
ON BOUNDED LINEAR FUNCTIONAL OPERATIONS*

BY

T. H. HILDEBRANDT

The set of all bounded linear functional operations on a given vector

spacej plays an important role in the consideration of linear functional oper-

ations. For the sake of greater definiteness it is desirable to know the form of

such operations and a space determined thereby. This problem has been

solved for a number of spaces, for instance, all continuous functions on a

bounded closed interval, all Lebesgue pth power (p = 1) integrable functions,

all sequences whose ^>th powers (p gg 1) form absolutely convergent series, all

sequences having a limit, and so on.J All of these spaces have the property of

separability. For non-separable spaces, there is a recent determination of the

operation for the space of all bounded functions on a finite interval, having at

most discontinuities of the first kind, by H. S. Kaltenborn.§

In this paper we give a determination of the linear operation for the space

of (a) all bounded sequences, (b) all bounded measurable functions, (c) all

bounded functions on the infinite interval having at most discontinuities of

the first kind, (d) all bounded continuous functions on the infinite interval,

(e) all almost bounded functions. With the least upper bound as norm, all of

these spaces are not separable.

1. Notations. The integral. We shall denote by

(a) $ a set of elements p.

(b) £ a real-valued function on ty.

(c) ï a set of functions £.

(d) @ a set or class of subsets E of ^j}, containing the null set and the set *$.

* Presented to the Society, April 7, 1934; received by the editors April 17, 1934.

t By a linear vector space X, we shall mean a so-called Banach space (see Banach, Théorie des

Opérations Linéaires, Warsaw, 1932, p. 55) of elements £ in which there is defined addition, and

multiplication by constants, subject to the usual laws of algebra, a unique zero, and a distance func-

tion or norm ||í|| subject to the condition ||ciÇi+C2fe|| â |ci| " llfill + lftl ' ||ia|| for all ci and a. Alinear

operation L on ï transforms Ï into real numbers and satisfies the condition Z.(ciÇi-|-C2Î2) = CiZ.fe)

+cj£fô). L is bounded and therefore continuous if there exists an M such that, for all £, |¿(í)| £.W||i||.

The smallest possible value for M is the modulus or norm Ml of L. We shall limit ourselves to real-

valued linear operations since a complex-valued operation is expressible as the sum of two real-

valued ones.

f See Banach, Opérations Linéaires, pp. 59-72; Hildebrandt, Linear functional transformations

in general spaces, Bulletin of the American Mathematical Society, vol. 37 (1931), p. 189.

§ See Bulletin of the American Mathematical Society, vol. 40 (1934).
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It will be assumed that 6 is additive and multiplicative, i.e., if 7¿i and E2

belong to © so do Ex+E2 and 7¿i7¿2.

(e) II a finite partition or subdivision of Sß into mutually exclusive sets

Ei, ■ ■ ■ ,En belonging to ©. Ill ^n2 shall mean that every set Ew of III is a

subset of some set 7£(2) of II2.

Because of the multiplicative property of (g the partitions II satisfy the

conditions of a range on which the general limit of E. H. Moore-H. L. Smith*

is definable, i.e., if ßn is any function defined for all partitions II of $, then

lim ßn = b has the following meaning : for every e > 0 there exists a IIe, such that

if n^IL then \ßn-b\ Se.
(f) a(E) a function on S. a(E) is additive if a(Ex+E2)+a(ExE2) =a(Ex)

+a(E2), for every Ex and E2 of S. <x(E) is of bounded variation on Sß if

En|«(-E¿) | is bounded for all II of Iß, and the least upper bound of this sum,

which agrees with the limit in the II sense if a is additive, is the total varia-

tion of a, V(a), on $. Obviously if a is additive, the boundedness of a on (§

is necessary and sufficient that a be of bounded variation.

For a bounded function £ and a function a it is possible to define the

Stieltjes integral Sf^da:

S f £da = limn2ZH(pMEi),

where II = £i, • • • , En, and pi is any point of 7¿¿. We shall say that £ is

5-integrable relative to a if the limit on the left exists.t

For a bounded function £ which is measurable relative to @, in the sense

that for every c and d the set E[c<£(p) ^d] belongs to <g, it is possible to

define the Lebesgue integral LfÇda by the Lebesgue process, viz., if (a, b) is

an interval containing the range of values of £, and a=y0<yi< ■ • • <y„ = ¿»

is any subdivision of (a, b) while y¿_i <»»¿^y¡, then

7 1   ^da = limE.1¿a(-E,),

where £¿ = 7¿[y,_i <£(/>) ^y¿], and the limit is taken as the maximum of

y¿ — y¿-i approaches zero.

