak which lies to the left of a{, if

their distances from at are the same. Suppose, Case II, there is no such point.

Then there is a limit point c, nearer a¿ than any point a,-. If there are two such

points, we consider that one c, on the left. The point we associate with at is

then alie/).

Suppose now we have associated a number of points with a,-, forming the

set of points 5. We associate the next point in a fashion much the same as

above. If Case II has not occurred in associating the other points of S with

ait we again have two cases to consider. Case I, there is a nearest point a,-

to the set S; we then associate this point with 5 (or the point ak, as above).

Case II, there is none; then take the point ct as above, and associate Oi(c<)

with S. At any time we employ Case II, we immediately associate also the
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points <z2(c<), a3(d), ■ ■ ■ with S, till we have the required m+l points Q(ai).

Note that the point we associate with S does not depend on which point

a,- of 5 we started with. Also if Case I has occurred each time in forming the

subset S of Q(ai), then there is no point ak not in S which lies between two

points of S.

9. To prove that (8.1) holds take any two points a¿ and a, ; set r,-,- = | a, — a¿ |.

(1) Suppose there are at most a finite number of points of A ' between at

and a,. If b(Q(ai)) + b(Q(a,)) >2mri,, then either biQia,))>mri, or 5(Q(a,-))

>mrij, say the former. Then there is a first time when, on adding a point ak

to a set 5 in forming Q(ai), the distance from ak to S is >r¿,.

(a) In forming 5 from a,-, Case I has occurred each time. For if Case II

had occurred, say in adding the point ai(c¿) to the subset Sx of S, then ak

would be some a,(ci); but the distance from ak to S is then at most the dis-

tance from aa(ci) to ax(ci) which is less than the distance from <Zi(c<) to Si

which is by hypothesis = r^.

(b) There is no point a, whose distance from S is :£ fi,. For suppose there

were; then Case II must occur in adding ak = ax(ci) to S, and c< is nearer 5"

than any point ar. (If Case I occurred, as or a nearer point, not ak, would

be added to S.) Say c< lies to the left of 5. Let ap and aq be the left and right-

hand end points of S respectively. As there is a point ae distant á r,-,- from S,

| ap — Ci\ <ra. Suppose a, is not in 5. As there are no limit points between a<

and a,, a, lies to the right of S, and hence there is a first point ar to the right

of S. Then as a,- is in S, \ar — aq\ ^ri,. But as aq and ar are among the first

m+l (or p) points to the right of c<, and \ap—d\ <\aT—aq\, (8.2) gives

| up —a* | < | ar — aq \ ^r„, a contradiction; therefore a, is in S. As a, is in 5

and \aP — c,-| <>•„ (8.2) gives \ap — ak\ <ra, again a contradiction.

(c) S contains a,. For otherwise (b) would be contradicted.

(d) In forming Q(a¡), the points of S are chosen first. For suppose not.

Then after perhaps adding some points of S to a,, forming the set S', we

choose a point a¡ not in 5. By (b), the distance from <z¡ to S is >r,-,-. As there

is a point in S whose distance from S' is at most r,-,, a¡ must have been chosen

under Case II; then the distance from some point c, to S' is <r„. But then

as c, is a limit point of points aa, there is a point as whose distance from 5 is

<r,-,-, a contradiction.

Now in forming both Q(ai) and Q(a¡), the points of 5 are chosen first.

As the remaining points chosen depend only on S, Q(ai) and Q(a,) must coin-

cide; hence a,- and a, lie in the same P-set.

(2) Suppose there is a limit point of isolated points b between at and a,.

In forming Q(ai), the set S at any step is at a distance ^ | b—a{\ from b; hence

in adding the next point ak to S, its distance from 5 is :£ | b—a¿| if Case I
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occurs, and is  <2|i> —a/\  if Case II occurs, by (8.2). Therefore ô(Q(a,))

<2m\ b—at\. Similarly Ô(Q(a,)) <2m\ b—a¡\. Adding,

KQiai)) + SiQia,)) < 2mi\b - at\ + \b - a,-\) = 2mm,

completing the proof.

