
ALMOST PERIODIC FUNCTIONS IN GROUPS, II*
BY

S. BOCHNER and J. von NEUMANN

The present paper is a continuation of the article by J. von Neumann on

Almost periodic functions in a group, I [l].f Its main object is to extend the

theory of almost periodicity to those functions having values which are not

numbers but elements of a general linear space L. For functions of a real

variable this extension was begun by Bochner [2], and then applied by him,

see [3], to a problem concerning partial differential equations.

Bochner assumed L to be both complete and metric. In the present paper

we shall admit more general linear spaces. We shall drop the metric but keep

the completeness. Since the usual notion of completeness is based on the no-

tion of metric, it was necessary to establish, for linear spaces, a notion of

completeness independent of it. This was done in the preceding note of J. von

Neumann [4]. The results of this note will be employed throughout, and we

observe that, from the very beginning, we shall assume that L is linear with

respect to arbitrary complex coefficients, see [4], Appendix I.

As in [1 ], the main difficulty to overcome was the definition and the estab-

lishment of a mean. This was done in Part I. The definition of a mean re-

mained actually the same as in [l], but the proof of the existence of a mean

necessitated a more elaborate argument, although, in broad lines, the argu-

ment does not differ essentially.

In Part II we deduce the existence and uniqueness of a Fourier expansion

for any almost periodic function. It is worth pointing out that the represen-

tations occurring in the Fourier expansions of abstract almost periodic func-

tions are the same as for numerical almost periodic functions, only the con-

stant coefficients by which the representations are multiplied are abstract

elements instead of numbers. (More than that, if in a linear manifold L dif-

ferent topologies are suitable for our purposes, then even the nature of the

coefficients no longer determines the precise nature of abstractness of the

almost periodic function.) Thus, roughly speaking, there are no more abstract

almost periodic functions than numerical almost periodic functions. In par-

ticular, if a group admits of no other numerical almost periodic functions than

the constant ones, there exists no non-constant abstract almost periodic func-

tion, no matter how general the range-space L may be.

* Presented to the Society, December 28, 1934; received by the editors June 7, 1934.

t Numbers in brackets refer to the bibliography at the end of this paper.
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In Part III we deduce the approximation theorem. Moreover, what is new

also for numerical functions, we deduce summation theorems, that is to say,

theorems concerning the construction of an almost periodic function of which

only the Fourier expansion is given. For functions of Bohr these theorems

were established by Bochner [5].

FinaUy, in Part IV we consider the special case in which L is a Hilbert

space, or the space of bounded linear transformations of a Hilbert space into

itself. We particularly refer to Theorems 39 and 40. Theorem 39 treats one

of the rare cases of a class of almost periodic functions for which the Fourier

expansions may be completely characterized by direct properties. Theorem 40

implies a necessary and sufficient criterion for a locally compact separable

group to be compact. We should also mention that for the Abelian addition

group of all integers, R. H. Cameron, in an unpublished paper, has found a

result which has some connection with our Theorem 39.

Part I. The mean-value

Let L be a convex topological space which we shall assume throughout to

be topologically complete (cf. [4], Definitions 1, 2b, and 10) ; and let ® denote

a fixed arbitrary group. The elements of © will be denoted by a, b, c, ■ ■ • ,

x,y,z, • ■ ■ . Whenever a function is not specified, it will be tacitly assumed to be

an element of Lb . (Lb is the set of all bounded functions with the domain

® and a range c L, cf. [4], Definition 11. L* is a topologically complete con-

vex topological set, cf. [4], Theorem 18.)

If FeL*, the "translated" functions raF = F(xa), laF = F(ax) also belong

to Lb for any ae®. We shall denote by 9ÎP the set of all raF, and by %F the

set of alUoTXae®).

Definition 1. A function F is almost periodic if both sets 9îj? and 2f are

totally bounded (cf. [4], Definition 6). The set of all almost periodic functions

will be denoted by Ap.

Theorem 1. Every constant function is almost periodic.

The proof is obvious.

Definition 2. Given groups ®i, ®2, ■ ■ ■ , ®p; we denote by ®iX®2X • • •

X ®P the group consisting of all p-tuples

x = [xx, •••,*,] ixxe&x, ■ ■ ■ , xpt&„)

with the rules

[xx, ■ ■■ , xp][yx, ■ ■ ■ , yp] = [xxyx, • ■ ■ , xpyp],

[xx, ■ ■ ■ , xp]~l = [xr\ ■    ■ , xï1].
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And we shall say that a function is "almost periodic in Xi, • • • , xp" if it is

almost periodic in [xi, • • • , xP] in the group ®iX®2X • • • X®p. In case

@i = ®2 = ■ • • = ®p = ®, we shall write ®p for ®iX®2X ■ • • X®„.

Theorem 2. If F is almost periodic, the set of ix, y)-functions Fa = Fixay)

(e2®') is totally bounded (ae®).

Given UeU, we choose Fell, with V+V—VeU. We choose elements

bi, ■ ■ ■ , bn such that to any y there corresponds an index v=viy) for which

Fizy) - Fizb,)eV (ze®).

(Remember for this, and for all discussions below, [4], Definition 6.) Hence

Fixay) - Fixab,)eV ix, ae®).

We consider the n functions F,ix) =Fixby). For each v the set of ^-functions

Fyixa) is totally bounded in a. By a simple argument (compare [1 ], the corre-

sponding part in the proof of Theorem 9) it follows that there exist elements

«i, • • • , aro, and to each a there corresponds a p.=/¿(a) such that

F.ixa) - F„ixa„)eV (ze®; v = 1, •••,»).

Hence to each a there corresponds a ju=ju(a) such that, for all x, ye®,

Fixay) -Fixa^y) = iFixay) -Fixab,)) + iFixab,) -Fixajb,))

+ iFixaJ),) -FixaJJ))eV+V-V c U.

Theorem 3. Let Fiz) be an almost periodic function. Let z be the product of

positive or negative integer powers of elements x', x", ■ ■ • , x(p), a', a", • • • ,

a(s)e® in an arbitrary fixed order, and let Fiz) be considered as a function

(1) F.r....,.«i =Fa,,....Mx',   ■ • , *Cp))

of L®", depending on the parameters a', • • • , a(a). The set of these functions is

totally bounded in a', ■ • ■ , a(s).

It is easily seen that in this proof we may replace in z any set of consecu-

tive factors which are all powers of variables or all powers of parameters by

a new variable or a new parameter respectively (this may increase the indices

gander). Thus we may assume that z has the form a'x'a"x" ■ • • or x'a'x"a"

• • ■ . We denote the number of factors in z by k. For k = 2, our theorem holds

by Definition 1, and we are going to apply induction from k to k+1. Denoting

the product of the first k — 1 factors in z by £, we have to dispose of two cases :

(i) z = &a, (ii) z = £a#. A subscript to £ shall indicate that special values have

been assigned to all parameters occurring in £.