If a is additive and bounded on (g, and £ is measurable relative to @, then

obviously Lf£da exists. The SfÇda exists also in this case and agrees with

the 7-integral. The S-integral may exist even though £ be not measurable

* A general theory of limits, American Journal of Mathematics, vol. 44 (1922), p. 103.

t This is a type of integral suggested by Moore-Smith (loc. cit., p. 114) and considered by Kol-

mogoroff, Untersuchungen ueber den Integralbegriff, Mathematische Annalen, vol. 103 (1930), pp.

682 ff.
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relative to S. For example if ^=[0<p^l], S consists of all finite sets of

non-overlapping subintervals of ty open on the left, while <x(E) is the length

of E, then the set of all bounded Riemann integrable functions on $ is ob-

viously ¿'-integrable with respect to a, but includes functions not measurable

with respect to S. The same is true to a lesser degree if (S is the set of all sub-

sets of iß having Jordan content and a(E) = cont E*

2. Bounded sequences. Let iß be the set of all positive integers p. Let ®

be the set of all subsets of iß, i.e., E is any set of positive integers. II is then

any division of iß into a finite number of mutually exclusive sets of positive

integers. At least one set in II will contain an infinite number of elements, but

they all may.

Let ï be the vector space consisting of all bounded sequences, i.e., of all

bounded real-valued functions £ on iß, with ||£ || the least upper bound of the

values | £(/>) |. Then we have the following

Theorem. Any bounded linear operation L on H is expressible in the form

L(£) =f%da, the integral being taken in either the L or S sense, and a being a

bounded additive function on (§ whose total variation on iß is the modulus of L.

Conversely every such integral is a linear bounded operation on 3£.

Let x(E, P) represent the characteristic function of the set E, i.e., zero

for p not on E and unity for p on E. Then if a(E) = L(%(E, p)) it is obviously

additive and bounded on (g.

Divide iß by the partition II = Eh • ■ • , En. Define

£(n) - £k(Pi)x(Ei,p).
i—1

Then lim ||£(II) — £|| =0. For suppose that the range of values of £(/>) is con-

tained in the interval (a, b), and divide (a, b) into « equal parts by the points

a=y0<yi<y2< • ■ • <yn = b, so that (b—a)/n is less than a given e. If 75,

is the set 7¿[y¡_i <%(p) gy,] and IL consists of Ei, • • ■ , En, then obviously

|| £(IL) — £|| = e. The same inequality will also hold for any repartition II of IL,

which demonstrates the assertion.

Now by the linearity of L,

7(£(n)) =2Z¿(Pí)L(x(Eí, p)) =i;.í(^)«(F,).

By the boundedness of L and the convergence of the right-hand side, it fol-

lows that

7(f) = fl-da,

* See J. Ridder, Nieuw Archiv der Wiskunde, (2), vol. 15 (1928), pp. 321-9; O. Frink, Annals of

Mathematics, (2), vol. 34 (1933), pp. 518-527.
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where it is obvious that since £ is measurable relative to @, the integral on the

left may be defined in either the S or L sense. The fact that the total variation

of a is the modulus of L follows from the fact that if

£(/>) = ExCEi, P) sgn a(Ei),

then ||£|| = 1 and ¿(£)=E !«(£<) |.
The converse theorem follows from obvious properties of the integral.

It is possible to give the result another form. Suppose p( is the first integer

in the set £<. Define the sequence or function ßa(p) =0 if p^pi, whileßn(p)

=a(Ei) if p = pi- Then the approximating sumE?(í»)«(£<) can be written

2~lpßn(P)%(p), where only a finite number of theßn(p) are not zero for a given

II. We can consequently state the following:

To every linear functional operation L there corresponds a set of sequences

ßn(p) whose elements are different from zero at most for a finite number of p,

such that

(1) hma22ßn(P)t(P) =L(&;
P

(2) E I ßn(P) I á ML
p

and

(3) hmn2Z\ßa(P)\= ML.
p

This result parallels a result due to Banach* for separable subspaces of the

space ï. While the limit involved in this result can be reduced to a sequential

limit for each particular £, a non-sequential limit is needed for the whole

space. The import of the Banach theorem is that for the case of a separable

subspace ï0 of 3E, there exists a sequence of partitions IIn, such that for every

£ of ïo,

lim. ||£(n„) - £|| = 0 and lim. EßuSpMp) = ¿(£).
p

It is possible to deduce this result from our general considerations. For

this purpose we note that if £m is any sequence of functions of the space ï,

it is possible to select a sequence of partitions II. by the diagonal process, such

that lim„ £(n„) = £ for every £m of the given sequence. If X0 is a separable sub-

space of ï and £„ is dense in ï0, then if £ belongs to ï0, there exists a sequence

£n„ approaching £. Let Ux, ■ ■ ■ , II*, • • • be the partitions such that for

every n

_ lim* £„(ITjfc) = £..

