DIFFERENTIABLE FUNCTIONS DEFINED IN CLOSED SETS. I†

HASSLER WHITNEY!

1. Introduction. In a recent paper§ the author has shown that if a function f(x) defined in a closed set A in n-space E satisfies certain conditions involving Taylor's formula (in finite form), i.e. if it is "of class C^m in A," then its definition can be extended over E so that it will have continuous partial derivatives through the mth order. In this paper we restrict ourselves to the one-dimensional case. (For the above theorem in this case, see §4.) Let x_0, \dots, x_m be distinct points of A. If $P(x) = c_0 + \dots + c_m x^m$ is the polynomial of degree at most m such that $P(x_i) = f(x_i)(i = 0, \dots, m)$, the mth difference quotient of f(x) at these points is $\Delta_0 \dots m f = \Delta^m f(x) = m!c_m$. The main object of this paper is to prove (see §§2 and 3 for definitions)

THEOREM I. A necessary and sufficient condition that f(x) be of class C^m in A is that $\Delta^m f(x)$ converge in A.

This theorem furnishes a direct definition of the differentiability of a function; the former definition (see §3) involved the existence of other functions $f_1(x), \dots, f_m(x)$.

The necessity of the condition is easily proved. The definition of f(x) being extended over the x-axis E, consider any m+1 points x_0, \dots, x_m $(x_0 < x_1 < \dots < x_m)$. Define P(x) as above. As $f(x_i) - P(x_i) = 0$ $(i = 0, \dots, m)$ there is a point $x'(x_0 < x' < x_m)$ such that $(d^m/dx^m)[f(x') - P(x')] = 0$. But $d^m P(x)/dx^m \equiv m! c_m = \Delta_0 \dots mf$; hence $\Delta_0 \dots mf = d^m f(x')/dx^m$. Therefore if x_0, \dots, x_m are in A and are sufficiently near a point x^* of A, $\Delta_0 \dots mf = d^m f(x')/dx^m = d^m f(x^*)/dx^m$ approximately, and $\Delta^m f(x)$ converges in A (in fact, in E). This may be proved also from (2.6) for s = m.

We note that, for $f(x) = f_0(x)$ to be of class C^m in a general closed set A, it is not sufficient that there exist functions $f_s(x)$ $(s=1, \dots, m)$ in A such that $df_s(x)/dx = f_{s+1}(x)$ there. As an example, set $f_0(0) = 0$ and $f_0(x) = 1/2^{2i}$ $(1/2^i \le x \le 3/2^{i+1}, i=1, 2, \dots)$, and set $f_1(x) = 0$ and $f_2(x) = 0$ in the same point set A.

The majority of the paper is devoted to the proof of Theorem I. In the

[†] Presented to the Society, October 28, 1933; received by the editors July 27, 1933.

¹ National Research Fellow.

[§] Analytic extensions of differentiable functions defined in closed sets, these Transactions, vol. 36 (1934), pp. 63-89; this paper will be referred to as A.E.

last section we study Taylor's formula in finite form, when it holds in closed sets, and when its validity implies differentiability of the given function.

2. Difference quotients. $\dagger \text{If } x_0, \dots, x_m \text{ are distinct numbers, set} \ddagger$

$$(2.1) \ u_{ij} = x_j - x_i, \ r_{ij} = \left| u_{ij} \right|, \ \alpha_{01 \cdots m}^i = \frac{1}{u_{0i} \cdots u_{i-1} \cdot u_{i+1} \cdot \cdots \cdot u_{mi}}.$$

Given a function f(x), we define the mth difference quotient by the formula

$$(2.2) \quad \Delta^{m} f(x) = \Delta(x_{0}, x_{1}, \cdots, x_{m}; f) = \Delta_{01...m} f = m! \sum_{i=0}^{m} \alpha_{01...m}^{i} f(x_{i}).$$

In particular, $\Delta_0 f = f(x_0)$, $\Delta_{01} f = [f(x_1) - f(x_0)]/(x_1 - x_0)$. $\Delta_0 \dots_m$ is symmetric in the points x_0, \dots, x_m .

If $i \geq 2$,

$$\frac{1}{u_{01}}(\alpha_{12...s}^{i}-\alpha_{02...s}^{i})=\frac{1}{u_{01}}\left(\frac{1}{u_{1i}\cdot\cdot\cdot}-\frac{1}{u_{0i}\cdot\cdot\cdot}\right)=\frac{1}{u_{01}}\frac{u_{0i}-u_{1i}}{u_{0i}u_{1i}\cdot\cdot\cdot}=\alpha_{012...s}^{i};$$

hence

$$\frac{s}{u_{01}}(\Delta_{12...s} - \Delta_{02...s}) = \frac{s!}{u_{01}} \left[-\alpha_{02...s}^{0} f(x_{0}) + \alpha_{12...s}^{1} f(x_{1}) + \sum_{i \geq 2} (\alpha_{12...s}^{i} - \alpha_{02...s}^{i}) f(x_{i}) \right]$$

$$= s! \sum_{i=0}^{s} \alpha_{012...s}^{i} f(x_{i}) = \Delta_{012...s}.$$

Suppose * is a set of subscripts containing neither 0, 1, nor 2; then for some m,

$$\Delta_{012*} = \frac{m}{u_{01}} \left(\Delta_{12*} - \Delta_{02*} \right) = \frac{m}{u_{02}} \left(\Delta_{12*} - \Delta_{01*} \right).$$

Solving for Δ_{01*} , we find

$$\Delta_{01*} = \frac{u_{02}}{u_{01}} \Delta_{02*} + \frac{u_{21}}{u_{01}} \Delta_{21*},$$

which may be written as follows: $u_{01}\Delta_{01*} + u_{12}\Delta_{12*} + u_{20}\Delta_{20*} = 0$.

Let x_0, \dots, x_s be distinct numbers. If we solve the equations $\sum_{i=0}^{s}$

[†] Compare Nörlund, Differenzenrechnung, Berlin, 1924, pp. 8-9. It is seen that $\Delta_{01}..._m = m!$ $[x_0x_1 \cdot \cdot \cdot x_m]$.

[‡] In the equations below, the numbers $0, 1, \cdots$, when appearing as subscripts, are to be considered as variables. Thus, as a particular case of (2.1), $\alpha_{023}^0 = 1/(u_{20}u_{20})$; in the second equation of §6, $\Sigma_i 1/u_{i'i} = 1/u_{0'i} + \cdots$. Without this notation, the equations would often get quite cumbersome.

 $(x_i-x)^jz_i=\delta_{js}(j=0,\cdots,s), x$ being any fixed number, we find $z_i=\alpha_0^i\cdots_s$. Hence

(2.5)
$$\sum_{i=0}^{s} \alpha_{0}^{i} \dots_{s} (x_{i} - x)^{i} = 0 \qquad (j = 0, \dots, s - 1),$$

$$\sum_{i=0}^{s} \alpha_{0}^{i} \dots_{s} (x_{i} - x)^{i} = 1.$$

Suppose $f(x) = f_0(x)$, ..., $f_m(x)$, $R(x', x) = R_0(x', x)$ satisfy (3.1) below for s = 0. Then (2.2) and (2.5) give

$$\Delta_{0...s}f = s! \sum_{i=0}^{s} \alpha_{0...s}^{i} \left[\sum_{j=0}^{m} \frac{f_{j}(x)}{j!} (x_{i} - x)^{j} + R(x_{i}, x) \right]$$

$$= f_{s}(x) + s! \sum_{i=s+1}^{m} \frac{f_{j}(x)}{j!} \sum_{i=0}^{s} \alpha_{0...s}^{i} (x_{i} - x)^{j} + s! \sum_{i=0}^{s} \alpha_{0...s}^{i} R(x_{i}, x).$$

If $f(x) = c_0 + \cdots + c_m x^m$ is a polynomial of degree at most m, then (3.1) is satisfied with $f_m(x) \equiv m! c_m$ and $R_s(x', x) \equiv 0$. Setting s = m in (2.6) gives

$$\Delta_{0\cdots m}f \equiv m!c_{m}.$$

We say $\Delta^m f(x)$ converges in the set A if for each point x of A and every $\epsilon > 0$ there is a $\delta > 0$ such that if $x_0, \dots, x_m, x_{0'}, \dots, x_{m'}$ are any two sets of distinct points of A, all within δ of x, then

$$|\Delta_{0\cdots m}-\Delta_{0'\cdots m'}|<\epsilon.$$

 $\Delta^m f(x)$ of course converges at all isolated points of A. We say $\Delta^m f(x) \rightarrow f_m(x)$ in A if $|\Delta_0 \dots m - f_m(x)| < \epsilon$ whenever x_0, \dots, x_m are in A and within δ of x. Evidently if $\Delta^m f(x) \rightarrow f_m(x)$ in A, then $f_m(x)$ is continuous in the set of limit points of A.

