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1. Introduction. The present paper considers the extension of the Riemann

surfacej to the case of several complex variables. The resulting configuration

will be called Riemann multiple-space § (R. M. S.), and the first object is to

give its construction, or definition. It is then shown that the R. M. S. is a

generalized manifold. || The property of being a generalized manifold is shown

to be a topologically invariant property of a complex, and a simple characteri-

zation of a GMn is given. The locus of non-spherical points^f of the R. M.S.

is proved to be a sub-complex of dimension not greater than 2»—4,** where

» is the number of independent variables; an example due to Osgoodtt shows

that it can actually attain that dimensionality.

2. Properties of the generalized manifold. We prove certain properties

which are needed in what follows.

Lemma 1. A generalized n-manifold is a simple n-circuit.%%

* Presented to the Society, October 28, 1933; received by the editors November 28, 1933.

f Some of the results of the present paper were announced in preliminary form in the abstract

bearing the same title presented by B. O. Koopman (at that time National Research Council Fellow)

in the Bulletin of the American Mathematical Society, vol. 33 (1927), p. 406.

J For a treatment of the case of one independent variable, see H. Weyl, Die Idee der Riemann-

schen Fläche, 2d edition, Leipzig, 1923.

§ Terms often used are Riemann hypersurface or Riemann space; but it seems undesirable to

use these, inasmuch as their use in the present connection involves a contradiction with other stand-

ard mathematical usage.

|| O. Veblen, Analysis Situs, chapter III, pp. 95-96 in second edition; Colloquium Series, vol. 5,

part 2, New York, 1931. A generalized manifold of n dimensions (GMn) is denned as the set of points

on an n-circuit such that the cells of higher dimensions incident with any given ¿-cell have the inci-

dence relations of a GAfn-i-i. The only GM<¡ is a pair of 0-cells.

Terminology will be as defined in Veblen, or as in Lefschetz's Topology, Colloquium Series, vol.

12, New York, 1930. (Lefschetz I.)
An «-circuit is an »-complex which (1) is the closure of its »-cells; (2) has an even number of

»-cells incident with each of its (»— l)-cells; (3) contains no proper sub-complex satisfying (1) and (2).

f A point of a ¿-complex will be called a spherical point if it has a neighborhood on the complex

which is homeomorphic to a ¿-cell.

** Note that this result does not of itself imply that theR. M. S. is a generalized manifold, nor

does the latter imply the former.

tt W. F. Osgood, Lehrbuch der Funktionentheorie, vol. 2, first part, chapter 2, §21. (Osgoodll.)

tt A simple »-circuit is an »-circuit each of whose (»— l)-cells is incident with exactly two of its

»-cells.
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This lemma is stated for convenience in reference. It follows from the

facts that the «-manifold is an «-circuit and that a GM0 is a pair of 0-cells.

Lemma 2. A definition of GMn, n>0, equivalent to the original one, is the

following. A GMn is a connected n-complex Kn such that the cells of higher dimen-

sions incident with any given i-cell have the incidence relations of a Gtf,_¡-i.

Using induction, we assume the lemma proved for dimensions less than n.

As our proof will require no assumption for the case n = l, it remains only

to prove the lemma for general n under the assumption of the induction.

The new definition differs from the original one only in the replacement

of "«-circuit" by "connected «-complex." As any «-circuit is connected, we

need merely show that under the new definition a GMn is an «-circuit. As

the cells of higher dimensions incident with any ¿-cell have the incidence

relations of an («—¿ — 1)-complex, it follows that every point of Kn is on

the closure of at least one «-cell. As the incidence relations between the cells

incident with any (« — l)-cell Pn_i are those of a GM0, it follows that PB_i is

incident with just two «-cells. Hence Kn is an «-cycle each of whose (» — 1)-

célls is incident with just two «-cells.