* Opérations Linéaires, p. 72.
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Now
lim„ Hk.Olt) - {(noil = 0

uniformly in k, since

llfcjn*) -í(n*)|| ̂  llu-íll-
Hence by the iterated limits theorem on double sequences it follows that

lim* ||£(11*) — ¿|| =0. Consequently, for every £of ï0,

lim* 2Zßnk(P)ÜP) = lim*En4É(fc)«(£i) =• f {da = 7(£).

We note that if £ is a special sequence, it may not be necessary to use all

of the values of a. For instance if £ is a sequence converging to zero, it is

sufficient to know the values of a(Ep) where Ep consists of the integer p only.

Obviously in this case 7(£) reduces to 2^,x^(p)a(Ep), with^|a(Ep)| <°°,

which is a well known result. Similarly for any sequence converging to a

limit, the values a(Ep) and a(iß) suffice.

The effect of the fundamental theorem established is that a conjugate

space to the space of all bounded sequences is the space of all additive

bounded functions on subsets of integers, with norm the total variation of the

function.

The question naturally arises whether additive functions on the set Gs

exist, which are not absolutely additive, i.e., whether this form of operation

is effective. The instance of sequences approaching a limit must come from

such a function. Banach's measure function* on subsets of positive integers

gives a complete example.

3. Bounded measurable functions. The procedure in this case is entirely

analogous to the preceding case.

We let iß = — <»<^<co,S the set of all measurable subsets of iß, ï the

set of all bounded measurable functions £ on iß, with ||£|| the least upper

bound of | £(p) |. Then we have

Theorem. Any linear functional operation on the space of all bounded meas-

urable functions is expressible in the form f^da, where the integral is to be taken in

either the S or L sense, the function a is additive and bounded on ©, and the

total variation of a is the modulus ML of L. a(E) is the value of L(x(E)), where

where x(E) is the characteristic function of E.

Obviously it is possible to give a theorem corresponding to the Banach

result, viz., that the operation L is the II-limit of a set of finite sums, each

involving the function £ at only a finite number of points.

* Opérations Linéaires, p. 231.
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4. Bounded functions on the infinite interval having at most discontinui-

ties of the first kind. This class of functions is obviously a subclass of the set

of bounded measurable functions. As a consequence it is to be expected that a

smaller set Gs will suffice. Let again $= — <x> <p<<*>. Then the set © con-

sists of all subsets E of $, which consist of a finite or infinite number of open

intervals and single points, there being at most a finite number of intervals

and individual points in the finite part of the fundamental interval, i.e., a

set E consists of disjoint open intervals an<p<bn, together with points p„

either end points of (an, bn) or not belonging to any (an, bn), where a„, bn, pn

have at most + oo and -«as limiting points. The intervals — =o <p<a and

a<p<<x> will be considered open intervals.

With this definition we have the following

Theorem. Every bounded linear operation on the set of all bounded functions

on — co < p < oo having at most discontinuities of the first kind is expressible

in the form ffda where the integral is of the S type, a is additive and bounded

on S and has total variation ML.

In order to prove this theorem it is sufficient to show that the functions

f(n) =2Zií(pi)x(Ei, p)

approach £ uniformly in the IJ-sense. For this purpose we utilize the theorem

of Lebesgue* that if £ is bounded and has only discontinuities of the first kind

and is limited to a finite interval (a, b) then there exists for any given e >0 a

subdivision of (a, b) into a finite number of intervals such that on each open

subinterval the oscillation of £ is less than e. It follows that for any given £

and any e>0, there exists a sequence of points • • •/>_„< • • • <p-X<po<pi

< ■ ■ ■ <p„< ■ • • approaching — oo on the left and +°o on the right, such

that interior to each interval (pi-X, p¡) the oscillation of £ is less than e. Sup-

pose now (c, d) contains the region of variation of £(/»), i.e., c <£(/>) <d for

all p. Divide (c, d) into a finite number of equal parts of length e0, by the

points c = y0<yi< • • • <yn = d. Let the set Ex consist of all the intervals

(pi, pi+x) containing in their interior a point p such that y0 <£(/») ^ yi, together

with all points pi satisfying the same condition. Let E2 consist of all the in-

tervals not belonging to Ex which contain a point p for which yi <£(/>) ^y2,

and the points p( satisfying the same condition, and so on. Then since the

oscillation of £ on any of the intervals (pi; pi+i) is at most e, it follows that

the oscillation of £(/>) on any Ek is at most e+e0. Consequently

n

M(P) -22t(fii)x(Ei, p)\\ = e + eo,
_ i
* Annales de la Faculté des Sciences de Toulouse, (3), vol. 1 (1909), p. 60.
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pi being any point of Et. Since the same type of inequality will be valid for

any partition II ^IL, where IL consists of Ex, • • • , En, we have the result

desired.