In Case i we know that to each ¿7ell there correspond quantities &,•••,

£» with
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(2) Fft*)íe(F(í.*) + n.
r-l

(Cf. [4], Definitions 6, 11.) Given í/e2I, let V+VcU. Replacing x by xa in

(2) we get

(3) F(Sxa)eê(F($,xa) + V').

We determine elements ax, • • • , am such that

(4) F(za)e<ê>(F(za,) + V).
K-l

Putting here z=%,x and substituting the result in (3), we obtain

ffl     n m     n

F(£*a)« © © (f (£„xa„) + F' + F') c © © (F(^xaM) + £/').
p—11,—i ,1—1 »—i

This proves Case i.

In Case ii we determine quantities £i, • • • , £„, such that

Fi&)*êm**) + v)i
r—X

hence

(5) F(kax)eê (F(trax) + V).
y-X

By Theorem 2 we may determine elements ai, • • • , am such that

m

F(yax)e<S> iFiyaux) + V').
n-l

Putting here y = £>, and substituting the result in (5), we obtain

Fi£ax)eê eiFi£,aßx) + U').
)i=l v-X

This proves Case ii.

Corollary. LetFiz) be an almost periodic function. Let z be the product of

positive or negative integer powers of variables x' ,x", • • • ,xip), of parameters

a', a", • • • , a(a), and of constant elements c', c", • • • , c(r), in an arbitrary

fixed order. The set of functions F(z) ieLi6") is again totally bounded in a',

a", ■ ■ ■ ,«<«».
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If we consider also the elements c', • • ■ , c(r) as parameters, we get a larger

set of functions «7®r which by Theorem 3 is totally bounded. But a subset of

a totally bounded set is also totaUy bounded.

Theorem 4. The function (1) of Theorem 3 is almost periodic in x', • • • ,

xip), for any fixed values ofthe parameters a'', • • • , aCs).

If we multiply the element [x', ■ • • , x'-p)]e®p by an element [b', • • • ,

¥p)] on the right or the left, the argument z in Fiz) goes over into a product

of positive or negative integer powers of the variables x, the constants a,

and the parameters b. Replacing in the corollary of Theorem 3 the letters

a and c by b and a, we find that the resulting set of functions is totally bounded

in the parameters b. By Definition 1, the function (1) is almost periodic.

Theorem 5. If Fx, • • • , Fk are almost periodic functions with values in

linear spaces Lx, • • • , Lk respectively, if S, (k = 1, • • • , k) is the range of

FK, and if g(/i, • • • , /*) is a function with the domain f,eSK, k = 1, • • •, k,

uniformly continuous in it, and with a range c L, then the function

G(x) = %(Fx(x),---,Fk(x))

is almost periodic.

Definition l is fulfilled for the function G(x) on account of [4], Theorem 9,

if this theorem is applied to the function g(Fi, • • • , Fk), considered as a func-

tion of the functions Fx, ■ ■ ■ , Fk, with the LK, L of Theorem 9 in [4] put

equal to Lfb, Lf, and its ranges S« to the '¡ftp,, 2F, respectively (k = 1, ■ • ■ , k).

Theorem 6. If F, GeAp, then F + GeAp. If FeAp, and a(x) is a numerical

almost periodic function, then aFeAp.

If FeAp, the set of functions raF=F(xa) is totally bounded; if we put

x = 1 we find that the range of F is totally bounded. Theorem 6 follows from

Theorem 5, since the functions fx+f2,fxft are uniformly continuous if fx and

f2 run over totally bounded sets, the closure of such sets being compact and

separable ([4], Theorem 11, Theorem 7, Definition 10, and Theorem 16).

Theorem 7. The set Ap is closed.

Let F be a condensation point of Ap, Uell, V+Vc U. There is a GeAp

such that FeG+V. Obviously raFeraG+V'. Choose elements Fi, • • • ,

FneAp, such that

StacêiF, + V).
F-l

Then

mF c© iF, + V + V) c@ (F, + U'),
e=*l c—1
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which proves that 9Îf is totally bounded. Similarly, 8j? is totally bounded.

Corollary. If a sequence of almost periodic functions is uniformly con-

vergent, the limit function is also almost periodic.

Theorem 8. If FeAp, the set S = ((SRf)oohv)oi has the following properties:

(i) S cAp, (ii) S is compact and separable, (iii) S 00nv = 5. The same is true also

for r=((8i-)conv)ol.

(i) follows from Theorems 4, 6 and 7. (ii) follows from the fact that S is

totally bounded ([4], Theorems 14 and 16). (iii) was proved in [4] Appendix

I.

Theorem 9. 2/Ge(($nV)oonv)oi, then

(6) ((9îo)oonv)ol C ((9?F)conv)ol.

The same is true if we replace 9? by 2.

For any UeU, we have by assumption ( [4], Theorem 5) : G c (9?F)0onv + U'.

This immediately leads to the result that 9Jg c (9îJ?)conT+î7/. Since 27 is

arbitrary, it follows ( [4], Theorem 5) that 9í0 c ((9tF)00nT)ci. The final relation

(6) is now obvious by Theorem 8, (iii).

Definition 3. If two almost periodic functions G, F are in the relation (6),

we shall write
G-1F.

Remark. It follows from Theorem 9 that the relation G -3 F is equivalent

to Ge((8J/f)conT)„i.

Theorem 10. F^G and G-322 imply F-3H.

This follows immediately from Theorem 9.

Theorem 11. If FeAp, and UeU, there is a G-3F, and anumber p~e,0, such

that for H^G and ae® (cf. [4], Definition 13),

\\Bia)\\t = p.

We consider, for Keii$tp)eonv)ei, the numerical function

(7) \\K\\t = l.u.b.||JT(*)||î.

It is a continuous function; hence it assumes, on every compact separable

set, a maximum and a minimum; and it is easily seen that, for Ai-3AS,

||Ai||y'5;||A2||r/'. Therefore, if G is an element for which (7) attains its

minimum, and if p. denotes the minimum value, we have

\\K\\u' = \\H\\t. = p, íoiK^ F-3G.
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Thus, for ax, ■ ■ ■ ,ane®;ax, ■ ■ • ,an^0;ai+ • • • +a„ = l,

l.u.b. \\aiH(aix) +■■■ + a„/7(anz)||J = l.u.b. ||ff(*)||+ = ft.
Xetè xt<&

Connecting this with

p è Lu.b. ||ff(*)||J = l.u.b. ¿ a, \\Bia,x)\\+,
xt<& xt<&     „_i

we find for the numerical function y(x) = ||77(a;)||J the property

(8) l.u.b. y(x) = l.u.b. (ai7(ai*) + • • • + any(anx)).
Xt& xt<&

By Theorem 5, y(x) is almost periodic; and (8) proves that

Mxyix) = l.u.b. yix).
«05

(Cf. the definition of Mx in [l], Definition 4.) Hence yix) is constant (cf.

[l], Theorem 7, (4), putting f(x) = [i.n.h.xt0iy(x)] — y(x)), and the proof of

our theorem is completed.

Corollary. If FeAp, Uell, feL, there is a G-3F, and a number ju^O,

such that for 77-3G, ae®,

(9) \\Hia) - flu = p.