If Kn were not an «-circuit there would be two sub-complexes MB and

Mn2, each an «-cycle, containing all the «-cells of Kn but having no common

«-cells. As Mn is connected, M} and Af„2 would have at least one common

cell, say an ¿-cell P¿. As the lemma is assumed true for dimensions less than w,

the cells E* of higher dimensions, of Kn, incident with P„ would have the

incidence relations of an («—¿ — 1)-circuit c«_<_i. Since tf,1 and M£ are «-

cycles, those of the cells of the set E* belonging to Mn' would have the inci-

dence relations of an (n—i — 1)-cycle «V-i-i, / = 1, 2, which could be consid-

ered as a sub-complex of c„_,_i. But that is impossible, asan (« — ¿ — 1)-circuit

cannot have two sub-complexes each of which is an («—¿ — 1)-cycle, and dis-

tinct. Hence Kn must be an «-circuit, and the proof is complete.

Lemma 3. A complex Kn is a generalized manifold if and only if it is con-

nected, is the closure of its n-cells, and satisfies the following condition: If Ks„ is

the set of spherical points of Kn, Kn is locally connected* by curves which can be

taken in Ks„ whenever their end points are in Kn.

To prove the necessity, let P be any point of K„, and E{ the cell of Kn

on which it lies. Let A be any neighborhood of P on A„, and A' c A the

neighborhood consisting of all the cells of Kn' on whose closures P lies, where

Kn' is the complex obtained by subdividing Kn regularly enough times so

* Local connectedness in the ordinary sense is meant; in the terminology of Lefschetz I

this means local O-connectedness.
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that such an N' exists. Let Px and P2 be any two points in N'. Now we con-

sider Ei and all the cells of higher dimensions that are incident with it. The

latter have the incidence relations of a generalized (n—i — l)-manifold. As this

manifold is, according to Lemma 1, a simple circuit, we can name a sequence

of (»—¿ — 1)- and (n—i — 2) -cells such that the corresponding sequence of

«- and (« — l)-cells of Kn has the following properties: (1) each cell is incident

with the adjacent ones in the sequence; (2) Px is on the first cell or on its

boundary; (3) P2 is on the last cell or on its boundary. The rest of the proof

is obvious.

To prove the sufficiency, suppose the condition satisfied and let i be an

integer such that for every E„ r<i, the incident cells E' of higher dimensions

have the incidence relations of a GMn-r-x- We shall prove that the property

holds also when r = i. Let E¡ be any ¿-cell. The cells E' of higher dimensions

incident with E, have the incidence relations of a complex A„_<_i, since Kn is

the closure of its »-cells. Let Ei+j be any (¿+/)-cell incident with Ei. By

hypothesis, the cells E'+' incident with Ei+]- have the incidence relations of a

GMn-i-j-x- Now in considering An_,_i, Ei+j corresponds to a. (j — l)-cell

e'+'i of A„_,_i. As the incidence relations of the cells of Ei+i are the same

as the incidence relations of the corresponding cells of A„_,_i incident

with e)t.\, it follows that the latter relations are likewise those of a

GMn-i-j-x- Thus e)t!x satisfies the condition imposed on a (j— l)-cell and its

incident cells of higher dimensions on kn-i-x in order that A„_,_i should be a

GMn-i-x- Since a similar statement can be made for any (j+/)-cell incident

with Ei, j>0, it follows from Lemma 2 that each connected part of A„_j_i

is a GMn-i-x*

Now if A„_i_i were not connected, we could let P1 and P2 be points on

«-cells of Kn corresponding to (n—i —I)-cells of two unconnected parts of

kn-i-x, sufficiently near to some point P of Ei to satisfy the condition of

Lemma 3 for some neighborhood N of P containing no points on the boundary

of Ei. Then a curve C would exist joining P1 to P2 on Kn' and in N. Then C

would contain a point Q on £,, as no cell of the group corresponding to the

first part of A„_¿_i could be incident with any cell of the group corresponding

to the second part. Since Q would have an »-cell neighborhood, by the in-

variance of the combinatorial manifoldf it follows that A„_i_i would be a

combinatorial (n—i —I)-sphere. As the latter is-connected, we would then

have a contradiction to the hypothesis that An_,_i is not connected. Conse-

quently it is connected, and therefore a GM„_¿_i.