Remark. Given a point a,-, if there exist m points a<„ • • • , a,„ such that

the m intervals between o,-, aiv • • ■ , aim are all i£p, or if there exists a point

a not in Q(a{) within p of o¿, then 8(Q(a/)) <2mp. This follows from the proof

in (2).

Theorem I, A closed

Each isolated point of A is enclosed in an interval; this gives a perfect

set B. The definition of fix) is extended over B. With the help of Lemma 8

it is shown that Amfix) now converges over B. By Lemma 7, fix) is of class

Cm in B; hence the same is true in A.

10. The sets A' and B. Let Ai be the set of isolated points of the closed

set A, let A2 be the set of limit points of isolated points, and let -43 be the

remaining points of A. Let A ' consist of A%, together with certain other points

as follows. A i+A 2 being closed, let 7 be any open interval of E —04i+-42)

containing points of A3. If an end point a< of 7 is in Ai, then there is, in I, a

nearest point ai(a/) of A 3 to a,-. We associate this point with a,-, and also

points Oiia/), • • • , am(a/) of A 3 in I, chosen so that

(10.1) \a.iai) - aiiat) | <  |ai(a.) — a{\ is = 2, • • • , m).

A ' is a set of isolated points; we may name them ai, a^, • • ■ . A ' is contained

in Ai+At.
For each point a,- of Ai, let ¿(a,) be its distance from the rest of A, and

let Bi be a closed interval of length ¿(o<)/2, with a,- as center. Let the perfect

set F be A plus all of these intervals. Arrange the points of A ' into P-sets

and Q-sets so as to obey Lemma 8. For each P-set P.-, let the corresponding

P'-set Pi contain the points of P„ together with the points of any intervals

Bi there may be which enclose points of Pf.

Given any set 5 of m+\ points in B, we shall define its complexity aiS)

as follows. If all the points of 5 are in A, set <r(5) =0. If 5 contains p>0

points in B—A, and all these points lie in a single P'-set P,', let q be the-

number of remaining points of S which do not lie in the corresponding Q-set

Qi, and set cr(5) =pq. The complexity of S is in this case certainly ^m2. If 5

contains p points in B—A, and these points do not all lie in the same P'-set,

set aiS) —m2+p — \. The complexity of any set S is ^m2+m.

11. The following lemma together with Lemma 7 gives Theorem I.
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Lemma 9. Let fix) be defined in the closed set A so that Amfix) converges in A.

Then A can be enclosed in a perfect set B, the definition of f(x) can be extended

over B, andfm(x) can be defined in B, so that Amf(x)—>fm(x) in B.

Define the sets A', B etc. as above. We may assume there are at least

m+l points in A'. Define/m(x) at each point of A2+A3 as in Lemma 1. Take

a fixed interval ¿?, with center a{; we define fix) and/„,(#) over B{ as follows.

Let Qi = Q(at) be the corresponding Q-set. Let

(11.1) Ri(x) = yo+ ■■■ +ymxm

be the polynomial of degree at most m such that Ri(x) =f(x) at each point

of Q(; then A ((?,-) =mlym, by (2.7). Set

(11.2) /(*) = Ri(x),   fm(x) = mlym in Bt.

The same polynomial Rt(x) is used in defining f(x) and fm(x) over each in-

terval of the P'-set P/ corresponding to Q,; hence if S is any set of m+l

points such that aU of its points in B—A lie in P/, and all remaining points

lie in Qi, then/(x) =Rt(x) at each point of S, and therefore, by (2.7), A(S)

= m\ym=A(Qi).

Each point x of A 3 is at a positive distance from B—A ; by the definition

of fm(x), Amf(x)^>fm(x) at such points. Each point x of B — (A2+A3) is in

an interval Bt; hence near x, f(x) is a polynomial, and Amf(x)^>fm(x) there

also. It remains to show that for each point x of A2 and every e >0 there is a

ô > 0 such that if S is any set of m +1 points of B within 5 of x, then

(11.3) | A(S)-/„(*) | <«.

By Lemma 1, we can take 5' >0 so that

(11.4) I ACS,,) -/«(*) | <
(8m + 8)'

for any set So of m+l points of A lying within ô' of *. Set ô = b'/(4m+2).