DIFFERENTIABLE FUNCTIONS

3. Definition of differentiable functions. Let $f(x) = f_0(x)$ be defined in the closed set A. We say f(x) is of class C^m in A (see A. E.) if there exist functions $f_1(x), \dots, f_m(x), R(x', x) = R_0(x', x), \dots, R_m(x', x)$ in A such that

$$(3.1) f_s(x') = \sum_{i=s}^m \frac{f_i(x)}{(i-s)!} (x'-x)^{i-s} + R_s(x',x) (s=0,\cdots,m),$$

and for each s, each point x of A, and every $\epsilon > 0$ there is a $\delta > 0$ such that

$$(3.2) \qquad \left| \frac{R_{s}(x'', x')}{(x'' - x')^{m-s}} \right| < \epsilon \qquad (x', x'' \text{ in } A; |x' - x|, |x'' - x| < \delta).$$

If $f_i(x)$, \cdots , $f_m(x)$, $R_i(x', x)$ satisfy (3.1) and (3.2) for s=i, we say $f_i(x)$

can be expanded in a Taylor's formula to the (m-i)th order locally uniformly in terms of $f_i(x), \dots, f_m(x)$. If f(x) is defined throughout an open interval and has a continuous mth derivative there, then it is of class C^m , by Taylor's theorem.

4. Extension of differentiable functions. If $f_0(x)$ is of class C^m in terms of $f_0(x)$, \cdots , $f_m(x)$ in A, then the definitions of these functions can be extended throughout E so they will be continuous and so that $df_*(x)/dx = f_{*+1}(x)$ there $(s=0,\cdots,m-1)$ (see A. E., Lemma 2). As the proof can be given more simply in the one-dimensional case, we give it here. We can assume A is unbounded on both sides; otherwise, take a point a beyond a on either side, and set $f_*(x) \equiv 0$ $(s=0,\cdots,m)$ beyond a.

For each interval (a, b) of E-A, let P(x) be the polynomial of degree at most 2m+1 such that

$$\frac{d^s}{dx^s}P(a)=f_s(a), \qquad \frac{d^s}{dx^s}P(b)=f_s(b) \qquad (s=0,\cdots,m);$$

we set

(4.2)
$$f_s(x) = \frac{d^s}{dx^s} P(x)$$
 in (a, b) .

 $df_{\bullet}(x)/dx = f_{\bullet+1}(x)$ $(s = 0, \dots, m-1)$ in E-A; we must show that this holds also at any point x_0 of A.

Suppose each $f_{s+1}(x)$ is continuous in E. Then given x_0 in A and $\epsilon > 0$, take $\delta > 0$ so small that

$$|f_{s+1}(x') - f_{s+1}(x_0)| < \frac{\epsilon}{2}$$
 $(|x' - x_0| < \delta).$

By (3.1) and (3.2), we can also take δ so small that if a is in A, $|a-x_0| < \delta$, and

$$f_s(a) = f_s(x_0) + f_{s+1}(x_0)(a - x_0) + R'(a, x_0),$$

then $|R'(a, x_0)/(a-x_0)| < \epsilon/2$. Now take any point x within δ of x_0 . If x is in A, set a=x; otherwise, let a be the end point nearest x_0 of the interval of E-A containing x. Now for some x', $a \le x' \le x$,

$$f_s(x) = f_s(a) + f_{s+1}(x')(x-a)$$
.

Adding this to the last equation and dividing by $x-x_0$, we find

$$\frac{f_{s}(x) - f_{s}(x_{0})}{x - x_{0}} = f_{s+1}(x_{0}) + \left[f_{s+1}(x') - f_{s+1}(x_{0})\right] \frac{x - a}{x - x_{0}} + \frac{R'(a, x_{0})}{x - x_{0}}.$$

As $|x'-x_0| < \delta$, $|x-a| \le |x-x_0|$ and $|x-x_0| \ge |a-x_0|$,

$$\left|\frac{f_{s}(x)-f_{s}(x_{0})}{x-x_{0}}-f_{s+1}(x_{0})\right|<\epsilon \qquad (\left|x-x_{0}\right|<\delta),$$

as required. (We have given here the details of A. E., Lemma 1.)

We must prove still that each $f_{\bullet}(x)$ is continuous at each point x_0 of A; it is of course true in E-A. As $f_{\bullet}(x)$ is continuous in A, it is sufficient to prove that for every $\epsilon > 0$ there is a $\delta > 0$ such that if (a, b) is any interval of E-A lying within δ of x_0 , then

$$|f_{\delta}(x) - f_{\delta}(a)| < \epsilon \qquad (a \le x \le b).$$

Take $\epsilon' < \epsilon/[2(m+1)^2K]$, where K is a number to be determined later. Let M be the maximum of $|f_i(x)|$ in A ($|x-x_0| \le 1$, $i=0, \dots, m$). Take $\delta < \epsilon/(2mM)$ and <1 so small that (3.2) holds with ϵ replaced by ϵ' for any x, x' within δ of x_0 . Now take any interval (a, b) of E-A lying within δ of x_0 . In (a, b), f(x) equals

$$P(x) = \sum_{i=0}^{m} \frac{f_i(a)}{i!} (x-a)^i + \sum_{i=m+1}^{2m+1} \frac{\gamma_i}{i!} (x-a)^i,$$

where the γ_i are determined by the relations

$$\frac{d^{s}}{dx^{s}}P(b) = \sum_{i=s}^{m} \frac{f_{i}(a)}{(i-s)!} (b-a)^{i-s} + \sum_{i=m+1}^{2m+1} \frac{\gamma_{i}}{(i-s)!} (b-a)^{i-s} = f_{s}(b);$$

hence

$$\sum_{i=m+1}^{2m+1} \frac{\gamma_i}{(i-s)!} (b-a)^{i-s} = f_s(b) - \sum_{i=s}^m \frac{f_i(a)}{(i-s)!} (b-a)^{i-s} = R_s(b,a).$$

Solving for the γ_i , we find

$$\gamma_i = \sum_{j=0}^m K_{ij} \frac{R_j(b, a)}{(b-a)^{i-j}},$$

where the K_{ij} depend on m alone. Set $K = \max |K_{ij}|$; then

$$\left|\gamma_{i}\right| \leq \sum_{j=0}^{m} \frac{K}{\left|b-a\right|^{i-m}} \left| \frac{R_{j}(b,a)}{(b-a)^{m-j}} \right| < \frac{(m+1)K}{\left|b-a\right|^{i-m}} \epsilon'.$$

Now if x is any point in (a, b), then $|x-a| \le |b-a|$, and

$$|f_{s}(x) - f_{s}(a)| = \left| \frac{d^{s}}{dx^{s}} P(x) - f_{s}(a) \right|$$

$$= \left| \sum_{i=s+1}^{m} \frac{f_{i}(a)}{(i-s)!} (x-a)^{i-s} + \sum_{i=m+1}^{2m+1} \frac{\gamma_{i}}{(i-s)!} (x-a)^{i-s} \right|$$

$$< mM \left| x - a \right| + (m+1)K\epsilon' \sum_{i=m+1}^{2m+1} \frac{\left| x - a \right|^{i-s}}{\left| b - a \right|^{i-m}}$$

$$< mM\delta + (m+1)^{2}K \left| b - a \right|^{m-s}\epsilon' < \epsilon,$$

as required.

