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The theory of probability has made much progress recently in the direc-

tion of completely mathematical formulations of its methods and results. J

The purpose of this paper is to make a further contribution in this direction.

In order to analyze the results of repeated trials of an experiment, a certain

space of infinitely many dimensions is the proper tool. This space is discussed

in the first section of the paper. In the second section, the results of the first

are applied to obtain for the first time a complete proof of the validity of the

method of maximum likelihood of R. A. Fisher, which is used in statistics

to estimate the true probability distribution when the results of a repeated

experiment are known.

1. The space fi(P)

It will be seen that the space fl(P) described below provides the natural

basis for the analysis of experiments with repeated trials. The preliminary

facts, which are not new, will be stated in the form of 3 theorem.

Theorem 1. Let Fix) be a monotone non-decreasing function, defined for

— oo <x < oo, and satisfying

(1) F(x - 0) =F(x),    limF(x) = 1,     lim F(x) = 0.
X—»oo X—.— oo

There is a a-field% of point sets on the x-axis, including all Borel measurable sets,

and a completely additive non-negative set function Pf(A) defined on this cr-field,

such that if I is any interval a¿x<b, Pf(I) =F(b) —F(a).\\

* Presented to the Society, March 31, 1934; received by the editors April 11, 1934.

f National Research Fellow.

X Cf. the treatment of A. Kolmogoroff, Ergebnisse der Mathematik, vol. 2, No. 3:Grundbegriße

der Wahrscheinlichkeitsrechnung.

§ A field is a collection of point sets with the property that if A and B are sets in the collection,

A +B, A —A B,AB are also. A field is a <r-field if whenever A\, A2, • ■ • is a sequence of sets in the

field, X i-iAj is also in the field. It will then follow thatIJ"_i^i is in the field. A set function p(A)

defined on the sets of a <r-field is completely additive if when A\, A¡, • • • is a sequence of disjunct sets

in the field, p (2~L°°>-iAi)=El-i p(.Aj).
|[ The sets in the field of definition of pp will be called measurable with respect to F(x). If A is

measurable with respect to F(x), pp(A) is the variation of F(x) over A. The definitions of functions

measurable with respect to F{x) and of their integration are formulated in the usual way, giving the

Lebesgue-Stieltjes integral.
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Let fl(P) be the space whose points are the sequences ( • • • , x-¡, x0, Xx, • • ■ ),

where x¡ is any real number. There is a a-field of point sets of Q(F), including all

sets determined by conditions of the form

(2) x,*Ej (j = 0, ± 1, • • • ),

where the point sets Ex, E2, • ■ ■ are measurable with respect to F(x) and a com-

pletely additive non-negative set function Pf(A) defined on this field, such that if A.

is of the type (2),

(3) PfÍA)=UPfÍEj).

The sets in the field of definition of Pf will be called measurable with re-

spect to Fix); the measurability (with respect to Fix)) and integration of

functions defined on íí(P) are then defined in the usual way. This space was

first discussed by Daniell.*

It should be noted that if c6(co) is a measurable function on 0(F), and if

c6(co) dépends only on Xx\ c6(co) =fixi), fix) is measurable with respect to Fix),

and

(4) f     <Kco)dco=  f°fix)dFix)
J a(F) J -oo

where the existence of either integral implies that of the other.

This space Q(F) is introduced as a tool in the rigorous analysis of certain

ideas in the theory of probability. Let F(x) determine a probability distribu-

tion, i.e. we suppose that there is a chance variable * such that the probability

that x<x is F(x). Then (1) is satisfied. If a single trial is made, pr(A) is the

probability that the value of x obtained will be in the set A. If a finite suc-

cession of trials is made, obtaining values &»••"> £», and if A is a point set of

ß(P) on which Pp is defined, P/?(A) is the probability that there is a point

co: ( ■ • • ,Xo, • • ■ ) in A such that #, = £„/ = l, •••,». The usual interpreta-

tion if A is a set of the form (2) is obvious. The advantage of this point of

viewf is that the set-up is independent of the number of trials. Chance varia-

* Annals of Mathematics, (2), vol. 20 (1919), pp. 281-288. Daniell actually only considered the

space whose points are sequences of the form (xi, x2, ■ ■ ■ ), but the treatment of Q(F) could be carried

through in the same way. These considerations concerning the space Q(F) can be considered as a

particular case of a general treatment given by Kolmogoroff, loc. cit., pp. 24-30.