Apply Theorem 11 to Fx(x) =F(x) — f, and denote the resulting Gx(x)

by G(x)-f.

Theorem 12. If FeAp, there is an 77-3F which is constant.

We denote by S the range of F(x), and by T the set (Sconv)0i. S is totaUy

bounded (compare the proof of Theorem 6). Hence by [4], Theorems 11, 14,

T is totally bounded too. If/ (eL) is a value of a function G^F, then/is a

condensation point of elements of the form

aiF(aia:) + • • • + anF(anx), ax, ■ ■ ■ , an è 0; ax + • ■ ■ + a„ = 1;

but an element of this form is contained in S00nT; thus/e7\ Therefore there

exists a compact separable set TcL which contains the ranges of aU G-3F.

Let/i, f2, ■ • • be a dense sequence in T, Wx, W2, W3, • • • a complete set

of open neighborhoods of zero. Write all pairs n, p = 1, 2, • • • in a sequence

«i, pk, k = l, 2, • • ■ , and define a sequence of functions Go, Gx, Gt, • • • in

this manner: G0=F; Gk+x is the G of the corollary to Theorem 11 if applied

to F = Gk, U=Uk = WPk,f=fnk. Thus

F E- Go f- Gx E- G2 £-,
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and for all 22-3G&,

(10) \\Hix) - fnk\\+Uk = Pk,

where pk is a number depending on k.

The sets ((9t<?4)Conv)oi are monotonely decreasing as k—»°°, all closed and

non-empty, and all subsets of the compact separable set ((9Îf)0oiiv)oi; thus

they have a common element E. Relation (10) means that for any p and any

x, ye®, the relation

(ID \\Bix) - f\\w, =   \\Hiy)-f\\tp

holds for all/=/„. The/„ being dense, and the pseudo-metric being continu-

ous, the relation (11) holds for all feT. Putting/=22(y) we obtain ||22(x)

~Biy)\\w,=0; hence Hix)-Hiy)eWp ip = l, 2, ■ ■ ■) (cf. [4], Definition

13); hence 22(z)= 22(y).

Corollary. If FeAp, there is a <peL, and a sequence of systems (w = l, 2,

3, • ■ • )

(12)   a„,i, • • ■ , «„,m„ W% 0, an,i + • • • + an,mn = 1, a„,i, • • • , an,mne®

such that for every UeU there exists an ni = ni(JJ), for which n~e.ni implies

On,iFia„,ix) + ■ • • + an,mnFia„,mHx) — <¡>eU.

We denote the constant value of the function H of Theorem 12 by <p.

Since ($aV)oonv is separable, and H is an element of its closure, H is the limit

of a sequence of (equal or different) elements of (SRjOeonv Hence the corollary.

Theorem 13. If FeAp, there is a rj/eL, and a sequence of systems (12), such

that for every UeU there exists an ni = ni{U),for which n}zni implies

an,iFixan,iy) + • • • + a„,nn Fixan,mny) — >¡/eU.

Apply the corollary to Theorem 12 to the function Fiz~ly) of L* (cf.

Definition 2), and then replace z-1 by x.

Definition 4. If FeAp, every \peL which has the property described in

Theorem 13 is a mean of F.

Theorem 14. If F, GeAp, and \¡/, x are respective means of F, G, then ty+x

is a mean of F±G.

Given ¡7eU, choose Fell, with 2F — 2FeZ7. Suppose that «,,^0, «i+ • • •

+am = l,a„e®, ßp]>0, ßi+ ■ ■ ■ +j8B = l, 6,e®, and that

(.13) aiFixaiy) + • • • + amFixamy) — \ptV,

(14) ßiFixhy) + •■• +ßnFixbny) - XeF.
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In (13) we replace y by b,y, multiply the equation by ß„ and sum over v. We

obtain, using [4], Theorem 12,

m       n n

X £ aJrFixaJb,y) - faJ2 ßtVc2V.

Similarly, if in (14) we replace x by xa^ multiply by aß and sum over ju, we get

m      n m

¿2 E a,ßyGixa,byy) - Xe¿2<x»Vc2V.

Hence
m      n

£ Z aßriFixaßbry) - Gixa,byy)) - (P - X)e2V -2VcU.
u-X v-X

As
m      n

«„/S, è 0, Z £ «/J3» = 1> «A«®,
,1=1   y_l

and Í7 was arbitrary, we conclude that \J/—x is a mean oí F — G. A similar

argument proves that i^+x is a mean of F+G.

Corollary. If Fx, F2, • • • , FNeAp (Ar = l, 2, 3, • • • ), wz/à the means

fa, i>t, ■ ■ ■ , ipN respectively, and if Uell, then there exist numbers ax, • • • , an

^0, ai+ • • • +a„ = l, and elements ax, ■ ■ ■ , ane®, such that simultaneously

forv = l,2, ■ ■ ■ ,N,

axF.ixaxy) + a^^xa^) + • • ■ + OnF,ixany) — fa.c U.

The case A7 = 2 was treated in the proof of Theorem 14, and the same

argument can be used to extend our statement from N to N+l.

Theorem 15. Every almost periodic function has one and only one mean.

If ■p and x are both means of F, $—x is a mean of F — F = 0. But every

mean of 0 is 0. Hence the uniqueness of the mean.

Definition 5. If FeAp, its iunique) mean will be denoted by MF or MxFix).

Theorem 16. The mean has the following properties:

1. If Fix) =0 iconstant eL), then MF=fa

2. If ais a number, J7(aF) =aMF.

3. MiF±G)=MF±MG.

4. MxFiax)=MxFix).

5. MxFixa)=MxFix).

6. MxFix~1)=MxFix).

7. If Uell,   \\MF\\u = Mxi\\Fix)\\u) = ||F||a..

8. If UelX, and F-GeU, then MF-MGe2U.
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1 and 2 are obvious. 3 follows from Theorem 14. 4, 5, 6 are easily deduced

from Definition 5. The first half of 7 follows from the relation

\\aiFixaiy) + ■■■ + anF(xany)\\u ¿ ai\\F(xaiy)\\u + ■ • ■ + an\\F(xany)\\u

and the continuity of the pseudo-metric ; the second half is a proved theorem

on real almost periodic functions (cf. [1 ], Theorem 7). With regard to 8, from

\\F-G\\¿.¿1, it follows that \\MF-MG\\¿¿1, and thus MF-MGe2U.

Theorem 17. The properties 1, 2,3,4 (or 5), 8, of Theorem 16, determine our

mean uniquely.

Replacing ab by ba in ® shows that it is sufficient to consider the proper-

ties 1, 2, 3,4, 8. Let NF be a notion defined in Ap satisfying these properties.

If V+ V c UeU, ai+ ■ ■ ■ +an = 1, and

aiFiaix) + ■ ■ ■ + anFianx) - MFcV,

then

NF - MF = NiaiFiaix) + • • • + «^(a«») - MF) c2VcU.

U being arbitrary, NF = MF.