* Cf. Veblen, loe. cit., pp. 96-97.
t E. R. van Kampen. For references, see Lefschetz I. The linked complex of Ei has the construc-

tion of a regular subdivision of £»_i_i. We have not used linked complexes in the proofs, as they

would have necessitated longer proofs.
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It now follows by induction that for every r-cell Er, r = 0, 1, •••,» — 1,

the incident cells of higher dimensions have the incidence relations of a

GMn-T-i- Since Kn is connected, it follows from Lemma 2 that Kn is a GMn,

and the proof of Lemma 3 is complete.

The following combinatorial characterization of the GMn is an easily

proved consequence of Lemma 3.

Corollary. A necessary and sufficient condition that a complex K be a

GMn is that it have the following properties: firstly, it is connected; secondly,

every cell is an n-cell or on the boundary of an n-cell; thirdly, given any i-cell P.-,

i<n, and any two n-cells P«1 and P„2 incident with Ei, there exists a sequence

of cells of K having the following properties: (1) E„l is the first cell of the sequence

and P„2 is the last; (2) the cells of the sequence are alternately n-cells and (» — 1)-

cells; (3) eacA cell of the sequence is incident with the adjacent cells of the se-

quence; (4) all the cells of the sequence are incident with Ei.

This result might be described more briefly in the following terms. A

generalized n-manifold is a connected n-complex which is locally a simple n-

circuit*

3. The Riemann multiple-space. Let a region R be given in the (2« + 2)-

space of the complex variables w, Zi, ■ ■ ■ , zn, together with a function

P(w, Zi, ■ ■ ■ , Zn) =P(w, z) with the following properties: (1) P is single-valued

and analytic at all points of R; (2) P = 0 for some points in R; (3) if we con-

tinue analytically from a point P at which P = 0, over a path which may go

outside R, and return to the point P, then if the continued function vanishes

at P it must be identical with the original function P(w, z) at P; (4) P is ir-

reducible, that is, it is not a product of two functions each satisfying the pre-

ceding conditions and having the same locus of points when equated to zero.f

Given a point P on the locus P = 0, let P be factored into a product of ir-

reducible analytic factors F*, each vanishing at P. It will be proved below

that no two of the F* can be equivalent at P.J

The Riemann multiple-space for the locus P = 0 in R is defined as the follow-

ing Hausdorjf space. A point P on P = 0 together with one of the irreducible func-

tions F* at P, (P, F*), constitute a point of the space. If F* and F' are equivalent

at P, (P, F*) and (P, F') are the same point of the R. M. S. A neighborhood of

(P, F*) consists of the set of points iQ, F') for which Q is in a neighborhood of P

on P = 0 in iw, z)-space, and F* = F'$ at and near Q, where $> is analytic at Q.

* Because of this fact, it may seem that we could have dispensed with the entire section on the

GMn. However this is not the case, as the results are used in the later proofs.

t In order to treat a function such as w—log z, near a point at which w—log z = 0 we use the

branch which vanishes at the point.

% F1 and F2 are equivalent at P if F1 = F2 £2 at and near P, where ß is analytic and not zero at P.
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From this definition it is evident that the topological properties of the

R. M. S. are independent of any change in coordinates. In order to carry

through our later proofs we make a change of coordinates if necessary, so

that for no (z°) is F(w, z°) zero for all w neighboring any value determining a

point in R. That this can be done follows easily from a theorem of the authors

dealing with a somewhat similar situation in the case of reals.*

Given a point (w°, z°), with F(w°, z°) =0, we apply the Weierstrass Prepa-

ration Theoremf, giving us, near (w°, z°),

(3.1) F(w, z) m II [Fk(w, z) ]Q(w, z).
k

Here fi is analytic and not zero at (w°, z°), the product is finite, and Fk is an

irreducible algebroid polynomial, in general not singular, with vertex at (z°).