t A similar point of view was taken by A. Khintchine, Zeitschrift für angewandte Mathematik

und Mechanik, vol. 13 (1933), pp. 101-103, who treated the case of a chance variable which only

takes on the values 1 or 0 (making less restrictions on PfW however). This space was used for the

same purpose by E. Hopf, Journal of Mathematics and Physics of the Massachusetts Institute of

Technology, vol. 13 (1934), pp. 51-102. The place of these methods in the theory of stochastic proc-

esses was discussed by the writer in the Proceedings of the National Academy of Sciences, vol. 20

(1934), pp. 376-379.
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bles become measurable functions on fi(P), and their integrals on ß(P) are

their expectations. The law of large numbers will be seen to correspond to the

ergodic theorem of Birkhoff.* The convergence of a sequence of chance varia-

bles in probabilityf is simply convergence in measure on Q(P)4

Theorem 2. The transformation T of Q(P) into itself,

T: xj = xi+i (/ = 0, + 1, ■ • ■ ),

is a one-to-one measure-preserving transformation. If A is a measurable set in-

variant under T, Pf(A) =0, or Pp(A) = 1.§ If faoi) is any measurable function

on ß(P) such that f0(F) \faco) \2du exists and such that faTos) = eixe/>(co) for some

real number X,

faw) =   I      faw)d(a
J 0(F)

almost everywhere on ß(P).

The second part of the theorem includes the first part if X=0, and if fact)

is considered as the characteristic function of a point set, so only the second

part of the theorem need be considered. The proof will be given in several

steps.

(i) Let Fix) be 0 for a;<0, xíor 0¿x¿l and 1 for x>l, and let pFiA)

and Pf(A) for this Fix) be denoted by PoiA), Po(A), respectively. Let fi0 be

the subset of ß(P) consisting of the points ( • • •, x~i, x<¡, Xi, ■ ■ ■ ) whose co-

ordinates satisfy the inequalities 0^ Xj ¿ 1, j = 0, ±1, • • • . It will be shown

that the general set functions PfÍA) and Pf(A) can be derived from poiA)

andP0(A). In fact, let y=Fix) transform the points of the x-axis into points

of the interval 0¿y¿ 1, where if Fix) has a jump at x0, the point Xo will be

made to correspond to the interval P(a;0) ¿y¿Fix+0). Then ppiA) is de-

fined for those and only those sets whose images on the y-axis are Lebesgue

measurable, and for such sets PfÍA) is defined as the Lebesgue measure of the

image of A. In the same way the set A^ on fl(P) measurable with respect to

Fix) goes over into a set Av on ö0 on which Po(A) is defined, and Pp(Ax)

* Cf. A. Khintchine, loc. cit., and E. Hopf, loc. cit., p. 95.

t For the definition of convergence in probability, see for instance Kolmogoroff, loc. cit., p. 31.

X Convergence in measure was defined and discussed by F. Riesz, Paris Comptes Rendus, vol.

148 (1909), pp. 1303-1305.

§ If F{x) does not increase, except for equal jumps at x=0, • • • , 9, the set function Pf(A-) has

a simple interpretation as ordinary two-dimensional Lebesgue measure, and this property (metrical

transitivity) was proved by W. Seidel, Proceedings of the National Academy of Sciences, vol. 19

(1933), pp. 453-456. Hopf obtained this result from the second part of the corollary to this theorem

(see below) by a different method.
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= Po(A„). Then it is sufficient to prove Theorem 2 for the space fl0 and the set

function Po(A).

(ii) The set of all complex-valued functions c/>(co) on fl0 whose real and

imaginary parts are measurable on Q0 and such that

L c¡>(ci>) \2dco

exists can be considered as the set of elements of a Hilbert space* § if the

inner product of </>i(co), t62(co) is defined in the usual way as

Xcf>x(cu)4>2(ci})dcc. ]

It is easily seen that the set of functions of the form

exp < 2iri ^njXjico) >

where x,(to) is the value of x¡ for the point co :( ■ • •, x-x, x0, Xx, • ■ •) and where

»,, n are arbitrary integers, form a complete orthonormal set of functions in

&.% If these functions, arranged in some order, are tf>o(«), <£i(«), ' ' " where

tpo(u>) = 1, to every function c6(co) in § corresponds a series 2Zf-oa,<£,(co), where

the coefficient a¡ is determined by

(5) a,- =   I   <t>ico)<j>jico)dco,
Ja

such that

XOO
\<bico)\2dco = £|a,-|2.