Remark. The properties 3, 7 of Theorem 16 imply the property 8. Hence

we have that the properties 1, 2, 3, 4 (or 5), 7, of Theorem 16 determine our

mean uniquely.

Theorem 18. If xe®, ye®', and Fix, y) is almost periodic in x, y, then

Fix, y) is almost periodic in x for fixed y, and almost periodic in y for fixed x,

Gix) =MvFix, y) is almost periodic in x, Hiy) =MxFix, y) is almost periodic

in y, and

MF = MxGix) = MxiMyFix, y)),

MF = MyHiy) = MviMJFix, y)).

If the sets Fiax, by), Fixa, yb) are totally bounded for ae®, be®', then

the sets Fiax, y), Fixa, y), which are parts of them, are totally bounded for

ae®. Hence Fix, y) is almost periodic in x for fixed y. Similarly, if we inter-

change x and y, Fix, y) is almost periodic in y for fixed x.

Given UeU, choose Fell, with F+Fc U, and elements ai, ■ ■ ■ , am, bi,

• ■ • , bn, such that

Fiax, y)e®iFiaiX, y) + V, ■ ■ ■ , Fiamx, y) + V),

Fixb, y)e®iFixbi, y) + V, ■ ■ ■ , Fixbn, y) + V).

By Theorem 16, 8,

G(ax) = MvF(ax,y)eB(MvF(aix, y) + V, ■ ■ ■ , MyF(amx, y) + U'),
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and similarly

Gixb)e®iMvFixbx, y) + V, ■ ■ ■ , MyFixbn, y) + U').

Hence Gix) is almost periodic, and similarly 77(y). In order to prove the first

half of (15) we have only to show that the "mean" NF = MxiMyF) satisfies

the conditions 1, 2, 3, 4, 7, of Theorem 16. But this is easily verified; for

instance, in the case of the first half of condition 7, we have

\\NF\\u = \\MxiMvFix,y))\\t = Mx(\\MvFix, y)\\t) = MxMy(\\F\\t-) = N(\\F\\t)

(cf. [l ], Theorem 10). Similarly for the second half of (15).

Part II.   Fourier expansions

Definition 6. If <p(x) is a numerical almost periodic function, and FeAp,

faX F is the function

Mv(faxy-l)F(y)) = My(4>(xy)F(y-1))

which again belongs to Ap.

Theorem 19. <pXF is linear in <j> and in F, and associative: (faX4dXF = <p

X(faXF).

The first follows from Theorem 16, 2, 3. The second follows from the

following formal calculations, each step of which is justified by one of the

foregoing theorems:

(■PXÏÏXF = Ml/(Mi(<b(xy-1z-i)p(z))F(y)) = MvM,(<bixy-lz-1)Piz)F(y))

= Miy,l)(<t>(xy~h~l)p(z)F(y)).

<t> X (P X F) = Mvifaxy-^M^yz-^Fiz))) = MvMt(faxy-1)P(yz-1)F(z))

= M,My(<b(xy-l)P(yz-1)F(z)) = Mt(Mv(faxy-')P(yz^))F(z)),

and substituting yz for y,

= M,(My(<j>(xz-1y-1)P(y))F(z)) = M,Mu(<b(xz-iy-l)P(y)Fiz))

= Mly,t)ifaxy~1z~l)Piz)Fiy)).

Theorem 20. If Fix, y) is an almost periodic function of 7®x , and Uell,

there exist numbers ax, ■ ■ ■ , a„^0, ai+ • • • +a„ = l, and elements a„e@,

such that, for all xe®, ye®',

n

(16) ¿2 et,Fia,x, y) - MxFix, y)eU.
»-i

For fixed y, Fix, y) is almost periodic in x. Hence, by the corollary to

Theorem 14, if any finite number of fixed values is assigned to the variable

y, it is possible to choose quantities a„ a„ which satisfy (16) for all x.
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Now, choose Fell, with 2F+F —2Fc U, and then elements bi, • • ■ , bm,

such that Fix, yo)e©(F(*, yb/) + V, ■ ■ ■ , Fix, ybm) + V). Putting y = l,

we obtain

Fix, o)e<g(2?(z, 6,) + V, ■ ■ ■ , Fix, bm) + V).

We determine quantities av, a, such that

n

(17) X) a,F(o,x, 6M) - M.Fix, b„)eV
r~l

for p = 1, • • • , m. To each b there corresponds a o„ such that

(18) Fix, b) - Fix, bß)eV.

Hence by Theorem 16, 8,

(19) M.Fix, b) - MxFix, bß)e2V.

On the other hand, it follows from (18) that

n n

(20) X) a,Fia,x,b) - £) a,Fia,x, bM)e2V.
r—l »-1

Combining (17), (19), (20), we obtain, for any be®',

n

J^a,Fiarx, b) - MxFix, b)e2V + V- 2VcU,
i—i

and this proves the theorem.

Definition 7. A weight function is a real almost periodic function <pix)

with the properties: <j)ix)~=0, M4> = 1. A special weight function is a weight

function which is a finite linear aggregate of representation coefficients. (Cf.

[1], Chapter III.)

Theorem 21. If FeAp, and 4>ix) is a weight function, then cpXF-^F.

If ¿7eU, choose Fell, with V+VcU. Then <f>XF = Myi<piy)Fiy-1x)). By
Theorem 20 there are numbers «i, • • • , an>0, ai+ • • • +a„ = l, and ele-

ments ai, • • • , a„e®, such that

n

(21) ^XF-I a,<fiary)F (y"1ar1x)eF.
v-l

The function

n

My) = Z) OLr<t>iapy)
j—i
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is a weight function. Hence there exist elements yi, y2, such that ^(yi) ^ 1,

^iy~) ¿1. Therefore we may find a y, O^y^I, with 7^(yi) + (l ~~ y)~P(y¿) — 1-

From (20) we easily deduce that

n n

<p XFcyY.ar<piatyi)Fiyrla7lx) + (1 - y)T, "M^y^Fiy^a^x) + U'.
V=l P=l

It is easily seen that the function in x on the right side e(3ÎF)Conv. Hence

0XFe(5Rf)oonv + i7',forany U'eW. Thus ([4], Theorem 5) <j>XF c ((9îP)Conv)ei.

Lemma 1. 2/</>(x, y) is a rea/ almost periodic function in x, y, then

ypix) = l.u.b. <j>ix, y)
ye«

is almost periodic in x.

If \4>(ax, by) —c/>(a„x, ô„y) \ ¿e, then also

that is,

l.u.b. <¡>iax, by) — l.u.b. <j>ia,x, b,y)
ytd! ye(&'

l.u.b. <j>iax, y) — l.u.b. <pia,x, y)
ye<g' ye<ß'

«,

Hence, if SR* is totally bounded, then so is 9fy. Similarly for %.

Lemma 2. If \}/(x) is a weight function, and e>0, there is a special weight

function x(x) such that

I *(*) - X(x) | ¿ e, *e®.