THEOREM I, A PERFECT

5. A succession of lemmas culminates in Lemma 7, which is the sufficiency part of Theorem I for perfect sets.

LEMMA 1. Let A be a closed set, and let $\Delta^{\bullet}f(x)$ converge on A. Then we can define $f_{\bullet}(x)$ on the set of limit points A^{*} of A so that the following is true. Given x in A^{*} and $\epsilon > 0$, we can choose a $\delta > 0$ so that if $x_{0}, \dots, x_{\bullet}$ is any set of distinct points of A lying within δ of x, then $|\Delta_{0} \dots, -f_{\bullet}(x)| < \epsilon$.

The proof is simple.

LEMMA 2. If $\Delta^{\epsilon} f_0(x)$ converges in the perfect set A, then for each point x of A and every $\epsilon > 0$ there is a $\delta > 0$ such that

$$|\Delta_{0\cdots t-1,t\cdots s-1} - \Delta_{0\cdots (t-1)',t\cdots s-1}| < \epsilon$$

 $(0 \le t \le s)$ whenever all the points concerned lie within δ of x.

This is trivial if t=0. We assume it holds for numbers $0, \dots, t-1$, and shall prove it for t. Given a point x_* distinct from all former points, the equations

$$\Delta_{0...t-1,t...s-1,s} = \frac{s}{u_{0s}} (\Delta_{1...t-1,t...s} - \Delta_{0...t-1,t...s-1}),$$

$$\Delta_{0'...t-1,t...s-1,s} = \frac{s}{u_{0's}} (\Delta_{1'...t-1,t...s} - \Delta_{0'...t-1,t...s-1})$$

give

$$\Delta_{0...t-1,t...s-1} - \Delta_{0'...(t-1)',t...s-1} = (\Delta_{1...t-1,t...s} - \Delta_{1'...(t-1)',t...s})$$

$$-\frac{1}{s} (u_{0s}\Delta_{0...t-1,t...s} - u_{0's}\Delta_{0'...(t-1)',t...s}).$$
(5.2)

As $\Delta_0 \dots$ converges, we can take M > 0 and $\delta' < \epsilon/(4M)$ so that $|\Delta_0 \dots| < M$ whenever x_0, \dots, x_s are within δ' of x. By induction, we can take $\delta < \delta'$ so small that the first term on the right in (5.2) is in absolute value $< \epsilon/2$ whenever all points concerned are within δ of x. Now given the points x_0, \dots, x_{s-1} ,

 $x_{0'}, \dots, x_{(t-1)'}$ within δ of x, let x_{δ} be another such point; then (5.2) gives (5.1).

The lemma with t=s shows that $\Delta^{s-1}f_0(x)$ converges in A.

LEMMA 3. If $\Delta^m f_0(x)$ converges in the perfect set A, then there are continuous functions $f_1(x)$, \cdots , $f_m(x)$ in A such that $\Delta^s f_0(x) \rightarrow f_s(x)$ in A $(s=1, \cdots, m)$.

We prove this successively for $s = m, m-1, \dots, 1$ with the help of Lemmas 1 and 2.

6. We proceed to the following lemma.

LEMMA 4. If $\Delta^p g(x) \rightarrow g_p(x)$ and $\Delta^1 g(x) \rightarrow g_1(x)$ in the perfect set A, then $\Delta^{p-1}g_1(x) \rightarrow g_p(x)$ in A.

Set q = p - 1. If we apply the relation $\Delta^1 \phi(x_i) \rightarrow d\phi(x_i)/dx_i$ to $\alpha_0^i \dots \alpha_q^i$ as a differentiable function of x_i , we find

$$\frac{\alpha_0^{i'}\ldots_{i'}\ldots_{q}-\alpha_0^{i}\ldots_{q}}{u_{ii'}}=-\alpha_0^{i}\ldots_{q}\sum_{j\neq i}\frac{1}{u_{ji}}+\epsilon(x_{i'}),$$

where $\epsilon(x_{i'}) \rightarrow 0$ as $x_{i'} \rightarrow x_i$. Hence

$$\alpha_{0...q}^{i} \sum_{j} \frac{1}{u_{j'i}} = -\frac{\alpha_{0...i'...q}^{i'}}{u_{ii'}} + \alpha_{0...q}^{i} \sum_{j \neq i} \left(\frac{1}{u_{j'i}} - \frac{1}{u_{ji}}\right) + \epsilon(x_{i'})$$

$$= -\frac{\alpha_{0...i'...q}^{i'}}{u_{ii'}} + \zeta_{i}(x_{0'}, \dots, x_{q'}),$$

where $\zeta_i(x_{0'}, \dots, x_{q'}) \rightarrow 0$ as $x_{j'} \rightarrow x_j (j = 0, \dots, q)$. Consider the 2q points $x_0, x_{0'}, \dots, x_q, x_{q'}$. We have

$$\Delta_{0...jj'...q}g = p! \left[\sum_{i=0}^{q} \frac{\alpha_{0...q}^{i}}{u_{j'i}} g(x_{i}) + \frac{\alpha_{0...j'...q}^{i'}}{u_{jj'}} g(x_{j'}) \right],$$

$$\frac{1}{p} \sum_{j=0}^{q} \Delta_{0...jj'...q}g = (p-1)! \left[\sum_{i=0}^{q} \alpha_{0...q}^{i} g(x_{i}) \sum_{j=0}^{q} \frac{1}{u_{j'i}} + \sum_{i=0}^{q} \frac{\alpha_{0...i'...q}^{i'}}{u_{ii'}} g(x_{i'}) \right]$$

$$= q! \sum_{i=0}^{q} \left[\alpha_{0...i'...q}^{i'} \frac{g(x_{i'}) - g(x_{i})}{u_{ii'}} + g(x_{i})\zeta_{i}(x_{0'}, \dots, x_{q'}) \right].$$

As $\Delta^1 g(x) \rightarrow g_1(x)$, this gives, letting $x_{i'} \rightarrow x_i$ $(j = 0, \dots, q)$,

(6.1)
$$\frac{1}{p} \lim_{i \to 0} \sum_{j=0}^{q} \Delta_{0 \dots j j' \dots q} g = q! \sum_{i=0}^{q} \alpha_{0 \dots q}^{i} g_{1}(x_{i}) = \Delta_{0 \dots q} g_{1}.$$

Now given a point x of A and an $\epsilon > 0$, take $\delta > 0$ so that if x_0, \dots, x_i , $x_{i'}, \dots, x_q$ are within δ of x, then

$$\left|\Delta_{0...jj'...qg}-g_{p}(x)\right|<\epsilon.$$

Then if x_0, \dots, x_q are within δ of x, we find by adding points x_0, \dots, x_q within δ of x and letting $x_i \rightarrow x_i$ $(i = 0, \dots, q)$ that

$$\left|\Delta_0..._q g_1 - g_p(x)\right| < \epsilon,$$

as required.