•lo Í-0

(iii) Now suppose that c6(Pco) = eiXc6(co). Then if b0, b\, • • • are the coeffi-

cients corresponding to <t>(Tcc),

(7) bj = e*aj,

and, from the simple form of the transformation T, iij>0,

(8) Oj = Ku) = eixaTU)

* For a general reference to Hilbert space see, for instance, M. H. Stone, Linear Transformations

in Eilbert Space, American Mathematical Society Colloquium Publications, vol. 15 (especially chapter

I). The properties of 17o which are needed here (separability, etc., if distance is properly defined),

are given by Daniell, loc. cit., p. 281. Using these properties the proof that the functions {<£(w)} form

a Hilbert space follows the lines of a similar theorem in Stone, pp. 23-29.

t If £ is a complex number, f will denote its conjugate.

X This concept is discussed by Stone, loc. cit., pp. 7-14, where the facts stated below are proved.
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where r(j) ?¿j. Repeating this we find a sequence of coefficients am„ am„ • ■ ■ ,

where mi=j, »i,=t(w,-_i) if j>l, whose absolute values are all equal. Evi-

dently mi¿¿m¡ if iy&j. This contradicts (6) unless cx, = 0. Then a, = 0 if />0,

and e6(eo) =a0, as was to be proved.*

Corollary, (i) Iffaw) is any integrable function on ß(P),

(9)
1    " r

lim   — Z*(r'e») =    I      fau)d(,
n-»oo      n  ,=i J Q(F)

almost everywhere on fi(P).

(ii) If faico), faiui) are measurable functions the squares of whose absolute

values are integrable on A(P),

(10) lim    I        faiTnw)fai<¿>)do} = < faiw)dw i <   I       02(co)e/col.
n-.» J¡¡(f)                                    v. JB(p) ;   \Ja(F) j

(i) This part of the corollary is simply the ergodic theorem in this case.f

(ii) This part of the corollary corresponds to the extension of the ergodic

theorem given by E. Hopf, B. 0. Koopman and J. von Neumann, to the par-

ticular case where there are no "angle variables." Î It is obvious when </>i(co)

and faiu) each depend only on a finite number of the coordinates of a:

i ■ ■ ■, Xo, ■ ■ ■ ) since in that case the terms in (10) are equal to the limit pre-

scribed for sufficiently large values of n. Since any measurable function can

be approximated by functions depending only on a finite number of coordi-

nates^ the general theorem can be reduced to this case.

The following lemma is needed for the proof of the next theorem.

Lemma. Let Fix) be defined as in Theorem 1. Define measure on the x-axis

by the set function pF. Let fix) be a function defined for almost all values of x and

measurable iwith respect to Fix)). Then if

(11) lim sup | fixn) \/n < oo
n—c»

on a set of points eo :(•■-, xa, ■ ■ •) of Q(P) of positive measure, f_xfix) ¿P(x)

exists ias a Stieltjes-Lebesgue integral). \\

* Stone, loc. cit., p. 10.

t For a simple proof of the ergodic theorem, following the lines of the first proof, given by

Birkhoff, cf. A. Khintchine, Mathematische Annalen, vol. 107 (1933), pp. 485^188. In this proof
the function <f>(x, r) corresponds to the functionX^í-i^ÍT'w) used here.

Î E. Hopf, Proceedings of the National Academy of Sciences, vol. 18 (1932), pp. 204-209; B. O.

Koopman and J. von Neumann, ibid., pp. 255-263. In these treatments a continuous set of trans-

formations is considered, instead of the set of iterates of a single transformation as here, but the

treatment needs no essential change to make it applicable to this case.

§ Cf. Daniell, loc. cit., p. 283.

|| The Stieltjes-Lebesgue integral is defined in the same was as the ordinary Lebesgue integral

except that ^F-measure is used instead of ordinary Lebesgue measure.
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By hypothesis there is a positive number M such that

(12) lim sup g M
n-*oo n

on a set of points A of ß(P), Pf (A) >0. Let AN be the point set on ñ(P) at

which

L.U.B. l&±\ > MS
«ëjv      (    n    )

Then AN 3 Ajv+i and

lim PfÍAn) = 1 - P,(A) < 1.
AT-.»