By the approximation theorem ([l], Theorem 30), for each 5>0, there

is a finite linear aggregate of representation coefficients xiO*) such that

(22) |lK*)-Xi(*)|S«.

We may assume xi(%) real, otherwise we replace it by (xiW + XiO*))/^.

After that, we may assume it ~\±0, otherwise %i(#)+8 satisfies (22) with 25

instead of  5.  Since  M\{/ = 1,   (22)  implies  l — 5¿Mxi¿X + o; hence,  for

X = Xi/(Mxi), we obtain

\p(x) - x(x) I ¿ | yp(x) — xiix)   +

¿5 +

\        MxJ

-Ï— [l.u.b. 4,(x) +b\
1 — 5 L x«s J
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and this is ge, if ô is smaU enough.

Theorem 22. If FeAp, and Uell, there exists a special weight function x

such that xXF-FeU'.

F(x~1y) —F(y) is almost periodic in x, y, hence ||F(a;_1y) — F(y)||y is also

almost periodic in x, y (Theorem 5). By Lemma 1,

/(*) = l.u.b. \\Fix-iy) - Fiy)\$

is almost periodic in x.

Given e>0, we form with the function

I u I ii
1 --!—L for | «| á c,

«

0 for I « I  ^ e

the almost periodic (Theorem 5) function fa(x) = ut(t(x)). We have (1)

*.(*)è0, (2) &(1) = 1, since i(0)=0, (3) if fa(x)>0, then ¡{Fix^y)

-P(y)\\u£* for aU ye®, (4) mt = Mxfa(x)>0 by [l], Theorem 7, 4. There-

fore

\\fa(z)(F(z-ix) - F(x))\\u g faiz)pi*-H) - F(x)\\u = faiz)tiz),

and this is equal to 0 if fa.(z) =0, and úefa.(z) if ̂ ,(2)^0. Thus

\\faXF-m,F\\Íúem.,

and for the weight function fa[x) =fa.(x)/m, we have

||*XF-F||£á«.

For the special weight function x(#) from Lemma 2 we obtain

||x X F - F||J g « + HOC - *) X F\\u ^ e + Mx\\ifa[xy-^) - x(xy-1))F(y)\\v

á e + eM,(max|| ± F(y)||¿) = e + tC,

where C is a constant independent of e. Choosing e < (1+C)_1, we obtain the

theorem.

Theorem 23. If FeAp, there exists a sequence of special weight functions

4>n(x), n = l, 2, 3, • • • , such that F is the limit of the sequence <j>„XF,

n = l, 2, 3, ■ • • .

Consider the functions faXF, for aU special weight functions fa and denote

their set by S. By Theorem 22, F c S„i; but S0i, being c (($Rf)0oQy)oi (Theorem

w«(m) =
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21), is separable; hence, F is the limit of a sequence of (equal or different)

elements eS.

Definition 8. If Dix) = {Dp„ix) \P,,-i, ■■■,, is an irreducible normal repre-

sentation of ® (cf. [l], Chapter III, Definitions 9, 10) we form, for FeAp,

f„iD) = M,iD.„ix-l)Fix)) = M(L\,F),

and the matrix

y> = {/„„(2>)},,„ _!....,,.

/P„(D) is the (D, p, a)-expansion-coefficient of F,fD its D-expansion-matrix.

Theorem 24. The expansion coefficients and matrices have the following

properties:

1. Mi^iaF))=aMiL\¡F), aeL.
2. MiD„iF+G)) =MiD,J?)+MiD„G).

3. If F is the limit of a sequence Fn, A = 1,2, • • -, then, for each (D, p, a),

MiDptF) is the limit of the sequence MiDfirFN), A = 1, 2, • • ■ .

4. If G=<f>XF, and if gP„(2)), cpp„(27), /„„(£>) are expansion coefficients

of G, <f>, F respectively, then

gD = <t>DfD,

that is to say,

g,*(D) = Í:<b,r(D)U(D).
r-l

In particular, the matrix gD vanishes if fD or <pD vanishes (or both).

5. If DN, N = 1,2, 3, ■ ■ • , is a ifinite or countable) sequence of irreducible

inequivalent normal representations, if the sn are their respective degrees, if

hf, are elements of L, and if

(23) F=Y.\sN HCl\A
JV_1 \       p ,<r-l /

[meaning that FeAp is the limit, m—»°o, of the sequence of elements

Fm - jtls» £ hNpJ)Í)

from Ap], then

_ (  0 if D ^ DN
MiD„F) = \   y iN= 1,2,3,- ■■).I  h„„ if D = LW
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1 and 2 are obvious; 3 is easUy deducible from the fact that G(x, y)eU

implies MyGix, y)e2U (Theorem 16, 8) ; and 4 follows from the relation

gl = M,iD.,ix-l)M,i<l>ixy-l)Fiy))) = Mv(Fiy)Mjp^ior^ixy-1)))

= MyiFiy)MtiDcpiy-h-1)faz)))

= ¿ M,<Fiy)D„iy-i))-M.iDr,ie-i)<l>iz)).
T = l

As regards 5, if the number of the representations DN is finite, it follows by

direct computation of MxiD,„ix)F(x))> applying 1 and 2 and [l], Theorem

21, and in the general case by using this and 3.

Theorem 25. If FeAp, it has only countably many expansion matrices 9*0.

By Theorem 24, 4 and 3, this is true if F has the form faXG, with </> a

special weight function, or if F is the limit of such functions. Now apply

Theorem 23.

Definition 9. If FeAp; if DN,N = l, 2, ■ ■ ■ , is the sequence of irreducible

normal representations (iw any fixed order) for which its expansion matrices

9*0; if the s11 are their respective degrees; and if fN,p„ = Mx(D^a(x~l)F(x)) ; then

we call the formal series

(24) ¿j*  Ê/*,„£,"
iV-l p.ff-l

the Fourier expansion of F.

We call a sequence Fm, m = 1, 2, • • • , formally convergent (to F), if the se-

quence of the Fourier expansions of the functions Fm is formally convergent (to

the Fourier expansion of F), i.e., if for any (D, p, er), the sequence M(DpaFm)

has a limit (namely J7(7>p<rF)).

Remark. Theorem 24 states properties of the Fourier expansion. 1 and 2

state additivity. 3 states that the Fourier series of a limit is the formal limit

of the Fourier series. 4 gives an important rule for the computation of the

Fourier series of a convolution of an almost periodic function with a numerical

almost periodic function. Finally, 5 states that the sum of a uniformly con-

vergent series of the form (23) is its own Fourier expansion.

Theorem 26. (Uniqueness Theorem.) Almost periodic functions which have

the same Fourier expansion are equal.

If G and 77 have the same expansion, then the expansion of F = G —77

vanishes identically. From
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(25) D„XF = MviDrixy-Wiy)) = ¿ Drr(x)MviD„iy-^)Fiy))
T-l

it follows that DP„XF vanishes for any (7), p, a). Hence <j>XF = 0 for any

special weight function. But F is the limit of such functions (Theorem 23).

Therefore F = 0.