The case in which the infinite interval is replaced by a finite interval has

been considered by Kaltenborn.* In that case the infinite parts of our parti-

tions drop away, and it can be shown that the integral depends only on a

point function of bounded variation and a function zero except at a denumer-

able set of points, but it is simpler to proceed directly in this case.

5. Bounded continuous functions on the infinite interval. Obviously the

class of functions considered in §4 contains the set of bounded continuous

functions as a subset. As a consequence we can effect a further reduction in

the set (5. We shall assume that (§ contains all sets E which consist of a finite

or denumerable set of non-overlapping half open intervals (a„ <p^bn), whose

end points have at most — °° and 4* as limiting points. The intervals

— co<p^a and a<p<<x> will be considered to be half open intervals.

With this definition of (S we can state the same theorem as in the pre-

ceding paragraph. It is to be noted, however, that in this case the function

a(E) is defined in-terms of an extension of the linear operation L on continu-

ous functions to functions having discontinuities of the first kind.

If we limit ourselves to a finite interval, the ordinary Stieltjes integral

applies, since because of the continuity of £, the successive partition, limit

agrees with the limit as the maximum length of subdivisions approaches zero.

It is possible to give a form to the general theorem which is comparable

to the Banach result for sequences. Let II be any partition of iß into sets

Ei, ■ ■ • , En. Let pi be any point in the interval of Ei nearest to p=0. Let

ßn(P) De a point function such that ßfi(O) = 0, and constant except at the points

P = pi, where it has a break or sal tus of magnitude a(E(). Then obviously

7(£(II)) = L(£^(Pi)x(Ei, p)) =2Zí(PiMEi) =
i

where the infinite limits could be replaced by any finite interval containing

the points px, ■ ■ ■ , pn in its interior. It follows that we have the following

alternative theorem:

7/7, is any bounded linear operation on the class of bounded continuous func-

tions on —<x> <p<K>, then there exists a set of point functions ßn(P) constant

except at a finite number of points such that

/oo
Z(p)dßn(P),

-00

* Loe. cit.

/.
Z(p)dßn(p),
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the integral being an ordinary Stieltjes integral. The functions ßa are uniformly

of bounded variation and limn F(j8f) =Ml.

For any separable subset we can obviously proceed as in §2 and replace

the limit in the II-sense by a sequential limit, i.e., we can find a sequence II.

of partitions which is effective in the limit for all functions of the set.

6. Almost bounded measurable functions. In agreement with common

usage the measurable function is almost bounded if it is bounded except for a

set of zero measure. The ||£|| is defined as the greatest lower bound of positive

numbers a such that the set E[\ £(/») | >a] is of zero measure.

The only difference between this case and that of §3 is that if E is a set

of zero measure then a(E) =0, since then L(x(E)) =0. It cannot however be

concluded that if a(E) = 0 for any set of zero measure then a(E) is absolutely

continuous and consequently the indefinite integral of a Lebesgue integrable

function.

An example on the finite interval 0 S p S1 of an additive bounded func-

tion a(E) on measurable sets which satisfies the condition that a(E) =0 for

meas 7¿=0, but is not absolutely continuous nor absolutely additive, can be

constructed. Let (a„, b„) be a sequence of disjoint intervals whose end points

have 1 as their only limiting point. If E0 is any measurable subset of (a„, bn),

then define ß(E0) =mEo/(an — bn). If now E is any subset of 0^/»^l, and

En the part of E lying on (an, bn), then ß(En) defines a bounded sequence of

numbers. The function a(E) =fß(En)dp (in the sense of §2), where p. is a

measure function of Banach on subsets of positive integers,* will be additive

on measurable subsets of (0, 1), will satisfy the condition

a(E) = 0 if meas E = 0,

but will not be absolutely additive, nor absolutely continuous. For if E

is the set (1—e^p^l) then for all e>0, a(E) = l. Incidentally it appears

that if £(/>) is continuous on (0,1) then fax %da = £(1), i.e., as far as the integra-

tion of continuous functions is concerned a(E) is equivalent to the function

y(p) =0 for 0^p< 1,7(1) -1.

It is obvious that the results of §§3, 5, and 6 can be extended to corre-

sponding situations in M-dimensional space. Also that it would be possible to

set up a general theorem reducing to the special cases considered by a proper

choice of the set $ and S.

* Opérations Linéaires, p. 231.
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