Let £„ be the set of values of x at which fix) > nM. Then a point co : ( • • • ,x0,

■ • • ) belongs to the complement of A# if and only if xn is in the complement

of En for n^N. Then the complement of A.N is of the form (2), so from (3),

oo

(13) P,(Aw) = 1 - I[l-M£n)].
n-JV

Since Y\mN^XPfÍA-n) < 1, the infinite product is convergent. Then ^n^oppiEn)

must be convergent, f and it is easily shown from the definition of the

Lebesgue-Stieltjes integral that this implies that f(x) is integrable (with re-

spect to F(x)) over the set EQ. Substituting —f(x) for f(x), the proof shows

tha.tf(x) is also integrable (with respect to F(x)) over the set where it is nega-

tive. Then f"00f(x)dF(x) exists, as was to be proved.

The following theorem wUl be put in the phraseology of the theory of

probability. Like the lemma, it is simply a theorem on integration on 0(F).

Theorem 3. Let xl} x2, ■ ■ ■  be a sequence of independent chance variables

with the same distributions.

(i) // the expectation E of x¡ exists, then

1    "
(14) lim   — 2>, = E

n—">     n   ,'=i

with probability 1.

(ii) // there is a sequence of real numbers ex, c2, • ■ ■ such that the proba-

bility is positive that

* Throughout this paper, if ax, a¡, • • • is a sequence of real numbers, L.U.B. {an\ will denote

its least upper bound.

f W. F. Osgood, Lehrbuch der Funktionentheorie, vol. 1, 4th edition, p. 528.
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(15) lim sup
1 V

n  ,_i
< »,

it follows that the expectation of x¿ exists, and we have Case (i) again*

Let Fix) be the probability that x,<x. If the expectation of *, exists,

it is, by (4),

/Xjioi)dtj3 =   I     xdFix)
0(F) »2-00

where eo is the point ( • • • , Xq, • • • ).

(i) The first part of the theorem is simply the Corollary of Theorem 2 ap-

plied to the function faoi) =a;0(eo).

(ii) We can suppose in (ii) that there is a point set A on fí(P) of positive

Pp-measure, a positive number M and an integer A such that

(16)

1    n

— Z^fa)   —  Cn
n  ,_i

< M

on A if n 2: A. On replacing n by n — 1 and multiplying by (w — i)/n,

n - 1
(17)

I    n-l

— Z*»(w)
n ,-=.1

Cn-l < M

on A if w2: A+l. Subtracting (17) from (16),

(18) XnM,(»)      / n-l       \|

» \ n /1
2Af

on A if «2; A+l. By (1), a;n(eo)/w approaches 0 in measure as n becomes in-

finite. Then there is an integer Ai2:A+l such that on a subset A„ of A of

positive Pp-measure

| xniii))/n\ < M if n 2; Ni.
Hence

(19) \cn - Cn-i(n- l)/f»| < 3M.

From (18) and (19),

|*B(w)/»| <5Af

on A. The lemma can now be applied, and it shows that J-axdFix) exists as a

Stieltjes-Lebesgue integral. This integral is the expectation of the chance vari-

able Xi.

* A. Kolmogoroff, Ergebnisse der Mathematik, vol. 2, No. 3: Grundbegriffe der Wahrscheinlich-

keitsrechnung, p. 59, announced the first part of this theorem, and also the second part, under the

assumption that the probability is 1 that the upper limit in (15) is 0.
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The following theorem will be needed in the application of the results of

this section. Its proof is simple and will be omitted.

Theorem 4. // F(x) is defined as in Theorem 1, and if F(x) has an in-

tegrable derivative f(x) :

F(x) =  fXf(x)dx,
J -00

there is a point set A(P) on fl(F), Pf [A(P) ] = 1, with the following property. If

g(x) is any function defined and continuous almost everywhere (in the sense of

pF-measure) on the infinite interval — oo <x< oo, and such that fj°„g(x)f(x)dx

exists, then

In /» oo

lim   — ^g(xi) =  1    g(x)f(x)dx
»-»»    n   ,_i J _a0

at every point co:( • • • , x0, ■ ■ ■ ) of A(F).*

2. The method of maximum likelihood

For each value of p in some point set E let f(x, p) be a probability density

over the interval — oo <x<<x>.] Assume that the chance variable * has a

probability distribution whose density is f(x, p) for some (unknown) value of

p in E. Then an important problem in statistics is that of estimating the

true value of p by means of large samples of values of x, obtained inde-

pendently. This is done by the method of maximum likelihood of R. A.