We shaU prove the foUowing:

(A) If S is any set in B, of complexity <r(S) =<r, composed of sets of points

Sx in B—A and S2in A, and if Sx lies within 5 of x and S2 lies within b' of x,

then

(11.5) | A(S)-/„(*) | < e.
(8m + 8) m +m—ff

As o-^m2+m, (11.3) foUows.

12. We note first that if &,- is in some interval of the P'-set Pi, and ¿»,- lies

within Ô of x, then Qi lies within 5' of x. Say af is the center of B,; then a,- lies



382 HASSLER WHITNEY [April

within 25 of x, a limit point of points of A '. Hence 8(Q(a/)) <4mô, by the re-

mark at the end of §9, and Qi = Q(a,) lies within (4w+2)ô = 8' of x.

We shall prove (A) first for cr = 0, then for cr >0, using induction. Suppose

cr = 0. If 5 is in A, the fact follows from (11.4). If S contains points of B— A,

then all these points lie in a single P'-set P/, and the rest of 5 lies in the cor-

responding Q-set Q{; hence A(S) =A(Q,). Q{ lies within 8' of x; hence (11.4)

holds with So replaced by Qi or by S, and therefore (11.5) holds.

Now suppose (11.5) is proved for all sets S' with a(S') <cr; we shall prove

it for any set S with a(S) =<r. Suppose first a>m2; then the points of 5 in

B—A lie in at least two P'-sets. Let P/ and P/ be two of these sets, let Z»<

and bj be points of S (in B—A) in P/ and Pj respectively, and let a( and a,

be the centers of the corresponding intervals. Let ak be a point of Q(a/) not

lying in S. If 5'=5-6,-è„ then, by (2.4),

(12.1)
ak — bi bi — ak

A(S) = Aibi, bit S') =--Aibi, ak,S') +
bj — bi b,- - bi

Aiak,b,,S').

The sets S'+bi+ak and S'+b,+ak each contain fewer points of B—A than

S; hence their complexities are each <<r. Also Q(ax) and therefore ak lie

within 5' of x. Therefore, by induction,

(12.2)    | A(bi, ak, S') - Mix) | < €„_!,    | Aiak, bh S') - fm(x) | < e„_i.

As a¿ and a,- lie in distinct P-sets, ô(Ç(ai)) + ô((3(a,)) = 2wr,-,-, by (8.1). As

| bi — a/\ ^r,,/4 and | bj — a¡\ éf<,-/4, | b, — Z»¿| ̂ri;/2. As ak and a,- lie in Q(a.)

and Qia,) respectively, |a,- — ak\ gô(Q(a,)) + 5(Q(a)))+r,-,^ (2íw + l)r,í; hence

\b¡ — ak\ <(2m+2)r,-,-. Also \ak — o,| ^S(Q(a,-)) + |a< —¿»,-| <(27w+2)r,,-;hence

(12.3)
a* — bi

< 4w + 4,
6,- - i<

This with (12.2) and (12.1) gives

bj — ak

bi - bi
< 4w + 4.

| A(5) - /„,(*) | <
ak — bi

+

bi - h

bi — ak

Aibi, ak, S') - /„(*)

\Aiak,bi,S')-Mix)
bi - bi

< (8w + 8)e„_i = e„,

as required.

Suppose now 0 <a^m2; then the points of 5 in B—A lie in a single P'-set

Pi, and there are points of S not in PI +Qi. Let bi be a point of 5 in B—A,

let a be a point of 5 not in P/ +Q,-, and let a* be a point of Ç,- which is not in

S. If S'=S — bi — a, the sets 5"+¿>,+a* and S'+a+ak each have a smaller
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complexity than 5. ak lies within ô' of x, and hence, by induction, (12.2) holds

with b, replaced by a. Let a< be the center of the interval Bi containing ¿»,.