Part III. Theorems on approximation and summation

Theorem 27. (Approximation Theorem.) 7/F is almost periodic, it is the

limit of a sequence of finite linear aggregates of the form^fD^ withfeL. More

precisely, if DN, N = 1,2,3, ■ ■ ■ , are the representations occurring in the Four-

ier expansion of F, if the sN are their respective degrees, there exist elements

Ín.pc °f 7 im = l, 2, 3, ■ ■ ■) such that for each m only a finite number of them

is 9*0, and that F is the limit, for »&—»•<», of the finite aggregates

Fm = usi' z/;.^).
tr=x\    p ,o--i /

F is the limit of a sequence Fm=(pmXF, each <pm being a special weight

function. Using (25) we find that this sequence has the property stated in

the theorem.

Theorem 28. Let the sequence Fm, m = l, 2, 3, • • • , be part of a totally

bounded or compact set of Ap. In order that the sequence have a limit it is suf-

ficient that it be formally convergent.

As the' closure of a totally bounded set is compact (cf. [4], Theorem 11

and Definition 10), it is sufficient to consider the second case. Owing to the

compactness, the sequence has at least one condensation point, and, using

the compactness again, we have to show that it has no more than one con-

densation point. Otherwise there would exist two subsequences FPm, F„m of

Fm, having two different limits, G and 77 respectively. The Fourier expansion

of G is the formal limit of the Fourier expansions of the sequence FPm, and

therefore, the sequence Fm being formally convergent, of the sequence Fm.

Similarly, the Fourier expansion of 77 is the formal limit of the expansions of

the sequence Fm. Thus G and 77 have the same Fourier expansion, and by

Theorem 26, G = 77, which contradicts our hypothesis.

Definition 10. The function Fe Ap will be called a class function if for all

x and y, F(yxy_1) = F(x), or, which is equivalent, if for all x and y, F(yx) = F(xy).

A formal series (24) will be called a class series if

(26) flf.pt  = fNSpe.
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Theorem 29. If Fix)eAp, then Foix) = MvFiyxy-1) is a class function,

and if (24) is the Fourier expansion of Fix), then the Fourier expansion of

Foix) is

tsVÁDl,
N-l p-1

where

1   •*
ff — ~7 22fif.pi,-

sN ,-1

In order that a function F of Ap be a class function, it is necessary and suf-

ficient that its Fourier expansion be a class series.

We have

Foizxz'1) = MyFiyzxz-'-y-1) = MyFiyxy-1) = Faix);

hence Foix) is a class function. For a fixed representation \DP„) we have

MxiDp,ix-i)Faix)) = MiMyiD^ix-Wiyxy-1)) = M.Mw'D„iy-*x-ly)F(x))

= Mv 2ZDfP(y-i)Dq.(y)-Mx(Dpi(x--)F(x))
p.a— i

= — É M,iDp,ix-yPi*))
S    P-.1

and this proves the statement about the Fourier series of Foix).

If the Fourier expansion of F is a class series, the functions F and Fa have

the same Fourier expansion. By Theorem 26, F=Fo, and hence F is a class

function, because F0 is one.

Conversely if Fix) =Fiyxy~1), then Fix) = MyFiyxy1) = Foix), and by

the first part of our theorem, the Fourier expansion of Foix) is a class series.

Theorem 30. (Summation Theorem.) Let DN', N = l, 2, 3, • ■ • , denote a

sequence of irreducible normal representations, and the sN their respective de-

grees. There exists a sequence of special weight functions <pm, m = l, 2, 3,- • • ,

with the following properties:

1. Each <pm is a class function.

2. All Fourier coefficients of (pm are ~\%0, ¿1.

3. Any almost periodic function F whose Fourier expansion contains no other

representations than the given ones, is the limit of the sequence <pmXF,

m = l, 2, • ■ ■ .

In particular, there exists a square array of numbers r^, m, N = 1,2, ■ ■ • ,

with the following properties:
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a. For each m only a finite number of them is 9*0.

ß. OgrJ^l.
y. If an almost periodic function F has a Fourier expansion

£*" £ fx.j£
N-X        p ,7-1

[any number of the coefficients fu,p* may vanish], then F is the limit, m—xn, of

the finite aggregates

Fm = ¿ZC^ifN.p.Dl.
N-X p.n—l

We determine numbers en, a\\9*0, such that the series

(27) £   iJVJ*(    T,Drr(x))
N-l \ T-l /

is uniformly convergent, thus representing a numerical almost periodic func-

tion/^). There exist special weight functions Xm(x), m = 1, 2, • • • , such that

the sequence of functions fm(x) =XmXf(x) is uniformly convergent to f(x).

By [1], Theorem 21,

fXDp, = eND„.

ButfmXDpy, = XmX(fXD^,). Considering eN9*0, we conclude that

(28) lim xm X D* = £>*.

In particular,

Um Mx(D^(x-1)xm(x)) = 5„.

We now consider the class function

(29) *m(x) = MvXn(yxy-i);

fan(x) is obviously a weight function, and Theorem 29 shows that it has the

form

(30) 4>m(x)   =   J^Sd   aZ{   ¿2   ̂ rr)
D \ T-l /

with a finite number of terms, so that it is a special weight function. From

(28) it foUows that
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lim an = 1 íorD = DN.
m—>«

The function

*»' = Mx-1) = X>fl "¡s( f) Drr)
D \ r-1 /

has all the properties of \pm. Finally we introduce the class function <t>m = 4/m

X ypm , for which we find

4>m   =   13    SDrZ\    X    DTT),
D \ r-l /

where
m i      mi2

rr> = I aD | ,

with

(31) lim r£ = 1 for Z? = Z>w.

It is easy to find that <pm is again a weight function. Its coefficients r£ are ^0,

and as r", <£»(#) are real and 5:0,

rl - MI(£>n(^-1)0m(x)) g ilf.( | Z>„(;trl) | • | c/>m(s) \ ) ¿ M xi<bmix)) = 1.

Hence the properties 1 and 2 of our theorem are fulfilled. Using (31) we con-

clude from Theorem 24, 4, that for any F whose Fourier expansion contains

no other representations than the given ones, the sequence 4>mXF converges

formally to F. By Theorem 21, this sequence is part of the compact set

((5Kp)conv)ci. Thus we may apply Theorem 28, and this proves property 3.

The second half of Theorem 30 is an immediate consequence of the first

half.

Definition 11. A system of irreducible normal representations will be

called a module ÜÖ? if it contains with every representation its complex conjugate,

and the Fourier series of the product of any two occurring representation coef-

ficients contains no other representations than the given ones* A module will be

called countable if it contains only a finite or enumerable number of representa-

tions.

* If D11, D1* are any two normal representations, then, in the sense in which these symbols are

used in the theory of group-representations, the direct product DMDN is a finite sum

2Zc¥"Dr
p

(the cf are the "composition coefficients"). Hence the product of any two representation coeffi-

cients has a finite Fourier expansion.
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Lemma 3. There is always a smallest module containing a given set of repre-

sentations; if the given set is countable, then so is also the smallest module.