Fisher%, which has supplanted the use of Bayes' theorem. If x\, ■ ■ ■ , xn is a

sample of values of x, and if f(x, p) is the probability density of the distribu-

tion of values of x, the probability of obtaining a sample of values xí, ■ • •, xi

where */ is in a small interval with midpoint x¡, is, in the limit, proportional

to II"-i/(* j, p) ■ The method of maximum likelihood takes as an approximation

to po, the true value of p, the value pn of p (or one of them if there are sev-

eral) which makes this product a maximum. If pn approaches po in probabil-

ity as the samples become larger, pn is called a consistent estimate of p. A

* The theorem will be needed as here stated. It can be stated in terms of Riemann-Stieltjes

integration, making unnecessary any restrictions on F{x).

t This means that/(«, />)ä0, that/(x, p) is defined for almost all values of x, is measurable and

integrable over the *-axis, and that f_J(x)dx= 1. It is supposed that there is a chance variable x(p)

whose values are distributed in such a way that the probability of x{p) being in any measurable point

set A isfAf(x)dx.
X Philosophical Transactions of the Royal Society of London, (A), vol. 222, pp. 309-368, espe-

cially pp. 309-330. The proofs given by Fisher and by H. Hotelling, these Transactions, vol. 32

(1930), pp. 847-859, of the validity of the method of maximum likelihood (in the sense that theorems

similar to the ones to be proved in this section hold) are not rigorous.
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rigorous proof will be given in this section that, under certain hypotheses,

the method of maximum likelihood furnishes consistent estimates.

Theorem 5. For each value of p in a point set E let fix, p) be a probability

density on the infinite interval — oo <x< co. Let x be a chance variable whose

distribution is determined by the probability density fix), and suppose that for

each set of numbers Xi, • ■ ■ , x„, n = 1, 2, • • ■ , it is possible to find a value of

p in E: p = p„ixi, ■ ■ ■ ,xn) such that

(20) Ílf(Xi,Pn)^Í\f(x,).
1=1 Í-1

Then if

H*) =  f 'f(x)dx,
J _oo

there is a set of points A of ñ(P) of total probability 1 : Pf(A) = 1, with the follow-

ing properties. Let eo:( • • •, x0, • • •,) be a point of A and let [p^ixi, ■ ■ -, #<,„)}

be any subsequence of {pnixi, ■ ■ • , xn)} for a;, = a;,(co),/ = l, 2, • • • . Set

(21) /,(*) = L.U.B.   {fix.paj}.

Suppose that fnix)/fix) is continuous, except possibly for a set of values of x

of zero probability*, and that

M*)'
/(a

exists. It follows

(i) that the integral

[lim sup fix,  Pa,)

fix)

exists and is not negative;

(ii) that if lim supB„M/(a;, pan) is integrable, and if

(24) I     lim sup/(a;, paJdx ¿ 1,

then lim sup n~«f(x> ?J =/(*) except possibly on a set of zero probability;

(iii) that if the sequence [f(x, pa„)} converges (except possibly on a set of 0

probability), the limit function is f(x) (except possibly on a set of 0 probability).

* This means that the integral of fix) over the exceptional set is 0, i.e., that f(x)=0 almost every-

where (in the sense of Lebesgue measure) on the set. In the following integrals, in which ratios with

f(x) in the denominator appear, we define the ratios as 1 v/henf(x) =0.

t If £à0, log+ £ is defined as log £ when |> 1, and 0 otherwise.

<22) I/'Mlf]^

dx
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In the application to statistical problems, it is part (iii) which would be

customarily used. Thus, consider the problem of estimating the mean of a

normal distribution, where the density is

(25) fix, p) =-c-(-p)2/2
(2„.)i/2

the true value of p being p0. In this case if p^ approaches any finite value,

it is seen at once that (22) exists. Since f(x, p) is continuous in p, (iii) shows

that/(^, pan) approaches/(#, po), so that pan converges to p0, the true value.

On the other hand, suppose that />„„ converges to either + oo or — oo. Then

the integral (22) exists. By (iii), f(x, Pan), which converges to 0 (since

|/>0n|—>oo), approaches f(x, po). This is impossible, so lim„_M2>n = /><>, with

probability 1. It is usual to take for the approximation pn the average

(l/«)Z/-i*/-
It is evident that if A0 is the set of points co :(•■•, xo, • • • ) of fi(P) such

that at least one coordinate Xj is in the set of values of x at which f(x) =0,

Pf(A0) =0. It will be shown that the set A of this theorem can be taken as

the set A(P)—Ao-A(P), where A(P) was described in Theorem 4. Suppose

then that co: ( • • • , xB, • ■ • ) is in this set.