LEMMA 5. If $\Delta^m f_0(x)$ converges in the perfect set A, then there are continuous functions $f_1(x)$, \cdots , $f_m(x)$ such that $\Delta_p f_q(x) \rightarrow f_{p+q}(x)$ in A.

This follows from Lemmas 3 and 4.

7. We now present the two final lemmas needed for the proof of Theorem I when A is perfect.

LEMMA 6. Let $g(x) = g_0(x)$, \cdots , $g_*(x)$ be defined in the perfect set A, and suppose $\Delta^*g(x) \rightarrow g_*(x)$. If g(x) can be expanded in a Taylor's formula to the (s-1)th order in terms of $g_0(x)$, \cdots , $g_{*-1}(x)$, then it can be expanded in a Taylor's formula to the sth order locally uniformly in terms of $g_0(x)$, \cdots , $g_*(x)$.

Given a point x of A and an $\epsilon > 0$, take $\delta > 0$ so that

$$|\Delta_0..._s - g_s(x_0)| < \frac{s!}{2^s} \frac{\epsilon}{3}$$

whenever x_0, \dots, x_s are within δ of x (recall that $g_s(x)$ is continuous, by §2). Take any two points x_0 and x_s of A within δ of x; we must show that $|R^{(s)}(x_s, x_0)|/r_{0s}^s < \epsilon$.

Take δ' so small that if $|x'-x_0| < \delta'$, then

$$\left|\frac{R^{(s-1)}(x', x_0)}{(x'-x_0)^{s-1}}\right| < \frac{r_{0s}}{2^{2s}s} \frac{\epsilon}{3},$$

where $R^{(s-1)}(x', x_0) = g(x') - \sum_{j=0}^{s-1} g_j(x_0)(x'-x_0)^j/j!$. Take $M > |g_s(x_0)|$. Take a point x_{s-1} in A within δ' of x_0 and so close to x_0 that

$$\frac{r_{0,s-1}}{r_{0s}} < \frac{s!}{2^s M} \frac{\epsilon}{3} \quad \text{and} \quad < \frac{1}{2},$$

and (if s > 2) take in succession points x_{s-2}, \dots, x_1 in A so that

(7.2)
$$r_{0,t-1} < \frac{1}{2}r_{0t}$$
 $(t = 2, \dots, s-1);$

let these points lie within δ of x. Then if i < s,

$$\left|\alpha_{0}^{i}..._{s}R^{(s-1)}(x_{i}, x_{0})\right| < \frac{1}{r_{si}} \frac{r_{0i}^{s-1}}{r_{0i} \cdots r_{i-1,i}r_{i+1,i} \cdots r_{s-1,i}} \frac{r_{0s}}{2^{2s}s} \frac{\epsilon}{3} < \frac{1}{2^{s}s} \frac{\epsilon}{3}$$

Now

$$\frac{1}{s!} \Delta_{0...s} = \alpha^{s} g(x_{s}) + \sum_{i=0}^{s-1} \alpha^{i} \left[\sum_{j=0}^{s-1} \frac{g_{j}(x_{0})}{j!} u_{0i}^{j} + R^{(s-1)}(x_{i}, x_{0}) \right]
= \alpha^{s} g(x_{s}) - \alpha^{s} \sum_{i=0}^{s-1} \frac{g_{j}(x_{0})}{j!} u_{0s}^{j} + \sum_{i=0}^{s-1} \alpha^{i} R^{(s-1)}(x_{i}, x_{0}),$$

on account of (2.5). Therefore

(7.3)
$$R^{(s)}(x_s, x_0) = g(x_s) - \sum_{j=0}^{s} \frac{g_j(x_0)}{j!} u_{0s}^j$$

$$= \frac{\Delta_0 \dots_s}{s! \alpha^s} - \frac{g_s(x_0) u_{0s}^s}{s!} - \sum_{j=0}^{s-1} \frac{\alpha^i}{\alpha^s} R^{(s-1)}(x_i, x_0),$$

and as $r_{is}/r_{0s} \le (r_{0s}+r_{0i})/r_{0s} = 1+r_{0i}/r_{0s}$,

$$\frac{\left|R^{(s)}(x_{s}, x_{0})\right|}{r_{0s}^{s}} \leq \frac{r_{0s} \cdots r_{s-1,s}}{s! r_{0s}^{s}} \left|\Delta_{0} \dots_{s} - g_{s}(x_{0})\right| + \frac{\left|g_{s}(x_{0})\right|}{s!} \left|\frac{r_{0s} \cdots r_{s-1,s}}{r_{0s}} - 1\right| \\
+ \sum_{i=0}^{s-1} \frac{r_{0s} \cdots r_{s-1,s}}{r_{0s}} \left|\alpha^{i} R^{(s-1)}(x_{i}, x_{0})\right| \\
< \frac{2^{s}}{s!} \frac{s!}{2^{s}} \frac{\epsilon}{3} + \frac{M}{s!} \left[\left(1 + \frac{r_{00}}{r_{0s}}\right) \cdots \left(1 + \frac{r_{0,s-1}}{r_{0s}}\right) - 1\right] + s \cdot 2^{s} \frac{1}{2^{s}s} \frac{\epsilon}{3} < \epsilon,$$

as required.

LEMMA 7. If $\Delta^m f(x)$ converges in the perfect set A, then $f_0(x) = f(x)$, $f_1(x), \dots, f_m(x)$ can be defined in A so that f(x) is of class C^m in A in terms of the $f_{\bullet}(x)$ $(s = 0, \dots, m)$.

We define $f_1(x)$, \dots , $f_m(x)$ by means of Lemma 5. Taylor's formula for each $f_*(x)$ holds to the 0th order, as $f_*(x)$ is continuous (see §2). We prove in succession that it holds to the kth order for $k = 1, \dots, m-s$. This completes the proof of the lemma, and therefore of Theorem I for the case that A is perfect.

P-SETS AND Q-SETS

8. We shall prove a lemma which will be needed in the next part. Let $A' = a_1, a_2, \cdots$ be a set of isolated points, at least m+1 in number. With each point a_i we shall associate m other points a_{i_1}, \cdots, a_{i_m} ; these m points

together with a_i we say form the Q-set $Q(a_i)$. Take a Q-set Q_i , and let a_{i_1}, \dots, a_{i_n} be all those points such that $Q(a_{i_i}) = Q_i$; these points form the P-set P_i corresponding to Q_i . Each point of P_i is in Q_i . Each point a_i lies in just one P-set $P(a_i)$, as a_i is associated with just one Q-set $Q(a_i)$; however, a_i may lie in several Q-sets. Let $\delta(Q_i)$ be the greatest distance between pairs of points of Q_i .

LEMMA 8. The P-sets and Q-sets may be so chosen that for any two points a_i and a_i ,

(8.1) if
$$\frac{\delta(Q(a_i)) + \delta(Q(a_i))}{|a_i - a_i|} > 2m$$
, then $P(a_i) = P(a_i)$.

We first associate sets of points with certain of the limit points of the points a_1, a_2, \cdots as follows. Let c_i be a point such that there is a sequence of points of A' approaching it from one side, say the left, while there is a nearest point of A' to c_i on the other side of c_i . Let μ equal m+1, or the number of points a_i between c_i and the next limit point c_k to the right of c_i if that number is smaller, and let $a_{i_1}, \cdots, a_{i_{\mu}}$ be the points nearest c_i on the right (counting from left to right). Let τ be the smallest of the numbers $|a_i - a_{i_k}|$ $(s, t = 1, \cdots, \mu)$ which are $> |a_{i_1} - c_i|$, if there are such. Let $a_1(c_i)$ be a point of A' to the left of c_i such that

$$|c_i - a_1(c_i)| < |a_{j_1} - c_i|, \text{ and } |a_{j_1} - a_1(c_i)| < \tau$$

if τ is defined. Let $a_2(c_i)$, \cdots , $a_m(c_i)$ be points of A' lying between c_i and $a_1(c_i)$.