Thus Fk has the general form

Fk(w, z) =wN + ^i(z)«^-1 + • • • + M*),

where the i^'s are analytic at (z°), and all the roots of Fk coincide in the value

w° when (z) = (z°).

From the properties of algebroid polynomials:]: it follows that these Fk's

can be taken as those mentioned in the definition of R. M. S. No two of

them are equivalent, since in that case they would be identical and from the

hypotheses on F and R it would follow that F(w, z) would be reducible, con-

trary to hypothesis.

We observe that to each point of the locus F = 0 correspond one or more

(but a finite number of) points of the R. M. S. The points of the R. M. S.

shall at times be considered in association with the corresponding points in

(w, z)-space on the locus F = 0, and at other times, as is ordinarily the case

when » = 1, in association with the corresponding points in (z)-space.

According to Theorem 6.II of KB, if any closed sub-set of R is given, a

complex K2n+2 can be found containing the sub-set, such that the locus F = 0

in .rv2n+2 is a sub-complex of even dimension, with analytic cells. In this case

the dimension is 2», and we denote the sub-complex by K2n. We denote by

K2n-2 the complex of all cells of K2n of dimensions less than 2» — 1.

* On the covering of analytic loci by complexes, these Transactions, vol. 34 (1932), pp. 231-251;

Theorem 5.1. We shall refer to this paper as KB. On p. 233 of this paper the words "In irreducible-C

factorization" should be inserted at the beginning of the last sentence in Theorem 2.V, and also in

Corollary 2.VI. In the last line on p. 233 the words "at the same points as" should be replaced by

"identically if and only if the same is true for."

See also S. Lefschetz and J. H. C. Whitehead, Analytical complexes, these Transactions, vol. 35

(1933), pp. 510-517; §4.
t Osgood II, chapter 2, §2.

Î Osgood II, chapter 2, §§5, 7.
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We shall now state and prove a simple set of rules for determining the

R. M. S., and shall later use these rules in establishing certain properties of

the R. M. S.

Lemma 4. The R. M. S. can be determined from K2n as the locus Lin which

we now describe. We keep all of the 2«- and (2« — l)-cells of K2„. At each point,

say T, of any cell Ep, p<2n — l, we consider all the incident (2w —1)- and 2m-

cells, and using them alone apply the test described in the concluding sentence of

Lemma 3 to the neighborhood of T, finding that the incident 2»- and (2m —1)-

cells are thus grouped into a finite number of sets, for each of which the condition

of Lemma 3 is satisfied. For each of these sets we assign a point to L2n, correspond-

ing to T. Then L2n consists of iK2n—K2n-2) and these new points, with neigh-

borhood on L2n determined as on K2n except at points corresponding to points

on K2n-2, where it is determined in an obvious manner by use of the incident 2m-

and i2n — l)-cells appearing in the tests mentioned above.

In applying this procedure at the boundary of A2B+2, we must consider

K2n enlarged by the addition of part of the locus P = 0 outside of A2n+2.

Before proving the lemma we observe that we shall show later that P2n

is a complex and that, as we should expect from the above lemma, correspond-

ing to each cell of A2b-2 is a finite positive number of cells of 7^„; but corre-

sponding to each cell of K2n—K2n-2 is just one cell of L2n.