(i) From (20) and (21), if Lt(y) is defined for every positive number t as

log y if y à t, and as log t if y <t,

(»j ± MfÈ] s i ± „ r^i s i f >og y^m 6 „,
an ,_i    Lf(xj)j      a„ ,_i       [_f(xf)J      an 3_i       L    f(x/)   J

if ntN. Now since / log+ (frr/f) is integrable, fLtifin/f) is integrable (over

the entire ¡r-axis). Then letting n become infinite in (26), we have, from Theo-

rem 4,

(27) J>)£' Rw > * °-
As A7 increases, Lt(fN/f) does not increase, and

lim LtifN/J) = Ltif/f),
n—»oo

where

f(x) = lim sup/(z, pa„).
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Then we can go to the limit under the integral sign in (27)*, obtaining

(28) />*'[/«]'*s0-

Let Et be the set of values of x at which fix) ^ /. The integral (28) can be

separated into integrals over Et and its complement, CE,. Doing this, we find

that

(29) 0 á ME») log — g   f    fix)L,[441 dxiit^l.
t       Jcb, L/(*)J

Letting t approach 0, (29) shows that ppiE0) =0 and that furthermore the

integral (23) exists and is not negative,

(ii) From (i),

(30) Os/jWog^].-».

Now by a weU known inequality!, an(i using (24),

(31) j fix) log \j~\ dx = log j f(x)dx g 0.

There is equality in (31) only when/(a;) =fix) for almost all x (in the sense

of pF-mea.su.re), and there is necessarily equality, by (30), so (ii) is proved.

(iii) To prove (iii) it is only necessary to reduce it to (ii), by showing

that, if

fix) = lim/(*, pan),
n—►«

fj°xf(x)dx exists and is not greater than 1. We have

f(x, Pajdx  =   1,
-OO

so by Fatou's lemmaÎ,/(a;) is integrable over — oo <x < oo and fü'sof(x)dx á 1.

* The situation is visualized more readily when the integral is written as

dF{x).r¡m
The integrand is bounded uniformly above by the integrable function L,(Ji/f) and below by log t, so

we can integrate term by term.

t Making the substitution y=F(x), the inequality needed becomes

fl log «(y)áyálog fh(y)dy,
where g(y) =/(*)//(*)•

X P. Fatou, Acta Mathematica, vol. 30 (1906), pp. 375-376.



770 J. L. DOOB [October

The treatment of the principle of maximum likelihood given above was

for continuous distributions. The most general statement of the other ex-

treme is as follows. To each integer «2; 1 is assigned a probability a(w, p) de-

Dending on p which varies on some point set. The intrinsic conditions are

OO

-(», i)=s0,     Ha(n,p) = l.
n-l

For each sample of integers rh • ■ • ,rn there is a value pn of p such that

n n

Ua(r,; Pn) 2: Jla(rjt pa),
j-i i-i

where p0 is the true value of p. The problem is to show (under suitable restric-

tions on a(n, p)), that pn approaches p0 in probability. This problem can be

treated in a similar manner to the one just treated.

The method of maximum likelihood, when analyzed more carefully, yields

further information. Reverting to continuous distributions, suppose that for

each value of p in a neighborhood of p0, fix, p) is the density of a probability

distribution. The function p„ixi, ■ ■ ■ , xn) will be called an »th approxima-

tion of maximum likelihood to pQ if it is defined on ß(P) (where Fix)

=f-xf(x, Pi>)dx) on a set of Pp-measure 1, if

n n

UfiXj,  pn)   è   JlfiXj, p0)
¿=1 J-1

and iílíj-ifixj, p) for fixed x,, ■ ■ ■ ,xn has a relative maximum at P = pn- It is

is no restriction to assume that p0 = 0.

Theorem 6. For each value of p in some neighborhood \p\ ¿ai, ai>0 , of

p = 0, let fix, p) be a probability density in the infinite interval — oo <x< oo .

Let the true distribution of x be determined by the probability density fix, 0).

Suppose

(i) that log fix, p) can be expressed in the form

(32) log f(x, p) = log fix, 0) + paix) + y/3(x) + yix, p),*

where a(a;)/(a;, 0), a(a;)2/(x, 0), ßix)fix, 0) are Lebesgue measurable and integra-

ble over — oo <x < oo and where

* We shall assume in the discussion of this theorem that x does not take on any value at which

f(x, 0) =0. This means leaving out sets of total probability 0 on the *-axis and on Sl(F), where

F(x)=f^J(x,Q)dx.
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d
— y(x, p) = yP(x, p)
dp

exists for \p\ i£a2 ú<h, a2>0, and is continuous at p=0;

(ii) that if

(33) <f>(x)=L.V.B.Oyp(X'P)\\
0<|p|<»,      ( p2 )

then 4>(x)f(x, 0) is integrable over — oo <x < oo *;

(iii) that if 5(x, p) is defined by

(34) f(x, p) = f(x, 0)|l + paix) + ~[ß(x) + a(x)2] + S(x, ¿)j,

1   c°
(35) lim   —I    S(x,p)fix,0)dx = 0.]