We now define the Q-sets. Given a point a_i , we associate another point with it as follows. Suppose, Case I, there is a point a_i whose distance from a_i is less than or equal to the distance from any other a_k to a_i ; then we associate a_i with a_i , or that one of the pair a_i , a_k which lies to the left of a_i , if their distances from a_i are the same. Suppose, Case II, there is no such point. Then there is a limit point a_i nearer a_i than any point a_i . If there are two such points, we consider that one a_i on the left. The point we associate with a_i is then $a_1(a_i)$.

Suppose now we have associated a number of points with a_i , forming the set of points S. We associate the next point in a fashion much the same as above. If Case II has not occurred in associating the other points of S with a_i , we again have two cases to consider. Case I, there is a nearest point a_i to the set S; we then associate this point with S (or the point a_k , as above). Case II, there is none; then take the point c_i as above, and associate $a_1(c_i)$ with S. At any time we employ Case II, we immediately associate also the

points $a_2(c_i)$, $a_3(c_i)$, \cdots with S, till we have the required m+1 points $Q(a_i)$.

Note that the point we associate with S does not depend on which point a_i of S we started with. Also if Case I has occurred each time in forming the subset S of $Q(a_i)$, then there is no point a_k not in S which lies between two points of S.

- 9. To prove that (8.1) holds take any two points a_i and a_j ; set $r_{ij} = |a_i a_i|$.
- (1) Suppose there are at most a finite number of points of A' between a_i and a_i . If $\delta(Q(a_i)) + \delta(Q(a_i)) > 2mr_{ij}$, then either $\delta(Q(a_i)) > mr_{ij}$ or $\delta(Q(a_i)) > mr_{ij}$, say the former. Then there is a first time when, on adding a point a_k to a set S in forming $Q(a_i)$, the distance from a_k to S is $>r_{ij}$.
- (a) In forming S from a_i , Case I has occurred each time. For if Case II had occurred, say in adding the point $a_1(c_i)$ to the subset S_1 of S, then a_k would be some $a_s(c_i)$; but the distance from a_k to S is then at most the distance from $a_s(c_i)$ to $a_1(c_i)$ which is less than the distance from $a_1(c_i)$ to S_1 which is by hypothesis $\leq r_{ij}$.
- (b) There is no point a_s whose distance from S is $\leq r_{ij}$. For suppose there were; then Case II must occur in adding $a_k = a_1(c_i)$ to S, and c_i is nearer S than any point a_r . (If Case I occurred, a_s or a nearer point, not a_k , would be added to S.) Say c_i lies to the left of S. Let a_p and a_q be the left and right-hand end points of S respectively. As there is a point a_s distant $\leq r_{ij}$ from S, $|a_p-c_i| < r_{ij}$. Suppose a_i is not in S. As there are no limit points between a_i and a_i , a_i lies to the right of S, and hence there is a first point a_r to the right of S. Then as a_i is in S, $|a_r-a_q| \leq r_{ij}$. But as a_q and a_r are among the first m+1 (or μ) points to the right of c_i , and $|a_p-c_i| < |a_r-a_q|$, (8.2) gives $|a_p-a_k| < |a_r-a_q| \leq r_{ij}$, a contradiction; therefore a_i is in S. As a_i is in S and $|a_p-c_i| < r_{ij}$, (8.2) gives $|a_p-a_k| < r_{ij}$, again a contradiction.
 - (c) S contains a_i . For otherwise (b) would be contradicted.
- (d) In forming $Q(a_i)$, the points of S are chosen first. For suppose not. Then after perhaps adding some points of S to a_i , forming the set S', we choose a point a_i not in S. By (b), the distance from a_i to S is $>r_{ij}$. As there is a point in S whose distance from S' is at most r_{ij} , a_i must have been chosen under Case II; then the distance from some point c_i to S' is $< r_{ij}$. But then as c_i is a limit point of points a_i , there is a point a_i whose distance from S is $< r_{ij}$, a contradiction.

Now in forming both $Q(a_i)$ and $Q(a_i)$, the points of S are chosen first. As the remaining points chosen depend only on S, $Q(a_i)$ and $Q(a_i)$ must coincide; hence a_i and a_j lie in the same P-set.

(2) Suppose there is a limit point of isolated points b between a_i and a_j . In forming $Q(a_i)$, the set S at any step is at a distance $\leq |b-a_i|$ from b; hence in adding the next point a_k to S, its distance from S is $\leq |b-a_i|$ if Case I

occurs, and is $<2|b-a_i|$ if Case II occurs, by (8.2). Therefore $\delta(Q(a_i))$ $<2m|b-a_i|$. Similarly $\delta(Q(a_i))<2m|b-a_i|$. Adding,

$$\delta(Q(a_i)) + \delta(Q(a_i)) < 2m(|b - a_i| + |b - a_i|) = 2mr_{ij},$$

completing the proof.

Remark. Given a point a_i , if there exist m points a_{i_1}, \dots, a_{i_m} such that the m intervals between $a_i, a_{i_1}, \dots, a_{i_m}$ are all $\leq \rho$, or if there exists a point a not in $Q(a_i)$ within ρ of a_i , then $\delta(Q(a_i)) < 2m\rho$. This follows from the proof in (2).

THEOREM I, A CLOSED

Each isolated point of A is enclosed in an interval; this gives a perfect set B. The definition of f(x) is extended over B. With the help of Lemma 8 it is shown that $\Delta^m f(x)$ now converges over B. By Lemma 7, f(x) is of class C^m in B; hence the same is true in A.

10. The sets A' and B. Let A_1 be the set of isolated points of the closed set A, let A_2 be the set of limit points of isolated points, and let A_3 be the remaining points of A. Let A' consist of A_1 , together with certain other points as follows. A_1+A_2 being closed, let I be any open interval of $E-(A_1+A_2)$ containing points of A_3 . If an end point a_i of I is in A_1 , then there is, in I, a nearest point $a_1(a_i)$ of A_3 to a_i . We associate this point with a_i , and also points $a_2(a_i)$, \cdots , $a_m(a_i)$ of A_3 in I, chosen so that

$$|a_s(a_i) - a_1(a_i)| < |a_1(a_i) - a_i| \qquad (s = 2, \dots, m).$$

A' is a set of isolated points; we may name them a_1, a_2, \cdots, A' is contained in $A_1 + A_8$.

For each point a_i of A_1 , let $d(a_i)$ be its distance from the rest of A, and let B_i be a closed interval of length $d(a_i)/2$, with a_i as center. Let the perfect set B be A plus all of these intervals. Arrange the points of A' into P-sets and Q-sets so as to obey Lemma 8. For each P-set P_i , let the corresponding P'-set P_i' contain the points of P_i , together with the points of any intervals P_i' there may be which enclose points of P_i .

Given any set S of m+1 points in B, we shall define its complexity $\sigma(S)$ as follows. If all the points of S are in A, set $\sigma(S)=0$. If S contains p>0 points in B-A, and all these points lie in a single P'-set P', let q be the number of remaining points of S which do not lie in the corresponding Q-set Q_i , and set $\sigma(S)=pq$. The complexity of S is in this case certainly $\leq m^2$. If S contains p points in B-A, and these points do not all lie in the same P'-set, set $\sigma(S)=m^2+p-1$. The complexity of any set S is $\leq m^2+m$.

11. The following lemma together with Lemma 7 gives Theorem I.

LEMMA 9. Let f(x) be defined in the closed set A so that $\Delta^m f(x)$ converges in A. Then A can be enclosed in a perfect set B, the definition of f(x) can be extended over B, and $f_m(x)$ can be defined in B, so that $\Delta^m f(x) \rightarrow f_m(x)$ in B.