Suppose, (1), a = a, is in A'. Then \a,—b{\ >r<,-/2. As ak is in Qi = Qiai)

while a, is not, \ak—bi \ < \ak — a,-| +rj,<(2m+l)ri)-, by the remark, and

|o,-—a*| < (2i»+l)r,-,-. Hence (12.3) holds with b, replaced by a, = a, and

(11.5) follows just as before. Suppose, (2), a is in A — (A'+A2). From a, move

toward a{ to the first point a' in Ax+A2. If a' is in ^4i, move back to the first

point ax(a') inA3. Then \ax(a')—a'\ ^ \a—a,| and \a,(a')—ax(a')\ <\ax(a')

-a'\ ^\a-at\ (s = 2, ■ ■ ■ , m), by (10.1). Hence ô(Qi) <2m\a-at\, by the

remark, and \ak — 6,-| <(2m + l)\a — ai\, and \a — ak\ < (2m+l)\a — a,-|. As

| a—¿>,| > |a — a¿|/2, (12.3) and (11.5) follow, as before. If a' is in A2, there

are m points of A' nearer a,- than a, and again 5(Qi) <2m\ a — a{\ and (11.5)

foUows. Suppose finally, (3), a is in A 2. Again we must have 6* (Qi) < 2m \ a — a,-1

and (11.5) follows. This completes the proof of (A), therefore of Lemma 9,

and therefore of Theorem I.

Taylor's formula

13. Conditions under which Taylor's formula is valid. Taylor's formula

for f(x) may hold to the mth order in certain closed sets even if f(x) is not of

class Cm (see §14). We find here a difference quotient condition equivalent to

the validity of Taylor's formula, at least for perfect sets.

Lemma 10. If f(x) =fa(x) can be expanded in a Taylor's formula to the mth

order locally uniformly in terms of f0(x), ■ ■ ■ , fm(x) in the closed set A, then

these functions are continuous in A.

It is apparent from (3.1) and (3.2) with s = 0 that/0(x) is continuous. Take

any s, 0<s^m. We shall assumef,(x) is continuous for s <jSm, if there are

such values of/, and shall prove that/,(x) is continuous.

Let xo, ■ ■ ■ , x, be distinct points of A. If we subtract (2.6) with x re-

placed by Xo from the same equation with x replaced by x1} we find

...       ...        ,   A    f/y(*o) A   .• i       fi(xx) A   i,l
f.(xi) — f.(xo) = si   2-,   \-2-,aU"i-77~ 2^ « uu

(13.1) I='+l L   Jl    -° Jl    ~° J

f

+ si 22 ^[Rixi, xo) - R(xí, xi)].
1-0

Given any limit point x0 of A and any e>0, take ô<e/[2'+3(s+l)mM] (if

s<m) and <l/2 so small that (3.2) holds with x and e replaced by x0 and

e/[2'+2(s+l)!] respectively, where M = max |/,-(*')| (|x'—x0| gl, s<j^m).

If s>l, take a point x, of A within S of x0, and take points x,_i, • • • , x2 of

A so that r0i<ro,i+x/3(i = 2, ■ ■ ■ , s — l). Now take any point Xx within S
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of Xo, so that roi<r02/3 if *>1. From (13.1) we see that \f.ixi)—f,ix0)\ <e,

as required (see the proof of Lemma 6).

Let xo, ■ ■ • , x, be an ordered set of points. We say they form an (x0, p)-set

(P>l),if

(13.2) ro.i-i <
roi a = i, ,s).

Theorem II. Let f(x) =fo(x), ■ • ■ ,M(x) be defined in the closed set A. A

necessary condition that a Taylor's expansion for f(x) should hold to the mth

order locally uniformly in terms off0(x), ■ ■ • ,M(x) is that for each (or some)

P>1, each s (O^s^m), each point x of A, and each e>0, there exist a ô>0,

such that if Xo, ■ ■ ■ , x, is any (x0, p)-set of points lying within 8 of x, then

I A„..../ -/,(*) | <€.