»-.0        i>2 J _m

Then

/oo ew oo

aix)2fix, 0)dx +  I    ß(x)f(x, 0)dx = 0.
-00 •'-OO

Suppose that

/»   00

a(x)2fix, 0)dx > 0.-Í
Thenif pnixi, ■ ■ ■ ,xn) is an nth approximation of maximum likelihood to p = 0,

and if pn approaches 0 in probability:

(37) lim Pf( \pn\>*)=Ot
«-»»

for every e>0,

(38) lim PF(an^2pn < X) = lim PF(anll2pn < X) =- j    e~^l2dx,
n->« »-.oo (2tt)1,2J-k

for every constant X, uniformly in X.

* We take this to mean that f_x<t>(x)dF{x) exists so that <t>(x) can be + <x> on a set of zero pF-

measure.

t Since/(a;, p) is integrable over — » <x< °o, it follows from (i) that 5(x, p)f(x, 0) is also.

X Such expressions will be taken to mean the probability that | pn\ >e (i.e. the Pj?-measure of

the set of those points on Q(F) where | pn\ >«), etc. In (37) we use Pp, the outer measure on ß(F),

instead of Pf, since we have not assumed that pn(xi, •••,*») is measurable with respect to F(x).

Similarly, Pf will denote the inner measure on ii(F).
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The theorem states simply that, under suitable restrictions on the charac-

ter of fix, p) in p, p„ will be normal for large n, with variance l/(cr2«).*

Since

(39) f "/(*, p)dx = 1
J -00

for all p in the neighborhood considered,

b2 r M
pf   aix)fix,0)dx + ^J   [ßix)+aix)2]fix,0)dx

/•OO

+   I    Six, p)fix, 0)dx = 0.
•'-oo

Dividing through by p and letting p approach 0, we find that, in view of (35),

/OO

a(x)fix, 0)dx = 0.
-00

Dividing (40) through by p2 and letting p approach 0, we find in view of (35),

that (36) is true.

The logarithm of the likelihood of a value of p, obtained from « trials, is

defined as

n n

Lnip) = Z log/(*y, P) = Z log /(*/, 0)

(42)

+ pÍLccix,) + Ç ¿X*,-) + ¿7(*,).
i-i 2   ,_i ,=i

Since Lnip) has a relative maximum at pn,

(43) L/iPn)   =   ¿«(*i)   + pnißiXi)   +   ZtP(^Í, Pn)   =   0,
j-i j-i j=i

if we suppose that | pn\ <Oi.

(A) If pn = 0, Zj"-!«^;) =0 also, excluding possibly a set of zero probabil-

ity on ß(P). For if pn=0, (43) becomes Zí-i«^) =0 (if a set 0I zero proba-

bility on ß(P) is ignored), since the hypotheses of the theorem imply that

yPix, 0) = 0 on a set of pF-m.ea.sme 1 on the «-axis.

(B) Let m be defined by

/00

fax)fix, 0)dx.
-00

* R. A. Fisher, loc. cit., p. 359.
H. Hotelling, loc. cit., pp. 856-858. Through an oversight, this theorem is stated, on p. 850,

with the variance of pn as a2n.
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Then

i(45) PF\ lim — ¿<t>(xj) = m\ = 1
\. »-»«o n ]=x j

by the Corollary to Theorem 2, or by Theorem 3, so that

(46) Urn PF l^- ¿>(*i)  fc «1 -» 0
n-»oo v      n       ,-_i. )

for any €>0.*

(C) Pf\ Um   ^~ ¿0(*,) = l) = 1,
v »-»oo   an ,_i /

by the Corollary to Theorem 2 or by Theorem 3.

Now from (43), ii 0<\p„\ èa2 and if the denominator does not vanish,

(47) n^apn = — ¿a(*y) + Rn,
an1'2 ,_i

where

1" 11" 1" 1
—772 Z«(*i) \ 1 + -r 5>(*,) + T- 2>p(*í, />„) >

/    x « ^      »-1 *■ c n *-» a w7>" J'-1 '

(48)    Än =-\—:—-;—:- i   " i    n

—— 5js(*j) —:— 12yp(xi, pn)
a'n ,=i a2npn ,_i

We define P„ as 0 if pn=0.