Define the sets A', B etc. as above. We may assume there are at least m+1 points in A'. Define $f_m(x)$ at each point of A_2+A_3 as in Lemma 1. Take a fixed interval B_i with center a_i ; we define f(x) and $f_m(x)$ over B_i as follows. Let $Q_i = Q(a_i)$ be the corresponding Q-set. Let

$$(11.1) R_i(x) = \gamma_0 + \cdots + \gamma_m x^m$$

be the polynomial of degree at most m such that $R_i(x) = f(x)$ at each point of Q_i ; then $\Delta(Q_i) = m! \gamma_m$, by (2.7). Set

(11.2)
$$f(x) = R_i(x), f_m(x) = m! \gamma_m \text{ in } B_i.$$

The same polynomial $R_i(x)$ is used in defining f(x) and $f_m(x)$ over each interval of the P'-set P'_i corresponding to Q_i ; hence if S is any set of m+1 points such that all of its points in B-A lie in P'_i , and all remaining points lie in Q_i , then $f(x) = R_i(x)$ at each point of S, and therefore, by (2.7), $\Delta(S) = m! \gamma_m = \Delta(Q_i)$.

Each point x of A_3 is at a positive distance from B-A; by the definition of $f_m(x)$, $\Delta^m f(x) \rightarrow f_m(x)$ at such points. Each point x of $B-(A_2+A_3)$ is in an interval B_i ; hence near x, f(x) is a polynomial, and $\Delta^m f(x) \rightarrow f_m(x)$ there also. It remains to show that for each point x of A_2 and every $\epsilon > 0$ there is a $\delta > 0$ such that if S is any set of m+1 points of B within δ of x, then

$$|\Delta(S) - f_m(x)| < \epsilon.$$

By Lemma 1, we can take $\delta' > 0$ so that

(11.4)
$$|\Delta(S_0) - f_m(x)| < \frac{\epsilon}{(8m+8)^{m^2+m}}$$

for any set S_0 of m+1 points of A lying within δ' of x. Set $\delta = \delta'/(4m+2)$. We shall prove the following:

(A) If S is any set in B, of complexity $\sigma(S) = \sigma$, composed of sets of points S_1 in B-A and S_2 in A, and if S_1 lies within δ of x and S_2 lies within δ' of x, then

(11.5)
$$|\Delta(S) - f_m(x)| < \epsilon_{\sigma} = \frac{\epsilon}{(8m+8)^{m^2+m-\sigma}}$$

As $\sigma \leq m^2 + m$, (11.3) follows.

12. We note first that if b_i is in some interval of the P'-set P'_i , and b_i lies within δ of x, then Q_i lies within δ' of x. Say a_i is the center of B_i ; then a_i lies

within 2δ of x, a limit point of points of A'. Hence $\delta(Q(a_i)) < 4m\delta$, by the remark at the end of $\S 9$, and $Q_i = Q(a_i)$ lies within $(4m+2)\delta = \delta'$ of x.

We shall prove (A) first for $\sigma = 0$, then for $\sigma > 0$, using induction. Suppose $\sigma = 0$. If S is in A, the fact follows from (11.4). If S contains points of B - A, then all these points lie in a single P'-set P', and the rest of S lies in the corresponding Q-set Q_i ; hence $\Delta(S) = \Delta(Q_i)$. Q_i lies within δ' of x; hence (11.4) holds with S_0 replaced by Q_i or by S, and therefore (11.5) holds.

Now suppose (11.5) is proved for all sets S' with $\sigma(S') < \sigma$; we shall prove it for any set S with $\sigma(S) = \sigma$. Suppose first $\sigma > m^2$; then the points of S in B-A lie in at least two P'-sets. Let P'_i and P'_i be two of these sets, let b_i and b_i be points of S (in B-A) in P'_i and P'_i respectively, and let a_i and a_i be the centers of the corresponding intervals. Let a_k be a point of $Q(a_i)$ not lying in S. If $S' = S - b_i - b_i$, then, by (2.4),

(12.1)
$$\Delta(S) = \Delta(b_i, b_j, S') = \frac{a_k - b_i}{b_j - b_i} \Delta(b_i, a_k, S') + \frac{b_j - a_k}{b_j - b_i} \Delta(a_k, b_j, S').$$

The sets $S'+b_i+a_k$ and $S'+b_j+a_k$ each contain fewer points of B-A than S; hence their complexities are each $<\sigma$. Also $Q(a_i)$ and therefore a_k lie within δ' of x. Therefore, by induction,

$$(12.2) \quad \left| \Delta(b_i, a_k, S') - f_m(x) \right| < \epsilon_{\sigma-1}, \quad \left| \Delta(a_k, b_j, S') - f_m(x) \right| < \epsilon_{\sigma-1}.$$

As a_i and a_i lie in distinct P-sets, $\delta(Q(a_i)) + \delta(Q(a_i)) \leq 2mr_{ij}$, by (8.1). As $|b_i - a_i| \leq r_{ij}/4$ and $|b_j - a_j| \leq r_{ij}/4$, $|b_j - b_i| \geq r_{ij}/2$. As a_k and a_j lie in $Q(a_i)$ and $Q(a_j)$ respectively, $|a_j - a_k| \leq \delta(Q(a_i)) + \delta(Q(a_j)) + r_{ij} \leq (2m+1)r_{ij}$; hence $|b_j - a_k| < (2m+2)r_{ij}$. Also $|a_k - b_i| \leq \delta(Q(a_i)) + |a_i - b_i| < (2m+2)r_{ij}$; hence

(12.3)
$$\left| \frac{a_k - b_i}{b_i - b_i} \right| < 4m + 4, \quad \left| \frac{b_i - a_k}{b_i - b_i} \right| < 4m + 4.$$

This with (12.2) and (12.1) gives

$$\left| \Delta(S) - f_m(x) \right| < \left| \frac{a_k - b_i}{b_j - b_i} \right| \left| \Delta(b_i, a_k, S') - f_m(x) \right|$$

$$+ \left| \frac{b_j - a_k}{b_j - b_i} \right| \left| \Delta(a_k, b_j, S') - f_m(x) \right|$$

$$< (8m + 8)\epsilon_{\sigma - 1} = \epsilon_{\sigma},$$

as required.

Suppose now $0 < \sigma \le m^2$; then the points of S in B-A lie in a single P'-set P', and there are points of S not in P', Q_i . Let Q_i be a point of Q_i which is not in Q_i which is not in Q_i . If Q_i is Q_i is Q_i which is not in Q_i is Q_i is Q_i in Q_i which is not in Q_i is Q_i in $Q_$

complexity than S. a_k lies within δ' of x, and hence, by induction, (12.2) holds with b_i replaced by a. Let a_i be the center of the interval B_i containing b_i .

Suppose, (1), $a=a_i$ is in A'. Then $|a_i-b_i| > r_{ij}/2$. As a_k is in $Q_i = Q(a_i)$ while a_i is not, $|a_k-b_i| < |a_k-a_i| + r_{ij} < (2m+1)r_{ij}$, by the remark, and $|a_j-a_k| < (2m+1)r_{ij}$. Hence (12.3) holds with b_i replaced by $a_i=a$, and (11.5) follows just as before. Suppose, (2), a is in $A-(A'+A_2)$. From a, move toward a_i to the first point a' in A_1+A_2 . If a' is in A_1 , move back to the first point $a_1(a')$ in A_3 . Then $|a_1(a')-a'| \le |a-a_i|$ and $|a_s(a')-a_1(a')| < |a_1(a')-a'| \le |a-a_i|$ ($s=2, \cdots, m$), by (10.1). Hence $\delta(Q_i) < 2m|a-a_i|$, by the remark, and $|a_k-b_i| < (2m+1)|a-a_i|$, and $|a-a_k| < (2m+1)|a-a_i|$. As $|a-b_i| > |a-a_i|/2$, (12.3) and (11.5) follow, as before. If a' is in A_2 , there are a points of a' nearer a than a and again a0 again a1.5 follows. Suppose finally, (3), a1 is in a2. Again we must have a3 and (11.5) follows. This completes the proof of (A), therefore of Lemma 9, and therefore of Theorem I.