We begin by observing that each point of K2n—K2n-2 yields just one point

of the R. M. S.: the locus in (z)-space where values of w coincide is defined

by equating discriminants to zero, hence is at most (2« — 2)-dimensional. If

any point of a 2«-cell or of a (2m —l)-cell projected onto that locus, every

point of the cell would project onto the locus, as all points of a cell have simi-

lar neighborhoods, and the cells project in one-to-one manner onto cells of

the (z)-space. (The cells are obtained from cells in the (z)-space by two suc-

cessive steps of the kind described on page 249 of KB, where at each step

we obtain a cell of the first class.) Since the locus in question in (z)-space is

at most (2m —2)-dimensional, we would then have a contradiction to the in-

variance of dimensionality.* Consequently, at each point of K2n—K2n-2, w

is a single-valued, and hence analytic, function of the z's, and according to

the definition of R. M. S. each such point therefore yields just one point of

the R. M. S.

Now consider the points of the R. M. S. corresponding to a given point

P of A2b_2. For each of the irreducible functions F*, vanishing at P, into

which P factors, we obtain a point on the R. M. S. Let P° be the projection

of P on (z)-space. Analytic continuation in a neighborhood of P°, avoiding

* Brouwer. See Lefschetz I for references.
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points where the discriminant of F vanishes, never leads from one function

F' to a distinct function F>* and furthermore such continuation can be made

a test for distinguishing the functions F\ In so testing, the paths can be made

to avoid the projection, K\^.2, on (z)-space of K2n-2 without affecting the re-

sults, since any path avoiding points where the discriminant of F vanishes

can be deformed into.a path of the kind wanted in such a way that none of the

intermediate positions of the path pass through any point of the part of

K2n-2 for which the discriminant vanishes. This is because (z)-space is 2»-

dimensional. Consequently, for each point of the R. M. S. corresponding to

P the part of the R. M. S. corresponding to (K2n — K2n-2) hangs together near

the point in the way described in Lemma 3, and must therefore be one of the

sets designated in Lemma 4. This proves that the process of Lemma 4 de-

termines all of the points of the R. M. S. corresponding to P, and each on the

boundary of the proper cells of (K2n — K2n-2).

Since each such set of cells of iK2n — K2n-2) must determine one of the

functions F', it follows that no unwanted points are determined by the process

of Lemma 4.

Consequently we have exactly the R. M. S. determined, and the proof

of Lemma 4 is complete.

Lemma 5. The R. M. S. Qocus L2n) is a complex.

We begin with the cells of K2n—K2n-2, which can be taken as part of a

representation of L2n, as we have already seen. Now consider points of L2n

arising from points of K2n-2, in the light of Lemma 4. All points of a given

cell of K2n-2 have similar neighborhoods on K2n—K2n-2, in fact, neighbor-

hoods which are composed of parts of the same cells. From that fact and

Lemma 4 it follows that corresponding 'to each cell of K2n-2 we have a finite

number of cells of points of L2n, each incident with certain of the cells of

higher dimension of K2n — K2n-2. Now L2n is closed, as follows upon considera-

tion of Lemma 4, and of the fact that if a given cell of a complex is incident

with certain cells of higher dimensions, then any cell on its boundary is inci-

dent with these cells of higher dimensions. Consequently L2n is a complex, as

we wished to prove.

Theorem 1. The Riemann multiple-space iL2n) is a set of generalized mani-

folds (mod boundary of K2n+2).

By this we mean that it is a complex consisting of a number of parts each

* Osgood II, chapter 2, §§10,11. We do not find there a general treatment of R. M. S., as the

points for which the discriminant vanishes are not treated.
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of which satisfies the definition of generalized manifold except at the boun-

dary of A2n+2.

According to Lemmas 5, 4 and 3, L2n satisfies the condition for a set of

generalized manifolds, except at the boundary of A2b+2. Consequently Theo-

rem 1 is valid.

4. Non-spherical points. Any point of 7_2n which does not have a neighbor-

hood on the R. M. S. homeomorphic to a 2M-cell shall be called a non-spherical

point. We shall prove that the non-spherical points form a sub-complex of

dimension not greater than 2« — 4.

Theorem 2. The R. M. S. L2n can be formed from K2n Qocus F = 0), by

the process described by Veblen* used in his proof that every n-circuit is a singu-

lar generalized n-manifold.