Using (A), (B), (C), we shall show that

lim PF( I Rn | > •) = 0
»-»oo

for every e>0. Since

1     B

-2tp(^/,  in) =S ——■ 2>(*i),
»     ,_i

and since by the Laplace-Liapounoff theorem f

* Equation (45) expresses the fact that a certain sequence {An} of functions on U(F) converges

to m almost everywhere on Ü(F). Then since the sequence {| p„\ } converges in measure to 0 on Q(F),

by hypothesis, the sequence {\pn\ hn\ converges in measure to 0 on fi(F), which fact is expressed

by (46).

f A. Khintchine, Ergebnisse der Mathematik, vol. 2, No. 4 : A symptolische Gesetze der Wahrschein-

lichkeitsrechnung, pp. 1-8.
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(49) lim Pf <— ¿«(«f) = xl = —~ f   «-*,/2¿*,
V »-m.        Icr«1'2 Hl f       (2^)"2 J_M

the numerator of P„ converges in measure to 0 and the denominator to 1

as n becomes infinite. Then P„ converges in measure to 0 on ß(P) as n be-

comes infinite:

(50) lim P {L»1'^.-77 Z «C«/)   è el = 0
n->=° \J cr«1'2  ,=i I ;

for every e>0. Now suppose thatcr»1/2/>n<X on the set P„ on ß(P). Fix e>0

and suppose that the difference in (50) is less than e on the set

Fn: hmPriFn) = l.

Then the points of ß(P) where crnll2pn <X for any constant X are included in

the points of the complement of P„ or in the points common to F„ and the set

on which

— ¿«(*í) < * + «•
cr»1'2  ,_i

The points of ß(P) where anll2pn <X include the points where

1      n

—— Z«(*j) < x - «
cr»1'2  ,=i

which also belong to Pn. These considerations show that (38) is true, since

(49) is uniform in X.

Theorem 6 requires a slight modification if the parameter p is replaced by

several parameters, pa\ • ■ ■ , pM. Theorem 5 evidently needs no essential

change in this case. In Theorem 6 we replace (32) by

log fix, p™,- • ■,#<") = log fix, p)

(32') = log f(x, 0) + Zí(<)«<(*)+ i Z PwP™ßikix) + yix, p),
t-i t.fc-i

ßitix) = ßuix),

where we take the true set of parameters as (0, • • • , 0), and where we sup-

pose that the first partial derivatives of yix, pa), ■ ■ ■ , p(r)) exist in a neigh-

borhood of the origin in the »--dimensional ^>-space, and are continuous at the

origin. Conditions (ii) and (iii) are modified in an obvious way, and (36) be-

comes

/OO /»   00aiix)akix)fix, 0)dx + J    ft»(*)/(*, 0)dx = 0,
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proved as before. If we set

/OO

ai(x)ak(x)f(x, 0)dx,
-00

the theorem states that the joint distribution of pna), • • • , pnM, the »th ap-

proximation of maximum likelihood, approaches normality, where the matrix

of the variances and covariances of the pj^ becomes l/n times the inverse

matrix of \\o-ik\\, which we assume non-singular. The proof will be sketched

briefly. The theorem is stated in a way invariant under non-singular linear

transformations of /»(1), • • • , ^(r). We can assume that a linear transforma-

tion has been performed already, if necessary, reducing the positive definite

quadratic form

(51) - ¿¿<«#<fl f \jix)fix, 0)dx =  f T ¿ />«>«,(*)] /(*, 0)ds
t\;-i •'-»o «'-ooL <-i J

to canonical form, so that

(52) -  f  ßtj(x)f(x, 0)dx = 8U
J -X

where 5„ is the usual Kronecker delta. Equation (43) becomes

dLn
(43') = !>*(*>) + Z, Z>(i)/8jb.(*i) + 7pw(x, pn) = o,

pn») ,-l .=1   i-1

and (47) becomes

(47') i*i<nVnP?   = —^—Íoci(xj) + Rn°.
(aun)1'2 ,wi

It is shown as before that Rn approaches 0 in probabUity as n becomes in-

finite. For large », the estimates pn'-'"' are then distributed nearly normally,

with variances and covariances obtained from l/n times the inverse of the

matrix ||cit||.

Columbia University,
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