By the last lemma, the/¿(a:) are continuous. Take M so that |/,(a;')| <M

for |*'-*|<1. Take S<í(p-l)*/[2(í+l)j»Afp'] and <1 so that |/,(a:')

—f'{x)\ <«/2 (|a:'— x\ <8), and so that (3.2) holds with e replaced by

e(p — l)*/[2(s+l)!p*]. Now take any (*0, p)-set of points x0, • ■ ■ , x, lying

within 5 of a\ Then
r0i p

<
rki      p 1

for kr^i. Forif ¿<¿, thenr0ftáro,,_i<r0,/p, hence r*<^roi—r0t>ro,(l —1/p),

and r0,/r4,<l/(l —l/p)=p/(p —1); if k>i, then ro*èr0,J+i>pr0<, hence rki

èr0*—r0<>r0,(p —1), and r0i/rki<i/ip — 1) <p/ip — 1). Replacing x by x0 in

(2.6) gives immediately |A0... ,/—/«(x0) | <e/2; hence | A0...,/—f.(x)\ <e.

Theorem III. If A is perfect, then the condition in Theorem II is also suffi-

cient.

We shall prove successively for s = 0, • • • , m that f(x) can be expanded

in a Taylor's formula to the sth order locally uniformly in terms of f0(x), ■ • ■ ,

f,(x). Evidently f0(x) is continuous; hence this is true for 5=0. The proof

for a general 5 follows the proof of Lemma 6; we need merely be careful to

choose av_i, • • ■ , *i so that ro,t-i<r0t/p (¿ = 2, • • • , s).

14. Taylor's formula and differentiability. We shall say the set A has the

property Z„ at the point xip > 1) if there is an r¡ >0 such that corresponding

to any two points x0 and Xi of A within r¡ of x, points x2, ■ ■ ■ , x, oí A can be

found such that

(14.1)
1

— <
P

Xi

Xi —  Xo

<p (**,/ - 0, • • • ,s; ir*j);



1934] DIFFERENTIABLE FUNCTIONS 385

then ri,/rki<p2 for i**j, k^l. This condition is satisfied for instance by Can-

tor's set. s is any number Sm,m fixed.

Theorem IV.* Let Abe a closed set having the property Z„for some p = p(x)

at each point x, and let f(x) =fo(x), • • • , fm(x) be defined in A. A necessary

and sufficient condition thatf(x) be of class Cm in terms off0(x), ■ ■ • ,fm(x) is

that Taylor's formula for f(x) should hold to the mth order locally uniformly in

terms of fQ(x), ■ • ■ ,fm(x).

In short, in this case, Taylor's formula for/0(x) implies Taylor's formula

for each/,(x).

The necessity of the condition being trivial, we turn to the sufficiency.

By Lemma 10, fm(x) is continuous. It remains to prove that for any s,

0<s<m,f,(x) may be expanded in a Taylor's formula to the (m—s)ih order

locally uniformly in terms oif,(x), ■ ■ ■ ,fm(x). We shall prove this for s, as-

suming it for numbers s+l, • • • , m.

Let Xo, ■ ■ ■ , x, be distinct points of A. Set

(14.2) H,=  I>«o,->
i-0

(14.3) H,' =   22 « «« =   22 a(uoi — uoi)' =  22 « 22 (— 1) '    (    ) «o.Moi
1-0 1-0 1-0 I \ 1/

where 221 means summation over all values of /. We can write (if s < m)

A   fjjxi) Tr>      A     1    A   fk(xp)     t-i^f     t.f-i/JSrj   >-',„
22   —TT-Bi =22—22, —-77«oi   2wi(- 1)     I t)Biun + R

Í-.+ 1       ]\ i-8+X   jl      k-i(k-j)l \U

-È ^z-f*. t <-»'-'C)(':)+i'
k-.+ X       kl ,_»+i \J/\l/

where
1

R =  22   —B',R,(xx, xo).