TAYLOR'S FORMULA

13. Conditions under which Taylor's formula is valid. Taylor's formula for f(x) may hold to the *m*th order in certain closed sets even if f(x) is not of class C^m (see §14). We find here a difference quotient condition equivalent to the validity of Taylor's formula, at least for perfect sets.

LEMMA 10. If $f(x) = f_0(x)$ can be expanded in a Taylor's formula to the mth order locally uniformly in terms of $f_0(x)$, \cdots , $f_m(x)$ in the closed set A, then these functions are continuous in A.

It is apparent from (3.1) and (3.2) with s = 0 that $f_0(x)$ is continuous. Take any s, $0 < s \le m$. We shall assume $f_i(x)$ is continuous for $s < j \le m$, if there are such values of j, and shall prove that $f_s(x)$ is continuous.

Let x_0, \dots, x_n be distinct points of A. If we subtract (2.6) with x replaced by x_0 from the same equation with x replaced by x_1 , we find

(13.1)
$$f_{s}(x_{1}) - f_{s}(x_{0}) = s! \sum_{j=s+1}^{m} \left[\frac{f_{j}(x_{0})}{j!} \sum_{i=0}^{s} \alpha^{i} u_{0i}^{j} - \frac{f_{j}(x_{1})}{j!} \sum_{i=0}^{s} \alpha^{i} u_{1i}^{j} \right] + s! \sum_{i=0}^{s} \alpha^{i} \left[R(x_{i}, x_{0}) - R(x_{i}, x_{1}) \right].$$

Given any limit point x_0 of A and any $\epsilon > 0$, take $\delta < \epsilon / \left[2^{s+3} (s+1) m M \right]$ (if s < m) and < 1/2 so small that (3.2) holds with x and ϵ replaced by x_0 and $\epsilon / \left[2^{s+2} (s+1)! \right]$ respectively, where $M = \max |f_i(x')| (|x'-x_0| \le 1, s < j \le m)$. If s > 1, take a point x_s of A within δ of x_0 , and take points x_{s-1}, \dots, x_2 of A so that $r_{0i} < r_{0,i+1}/3 (i=2, \dots, s-1)$. Now take any point x_1 within δ

of x_0 , so that $r_{01} < r_{02}/3$ if s > 1. From (13.1) we see that $|f_s(x_1) - f_s(x_0)| < \epsilon$, as required (see the proof of Lemma 6).

Let x_0, \dots, x_s be an ordered set of points. We say they form an (x_0, ρ) -set $(\rho > 1)$, if

(13.2)
$$r_{0,i-1} < \frac{r_{0i}}{\rho}$$
 $(i = 1, \dots, s).$

THEOREM II. Let $f(x) = f_0(x)$, \cdots , $f_m(x)$ be defined in the closed set A. A necessary condition that a Taylor's expansion for f(x) should hold to the mth order locally uniformly in terms of $f_0(x)$, \cdots , $f_m(x)$ is that for each (or some) $\rho > 1$, each s $(0 \le s \le m)$, each point x of A, and each $\epsilon > 0$, there exist a $\delta > 0$, such that if x_0, \cdots, x_s is any (x_0, ρ) -set of points lying within δ of x, then

$$|\Delta_0...sf - f_s(x)| < \epsilon.$$

By the last lemma, the $f_i(x)$ are continuous. Take M so that $|f_i(x')| < M$ for |x'-x| < 1. Take $\delta < \epsilon(\rho-1)^s/[2(s+1)mM\rho^s]$ and < 1 so that $|f_s(x') - f_s(x)| < \epsilon/2$ ($|x'-x| < \delta$), and so that (3.2) holds with ϵ replaced by $\epsilon(\rho-1)^s/[2(s+1)!\rho^s]$. Now take any (x_0, ρ) -set of points x_0, \dots, x_s lying within δ of x. Then

$$\frac{r_{0i}}{r_{ki}} < \frac{\rho}{\rho - 1}$$

for $k \neq i$. For if k < i, then $r_{0k} \leq r_{0,i-1} < r_{0i}/\rho$, hence $r_{ki} \geq r_{0i} - r_{0k} > r_{0i}(1 - 1/\rho)$, and $r_{0i}/r_{ki} < 1/(1 - 1/\rho) = \rho/(\rho - 1)$; if k > i, then $r_{0k} \geq r_{0,i+1} > \rho r_{0i}$, hence $r_{ki} \geq r_{0k} - r_{0i} > r_{0i}(\rho - 1)$, and $r_{0i}/r_{ki} < 1/(\rho - 1) < \rho/(\rho - 1)$. Replacing x by x_0 in (2.6) gives immediately $|\Delta_0 \dots f - f_s(x_0)| < \epsilon/2$; hence $|\Delta_0 \dots f - f_s(x)| < \epsilon$.

THEOREM III. If A is perfect, then the condition in Theorem II is also sufficient.

We shall prove successively for $s=0, \dots, m$ that f(x) can be expanded in a Taylor's formula to the sth order locally uniformly in terms of $f_0(x), \dots, f_s(x)$. Evidently $f_0(x)$ is continuous; hence this is true for s=0. The proof for a general s follows the proof of Lemma 6; we need merely be careful to choose x_{s-1}, \dots, x_1 so that $r_{0,t-1} < r_{0t}/\rho$ $(t=2, \dots, s)$.

14. Taylor's formula and differentiability. We shall say the set A has the property Z_{ρ} at the point $x(\rho > 1)$ if there is an $\eta > 0$ such that corresponding to any two points x_0 and x_1 of A within η of x, points x_2 , \cdots , x_s of A can be found such that

$$(14.1) \qquad \frac{1}{\rho} < \left| \frac{x_i - x_j}{x_1 - x_0} \right| < \rho \qquad (i, j = 0, \dots, s; i \neq j);$$

then $r_{ij}/r_{kl} < \rho^2$ for $i \neq j$, $k \neq l$. This condition is satisfied for instance by Cantor's set. s is any number $\leq m$, m fixed.

THEOREM IV.* Let A be a closed set having the property Z_{ρ} for some $\rho = \rho(x)$ at each point x, and let $f(x) = f_0(x)$, \cdots , $f_m(x)$ be defined in A. A necessary and sufficient condition that f(x) be of class C^m in terms of $f_0(x)$, \cdots , $f_m(x)$ is that Taylor's formula for f(x) should hold to the mth order locally uniformly in terms of $f_0(x)$, \cdots , $f_m(x)$.

In short, in this case, Taylor's formula for $f_0(x)$ implies Taylor's formula for each $f_0(x)$.

The necessity of the condition being trivial, we turn to the sufficiency. By Lemma 10, $f_m(x)$ is continuous. It remains to prove that for any s, 0 < s < m, $f_s(x)$ may be expanded in a Taylor's formula to the (m-s)th order locally uniformly in terms of $f_s(x)$, \cdots , $f_m(x)$. We shall prove this for s, assuming it for numbers s+1, \cdots , m.