Consider all finite subsystems of the given set of representation coef-

ficients and their complex conjugates and form all possible power-products

with them. The totality of the representations occurring in their Fourier

series is the desired module.

Definition 12. Given any moduWSSlyWe shall denote by {'Hit] the set of Ap

consisting of those functions whose Fourier expansion contains no other repre-

sentations than those occurring inW.

Theorem 31. Givenffll, the set {5DÎ} has the following properties:

1. If F(x) is in {9JÎ}, every Fixa) is in {2Jc}.

2. If Fix) is in {ST/Í}, every F (ax) is in {SD? \.

3. If Fix) is in {9Jc}, every aFix) is in {SDÎ}.

4. If Fix) and G(x) are in {W}, Fix) ± G(x) is in {m}.

5. If Fx, F2, ■ • ■ are in {SDÎ}, and if F is the limit of Fn, then F is in {ffl}.

6. If fx, • ■ • , fn are numerical functions of {3Jl}, and F(ux, • ■ • , un) is a

numerical function which is defined and uniformly continuous for the range of

fi, • • " >fn,thenF(fx(x), ■ ■ • ,fn(x)) is also contained in {$D?}.

7. If at least one of the two functions a(x), Fix) isin {'Sfl],thenaXF(x) is also.

(a(x) is numerical.)

1-5 follow easily from the formal properties of Fourier expansion. 7 is an

immediate consequence of Theorem 24, 4. As regards 6, if / and g are nu-

merical finite aggregates of representations from {93?}, then / as well as fg

is also e {9JÍ} by definition of {93?}. Applying the approximation theorem

and 5, the same holds for / and fg for any numerical functions /, g from

{37Î} - Hence 6 is true if F(ux, • • • , un) is a polynomial in ux, ■ • • , un and

their complex conjugates. F(ux, ■ ■ • , un) being uniformly continuous on the

range of fx, ■ ■ ■ , /„, which is a bounded set since fx, • ■ ■ , fn are a.p.,

F(fx(x), • ■ ■ , fn(x)) is a uniform limit of polynomials in fx(x), ■ ■ ■ , fn(x)

and their complex conjugates. Thus 5 completes the proof of 6.

Theorem 32. If 9Ji = (7>1, D2, • ■ ■) is a countable module, there exists

in {ffl} a sequence of special weight functions cf>x, <t>2, • • • suchthat

(i) fa, = ¿ s"rî( £  D*);
JV=1 \   T-l /

(ii) 0|c*|l, lim r" = 1.
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As in the proof of Theorem 30, we choose the eN^0 such that the series

(27) is uniformly convergent, and construct the special weight functions

<pi, (p2, ■ ■ ■ mentioned therein.

By Theorem 30 these c/>i, <J>2, • ■ ■ have the properties (i), (ii) of our

theorem, so we need prove only that they belong to {SDÎ}.

As fix) belongs to {ffl}, for every finite subset di, • • • , a„ of ®, all/(acai),

• ■ • ,fixan) also do, and with them their continuous function

max ( | fixa/) - /(ax) |, • • • , | fixan) - /(a„) | )

=     l.u.b.    (|/(*y)-/(y)|).

Since/(z) is almost periodic, we can select a sequence of such sets *i, • • • , an,

so that this converges uniformly to the translation function

/(*) = l.u.b. (|/(*y)-/(y)|).
ycC

Thus tix), as well as the yp,ix) =co«(¿(a;)) of Theorem 22, which is a continuous

function of tix), belongs to {9DÎ}, and with it

U*)
tix) =

Mx^ix)

The xi(«) of Lemma 2 contains only such representations as occur in the

Fourier series of ipix); therefore it also belongs to {9Ji}, and with it x0*0-

The same is true of the x of Theorem 22 and also of the %h X*t ' ' ' m the

proof of Theorem 30 as well as of the \pi, >p2, - - - , since these contain only

such representations as occur in the Fourier series of the corresponding

functions xi> Xi, ' ' ' • It follows finally that <pi, <?«,••• c {SDî}, and the

proof is complete.

Theorem 33. (Isolation Theorem.) Let F be an almost periodic function,

with a Fourier expansion

(32) 2Z(sd £ fDJ>\
D \       p,<r-l /

and let SDî be any module. There exists an almost periodic function, we shall de-

note it by Fa, whose Fourier expansion consists of exactly those terms

•D

(33) sD  J2 Íd,J)„
Ptff"*i

of (32), for which D is contained in 5T/Î. And we have F^-327.

The given module 5DÎ need not be enumerable from the outset, but we may
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replace it by the enumerable module generated by those representations of

93? which occur in (32). Hence 93? may be assumed to be enumerable. Let it

contain the representations D1, D2, ■ • • . With the special weight functions

fa, <p2, ■ ■ ■ from Theorem 32 we construct the functions tpxXF, faXF, • • • .

By Theorem 21 the functions fanXF are all -3F, and by the properties of

fan, the functions fanXF are formally convergent. By Theorem 28 the se-

quence fanXF has a limit function/«, and by Theorems 24, 4 and 32 the

Fourier series of/« has the stated form.

Theorem 34. Let F be an almost periodic function and 93?i, 93?2, ■ ■ • a

sequence of monotonically increasing modules which in their sum contain all

representations occurring in F.

The sequence of functions

(34) F^h in = 1, 2, • • • )

converges to F.

The functions (34) converge formaUy to F, and are aU -3F. By Theorem

28, F is the limit of the sequence.

Theorem 35. (Decomposition Theorem.) Let F be an almost periodic

function and let it be possible to divide the representations occurring in F in

a sequence of systems Si, ö2, 83, • • • , in such a way that for each k( = 1, 2,3, • • •),

the least module containing ®(êi, 82, • • • , 8*) has no element in common with

©(g*+i, %h+t, ■ • ■)■ There exists, for each k, an almost periodic function, we shall

denote it by Fgt, whose Fourier expansion consists of exactly those terms (33)

of (32), for which D is contained in êk; and the series

Fet + Fg2 + • • •
converges to F.

If we denote the smaUest module containing «i, • • • , 8* by 93?*, the de-

sired function Fgt is F^k for k = l, and F^—Fm^ for k^2, and our

theorem reduces to Theorem 34.

Part IV. Applications to Hilbert space

In this section we shall assume L to be either a Hilbert space §, or the

space 53 of all bounded transformations in §. We shall consider these spaces

with the help of the various topologies which have been discussed in [4],

Chapter IV, as well as in the places quoted there. According to whether we

consider § in the topology based on the neighborhoods Ui or U2, we shall

denote £ by §i or £2 respectively. As for S8, corresponding to the neigh-

borhoods U3, U4, IXt, we shall denote it by 933, S84, 336, respectively.
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Theorem 36. (a) If Fix) e § is almost periodic in $, it is also almost pe-

riodic in §f. iß) If Fix) e33* is almost periodic in $$f it is also almost periodic

in 33 4, and (7) if it is almost periodic in 93 4 it is also almost periodic in 33 6 .