Now if k ̂ l>s, then on replacing/ by k —j we find

* For the special case that A is a closed interval, see a paper by the author, Derivatives, dißer-

ence quotients and Taylor's formula, Bulletin of the American Mathematical Society, vol. 40 (1934),

pp. 89-94; Theorem III.
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- <- »K. -,) - *•■■'
and if k>l=s,

I<—'0Ö-—00-0-
Therefore, as JJ¡ = 0 (/ <s) and F, = 1,

»4.4,    ¿ m*,, t m-f)x+B^R.
i=,+i     jl k=s+i     kl   L     W J

Putting this in (13.1) gives

»    fkjxp)     k-,      A si     •    i i
f.(xi) =   2^77-r«oi   -  Z, — L, a UuRi(xi, Xo)

...   _.                         *-. (« — í)¡              í=«+i 7¡ .=0
(14.5)

+ si ¿2 a*[R(xi, xo) - R(Xi, xi)].
i-0

Given a point a; of A and an e>0, take p and 77 corresponding to a;, and

take 5' < r¡ so that (3.2) holds with 5 and e replaced by 8' and e/ [3m(s+l) ! p2m]

and with 5 taking on the values 0, s+i, ■ ■ ■ , m. Set 5 = S'/(2p). Now if x0

and Xi are points of A within S of x, we can add points x2, ■ ■ ■ , x, of A so

that (14.1) holds and these points will lie within 5' of x. Then

» j
a Un

Rj(Xi, Xq)
um

01

|-R,-(a:i, Xo) I

r    ■ • • r      r        ■ • • r r'~" rm~' 3mis + 1)!
Ot t-l.t  i+l,i «•   01 01

and similarly for the other remainder terms. Therefore |F,(a;i, Xo)\/rôl *<e,

as required.

Corollary. If m ̂ 2, Theorem IV holds for all closed sets.

The only value of 5 we may need in the above proof is 5 = 1 ; the condition

Zp is satisfied trivially if 5 = 1.

Example. Theorem IV does not hold for all closed sets, as we now show,

using w = 3. Set a< = l/2<, ¿>, = l/22i, Ci = l/23i; bi = a¿+¿>¿, c/=a,+c,-,

di = ai+bi—Ciii = i, 2, • ■ ■). Let A be the set of points 0, a¿, c¡, di, b!. Set

/o(0)=/i(0)=/2(0)=/3(0)=0,

* See Netto, Lehrbuch der Combinatorik, Leipzig, 1927, §158, (27).
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/o(a.) = 0, hid) = 0, f0(di) = 0, fo(bl) = b?a,

fx(ai) = 0, fx(cl) = 0, fx(di) = Ô,-2 - ha, fx(bi) = b? + ha,

h(ai) = 0, fi(c*) = 0, Mdi) = 2bi, Mb<) = 2bi,

hiai) = 0, ftid) = 0, ft(di) = 0, f3ibl) = 0.

As A(0, a,-, ci, di) =0, while A(a¿, c/, dh bi) =3 ! &¿2c,/[¿>¿(¿><—<;<)<;<]—»6 as

z—><», A3/o(x) does not converge at x = 0, and hence /o(x) is not of class C3,

by Theorem I. However, Taylor's formula holds for/0(x) to the third order

locally uniformly. For a calculation shows that R(x, y) =0 whenever x and y

are chosen from the points fl¿, ci,d,-,J/,except that 2?(bi, ai) =R(b¡ ,c¡) =bi¡ci,

R(cí, di)=R(ci, bi)=biCi(bi — 2ci); hence if x and y are chosen in any man-

ner from the points <z,-, c{, ¿,-, &/, R(y, x)/(y—x)3—>0 as «—*°o . Suppose now

Xi and y, are chosen from a,-, c/, d,-, &/, and from a,, c,, d,, b, respectively,

jp*i (or Xi = 0 or y, = 0). If k is the larger of the numbers *',/, then

\R(y,, Xi) | < 2bk2Ck + (bk2 + bkck)(ak + bk) + bk(ak + bk)2,

and as \y,—x<| 3^ak3/S, R(y¡, xi)/(y,—xi)3-*0 as *,/—><» (j^i). Hence for

some ô >0, if x and y are any two points of A within 8 of 0, | R(y, x)/(y—x)3 \

<e. This is true also at each isolated point of A ; hence Taylor's formula is

valid.

Note that we may increase A to a perfect set by adding the intervals be-

tween a( and ci and between a\ and b¡, and giving the obvious definitions of

fo(x), ■ ■ ■ ,f3(x) there. In this example, Taylor's formula holds to the re-

quired order for neither fx(x) nor/2(x).

Harvard University,

Cambridge, Mass.