With the 2«- and (2w —1) -cells we get the correct result, since each

(2« —l)-cell not on the boundary of A2„+2 is incident with just two 2«-cells.

Now we use induction, supposing that we have got the correct result with

all cells down to those of dimension p + 1, and next consider those of dimen-

sion p. Under each of the two methods, that given by Veblen and that given

in Lemma 4 (under the test of Lemma 3), we replace a given /»-cell Ep of

Kin-2 by a finite number of /»-cells, each incident with certain groups of cells

of higher dimensions. In the first case, we have one /»-cell for each group of

incident cells of higher dimensions which remain connected near Ep when Ep

is removed, and in the second case we have a similar test, but consider only

the incident cells of dimensions 2« and 2« — 1. But from the corollary to

Lemma 3 we see that, since we know that we have a generalized manifold

insofar as cells of dimensions greater than p are tested, we obtain the same

result by each of the two methods. Consequently Theorem 2 is valid.

Theorem 3. J"Ae non-spherical points of the R. M. S. iL2n) form a sub-

complex of dimension at most 2m —4.

As the set of spherical points is evidently an open set on L2n, the set of

non-spherical points must be closed. As it must consist of a certain number of

cells, it is therefore a complex. It remains to prove that this complex is of

dimension at most 2w—4.

It is shown in KBf that near any point P on the locus F = 0, above a point

where the discriminant is zero, but where the discriminant of the discriminant

is not zero (upon second application of the Weierstrass Preparation Theo-

rem), the locus of similarly described points near P is obtained by equating

* Loc. cit.

t §4, pp. 236-242.
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w and z„ each to an analytic function of (zi, • • • , zn_i). We denote by /2n-2 a

(2w —2)-cell neighborhood of P consisting of such similar points. Let /2n-2

denote the projection on (z)-space of /2n-2, with equation z„ = \p(zx, ■ ■ ■, z„_i).

We now cover a neighborhood of the points of Jl„-2 in (z) -space by a set of

analytic cells of dimensions 2» —1 and 2», as follows. Let E2n-2 be a flat cell,

part of the locus yn = 0 in the 2w-space of the complex variables (yi, • • • , y„).

Cover a neighborhood of E2n-2 in (y)-space by E2n-2 and a set of flat (2» — 1)-

cells and 2«-cells, each incident with E2n-2, alternating in order, arranged in

cyclic order. Next make the transformation (with non-vanishing Jacobian)

yi = Zi, i = l, • • ■ , n — l, and yn = z„ —u/(zx, • • • , zn-i). This transformation

gives us the set of cells covering a neighborhood of J2n-2, that we wanted.

Above any of the 2ra- or (2w —l)-cells of this neighborhood, near J2n-2, w

equals a finite number of distinct-valued analytic functions of (z) = (zly • • ■ ,

zn), since these cells contain no points for which the discriminant vanishes.

Corresponding to a circuit of the 2»- and (2» —l)-cells incident with E2n-2

in (y)-space we will now have a circuit around /2„_2 (we can consider a curve

going around it), and if we go around enough times (a finite number) we must

come back to the original value of w, hence back to the original point of the

R. M. S. at which we started the curve. Hence the point P has a neighborhood

on L2n consisting of /2»-2 and a set of incident 2»- and (2» — l)-cells (not cells

of L2n) arranged in cyclic order, and alternating. Of course, P might be on a

(2n — 3)-cell of L2n, or even on one of lower dimension, but that does not affect

our work. Consequently P is a spherical point.

Therefore the non-spherical points of L2n must project onto points of (z)-

space for which the discriminant of the discriminant is zero. The locus of such

points is at most (2»—4)-dimensional, and hence the locus of non-spherical

points cannot contain any cell of dimension higher than 2»—4. For such a

cell would project onto (z) -space in a cell of the same dimension S: 2« —3,

which would contradict the result just obtained. Thus the proof is complete.

Columbia University,

New York, N. Y.