Let x_0, \dots, x_s be distinct points of A. Set

$$(14.2) \quad H_{j} = \sum_{i=0}^{s} \alpha^{i} u_{0i}^{j},$$

$$(14.3) \quad H_{j}' = \sum_{i=0}^{s} \alpha^{i} u_{1i}^{j} = \sum_{i=0}^{s} \alpha^{i} (u_{0i} - u_{01})^{j} = \sum_{i=0}^{s} \alpha^{i} \sum_{l} (-1)^{j-l} {j \choose l} u_{0i}^{l} u_{01}^{j-l}$$

$$= \sum_{l} (-1)^{j-l} {j \choose l} H_{l} u_{01}^{j-l},$$

where \sum_{l} means summation over all values of l. We can write (if s < m)

$$\sum_{j=s+1}^{m} \frac{f_{j}(x_{1})}{j!} H'_{j} = \sum_{j=s+1}^{m} \frac{1}{j!} \sum_{k=j}^{m} \frac{f_{k}(x_{0})}{(k-j)!} u_{01}^{k-j} \sum_{l} (-1)^{j-l} {j \choose l} H_{l} u_{01}^{j-l} + R$$

$$= \sum_{k=s+1}^{m} \frac{f_{k}(x_{0})}{k!} \sum_{l} u_{01}^{k-l} H_{l} \sum_{j=s+1}^{k} (-1)^{j-l} {k \choose j} {j \choose l} + R,$$
where

where

$$R = \sum_{j=s+1}^{m} \frac{1}{j!} H'_{j} R_{j}(x_{1}, x_{0}).$$

Now if $k \ge l > s$, then on replacing j by k-j we find

^{*} For the special case that A is a closed interval, see a paper by the author, *Derivatives, difference quotients and Taylor's formula*, Bulletin of the American Mathematical Society, vol. 40 (1934), pp. 89-94; Theorem III.

$$\sum_{j=s+1}^{k} (-1)^{j-l} \binom{k}{j} \binom{j}{l} = \sum_{j} (-1)^{k-j-l} \binom{k}{j} \binom{k-j}{l}$$
$$= (-1)^{k-l} \binom{0}{k-l} = \delta_{kl},^*$$

and if k > l = s,

$$\sum_{j=s+1}^{k} (-1)^{j-l} \binom{k}{j} \binom{j}{l} = \delta_{ks} - (-1)^{s-s} \binom{k}{s} \binom{s}{s} = -\binom{k}{s}.$$

Therefore, as $H_l = 0$ (l < s) and $H_s = 1$,

$$(14.4) \qquad \sum_{j=s+1}^{m} \frac{f_{j}(x_{1})}{j!} H'_{j} = \sum_{k=s+1}^{m} \frac{f_{k}(x_{0})}{k!} \left[-\binom{k}{s} u_{01}^{k-s} + H_{k} \right] + R.$$

Putting this in (13.1) gives

(14.5)
$$f_{s}(x_{1}) = \sum_{k=s}^{m} \frac{f_{k}(x_{0})}{(k-s)!} u_{01}^{k-s} - \sum_{j=s+1}^{m} \frac{s!}{j!} \sum_{i=0}^{s} \alpha^{i} u_{1i}^{j} R_{j}(x_{1}, x_{0}) + s! \sum_{i=0}^{s} \alpha^{i} [R(x_{i}, x_{0}) - R(x_{i}, x_{1})].$$

Given a point x of A and an $\epsilon > 0$, take ρ and η corresponding to x, and take $\delta' < \eta$ so that (3.2) holds with δ and ϵ replaced by δ' and $\epsilon / [3m(s+1)! \rho^{2m}]$ and with s taking on the values $0, s+1, \dots, m$. Set $\delta = \delta' / (2\rho)$. Now if x_0 and x_1 are points of A within δ of x, we can add points x_2, \dots, x_s of A so that (14.1) holds and these points will lie within δ' of x. Then

$$\left|\frac{\alpha^{i}u_{1i}^{r}}{u_{01}^{m-s}}R_{j}(x_{1}, x_{0})\right| = \frac{r_{1i}^{j}}{r_{0i}\cdots r_{i-1, i}^{r}r_{i+1, i}^{r-s}} \frac{\left|R_{j}(x_{1}, x_{0})\right|}{r_{0i}^{m-j}} < \frac{\epsilon}{3m(s+1)!},$$

and similarly for the other remainder terms. Therefore $|R_s(x_1, x_0)|/r_{01}^{m-s} < \epsilon$, as required.

COROLLARY. If $m \le 2$, Theorem IV holds for all closed sets.

The only value of s we may need in the above proof is s=1; the condition Z_{ρ} is satisfied trivially if s=1.

Example. Theorem IV does not hold for all closed sets, as we now show, using m=3. Set $a_i=1/2^i$, $b_i=1/2^{2i}$, $c_i=1/2^{3i}$; $b_i'=a_i+b_i$, $c_i'=a_i+c_i$, $d_i=a_i+b_i-c_i(i=1, 2, \cdots)$. Let A be the set of points 0, a_i , c_i' , d_i , b_i' . Set $f_0(0)=f_1(0)=f_2(0)=f_3(0)=0$,

^{*} See Netto, Lehrbuch der Combinatorik, Leipzig, 1927, §158, (27).

DIFFERENTIABLE FUNCTIONS
$$f_0(a_i) = 0, f_0(c_i') = 0, f_0(d_i) = 0, f_0(b_i') = b_i^2 c_i,$$

$$f_1(a_i) = 0, f_1(c_i') = 0, f_1(d_i) = b_i^2 - b_i c_i, f_1(b_i') = b_i^2 + b_i c_i,$$

$$f_2(a_i) = 0, f_2(c_i') = 0, f_2(d_i) = 2b_i, f_2(b_i') = 2b_i,$$

$$f_3(a_i) = 0, f_3(c_i') = 0, f_3(d_i) = 0, f_3(b_i') = 0.$$

As $\Delta(0, a_i, c_i', d_i) = 0$, while $\Delta(a_i, c_i', d_i, b_i') = 3! b_i^2 c_i / [b_i(b_i - c_i)c_i] \rightarrow 6$ as $i \rightarrow \infty$, $\Delta^3 f_0(x)$ does not converge at x = 0, and hence $f_0(x)$ is not of class C^3 , by Theorem I. However, Taylor's formula holds for $f_0(x)$ to the third order locally uniformly. For a calculation shows that R(x, y) = 0 whenever x and y are chosen from the points a_i, c_i', d_i, b_i' , except that $R(b_i', a_i) = R(b_i', c_i') = b_i^2 c_i$, $R(c_i', d_i) = R(c_i', b_i') = b_i c_i (b_i - 2c_i)$; hence if x and y are chosen in any manner from the points a_i , c_i' , d_i , b_i' , $R(y, x)/(y-x)^3 \rightarrow 0$ as $i \rightarrow \infty$. Suppose now x_i and y_i are chosen from a_i , c_i' , d_i , b_i' , and from a_i , c_i' , d_i , b_i' respectively, $j \neq i$ (or $x_i = 0$ or $y_i = 0$). If k is the larger of the numbers i, j, then

$$|R(y_i, x_i)| < 2b_k^2 c_k + (b_k^2 + b_k c_k)(a_k + b_k) + b_k (a_k + b_k)^2,$$

and as $|y_i - x_i|^3 \ge a_k^3/8$, $R(y_i, x_i)/(y_i - x_i)^3 \to 0$ as $i, j \to \infty$ $(j \ne i)$. Hence for some $\delta > 0$, if x and y are any two points of A within δ of 0, $|R(y,x)/(y-x)^3|$ $<\epsilon$. This is true also at each isolated point of A; hence Taylor's formula is valid.

Note that we may increase A to a perfect set by adding the intervals between a_i and c_i' and between d_i and b_i' , and giving the obvious definitions of $f_0(x), \dots, f_3(x)$ there. In this example, Taylor's formula holds to the required order for neither $f_1(x)$ nor $f_2(x)$.

HARVARD UNIVERSITY. CAMBRIDGE, MASS.