(5) Fix) is almost periodic in !&f if and only if the numerical function

(F(x), g), which is the inner product of F(x) with the constant geÍQ, is almost

periodic for every ge§.

(e) F(x) is almost periodic in $34 if and only if F(x)f, that is, the value of

F(x) operated upon the constant fe^, is almost periodic in §1 for every fe^.

(f) F(x) is almost periodic in 33 6 if and only if F(x)f is almost periodic in

§f for every fe!Q, that is, if and only if the numerical function (F(x)f, g) is

almost periodic for every pair f, g, e§.

Ad (a). The topology of §2 is weaker than the topology of §1. More

precisely: to any i/2eU2 there corresponds a UxeXXx such that Ux c U2. Hence,

if a set S c £> is totally bounded in §1 it is also totally bounded in ^>2. And this

proves the proposition, if we remember Definition 1.

Ad (ß) and (7). A similar argument as ad (a).

Ad (b). Let S be any set of i$b. If ge!Q we denote by S„ the set of numer-

ical functions  (F(x), g), FeS,  and  for any finite number of  elements

gi, • - " j gneÍQ  we denote  by S„,.„n the set of «-dimensional vector

functions with components (Fix), gx), • • • , (F(x), gn), FeS. It is easy to see

that S is totally bounded in §f if and only if aU sets S„„ ..., „„ are totally

bounded. On the other hand, we have to prove that S is totaUy bounded

in £>2 if and only if all Sa are totally bounded. Thus it is sufficient to prove

that, for a fixed S, the total boundedness of all sets Ss implies the total

boundedness of aU sets S„„ ... ,ffn. This follows from [4], Theorem 9, if we

observe that a vector {</>i, ■ • • , </>„} may be considered as a continuous

function of its components <px, ■ ■ ■ , <j>n in the obvious topology of vector

spaces.

Ad (e) and (f). A similar argument as ad (5).

Theorem 37. Let Fix) be an almost periodic function, its Fourier expansion

being (fhroughout this part, we will write the Fourier coefficients api(7>) without

the factors sD, the degree of D)

(35) F(*)~ £«„(/>)/>„.(*).
D,P,<r

If F(x) is in §®, we have ap„iD)eÍQ, and (F(x), g), for any gefè, has the

Fourier expansion
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(36) iFix), g)~J2 iafQiD), g)D„,ix) -

If Fix) is in 33®, we have ap(r(2?) e93; for any fe!ç>, Fix)f has the Fourier

expansion

(37) F(x)f ~ D (a„(D)f) -D„(x),
D ,P,<r

and for anyf, geÍQ, iFix)f, g) has the Fourier expansion

(38) iFix)f, g) ~ £ (a,.(Z>)/, g) • £>„(*).

Remembering the definition of a„„(Z)), it is sufficient to prove

(39) M .iFix), g) = iMxFix), g)

in the case of (36), and

(40) M.(F(x)f) = iMxFix))f

in the case (37) ; (38) follows from their combination.

The mean with respect to the strong topology (§i or 584) has, a fortiori,

all the properties of the mean in the weak topology (£>2 or 33 5). Hence, by the

uniqueness property of the mean (Theorem 17), it is sufficient to consider

the cases of weak topology. In these cases the relations (39), (40) follow by a

new application of Theorem 17, since iMxFix), g) and iMxFix))f have the

properties required in this theorem.

Theorem 38. If Fix) is an almost periodic function of the class 93, (" = 3,

4, 5), and ae33, then aFix) and Fix)a[aF and Fa are the operational products

of F and a] are again almost periodic functions of the same class; and the

Fourier expansions ofaF and Fa may be obtained from the Fourier expansion of

Fix) by term-by-term multiplication with a on the right or on the left.

The first half of the theorem follows from the fact that, for a fixed a,

aF and Fa are continuous functions of F in each of the topologies 333, 33é, 33s.

The second half (in the case of aF) follows from Theorem 37, Formula (38),

if, in the formula of our statement connecting the expansions of aF and F,

we apply (38) and then replace F,f, g by aF,f, g in the left-hand member, and

by F, f, a*gia* is the adjoint of a) in the right-hand member and compare

the results; in the case of Fa we replace F, f, g by Fa, f, g and by F, af, g

respectively.
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Theorem 39. Let Fix) be an almost periodic function of 33? ; let (35) be

its Fourier expansion. If F(x) is a representation of the group by means of uni-

tary transformations, that is, if F(xy)=F(x)F(y), F(l) = l, F(x~1)=F(x)*,

then we have the following:

(i) F(x) is almost periodic as a function of 33?; moreover, F is the limit,

in the ^Si-topology, of the sequence

(41) Fm= ¿(   £\,(7^)ZV(x)Y
N-X \   p,a-X /

(ii) The Fourier coefficients have the properties

(42) ap,(D)aru(E) = O ifD9*E,

(43) ap,(D)aTU(D) = b„apu(D) [p, a, r, v = 1, • • ■ , sD],

(44) a„(D)* = <*.p(D) [p, a = 1, • • • , «*].

(iii) The system of operators app(D) is a resolution of the identity, that

is to say, each of them is a projection operator, any two of them are orthogonal,

and their sum is the identity.

Conversely, if a set of elements ap,(D) of %5 fulfills the conditions (ii) and (iii),

then the series (35) is the Fourier expansion of an almost periodic function F(x)

with the assigned properties.

Remark concerning the theorem. Before proving the theorem we want to

point out the algebraic aspect of the proposition.

Since app(D) is a projection it corresponds to a closed linear manifold,

say 93?p°. Select an orthonormal system determining 93?iD: \frfu ^f2, • • • (the

sequence is empty, finite, or countable)-. Now, (43) and (44) imply

afl(D)*apx(D) = axx(D),     apx(D)apl(D)* = app(D),

and this means that api(T>) maps 93?rD in a one-to-one and unitary way on

93?,P, while apx(D)f=0 if / is orthogonal to 93?r°. Thus, if we define fa,,(D)

= a„x(D)fav(D), the fa,x(D), \pp2(D), ■ ■ ■ determine 9J?PD. By (43) we have

ap,(D)a,x(D) =apl(D), and this implies apc(D)fa,,(D) =fa,,(D).

Since, by (iii), ^2d,pOcpp(D) = 1, the 93?/* together determine iç>, and,

since, by (42), (43), (44), a,p(D)*aT<J(E) =0 if D9*E or 09*r, the 93?,? are

mutually orthogonal. Thus the ^P„(7>) form a complete orthonormal system

in §. For this system we found

i  0, i
aTV(E)fa,(D) = {

0,iiD9*Eorv9*p,

(D) HD = E,v = p.
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Remembering that the aTViD) form the Fourier expansion of Fix), we obtain

the formulas

Fix)i„PiD) =j£ Dt,(x)*„(D).
T-l

Thus our theorem proves that the representation Fix) may be reduced to

split up according to the finite irreducible representations Dix). The sub-

spaces which correspond to this reduction are determined by the

(45) 4,u(D), 4>uiD), ■■■ , *.D,iD) for all D, v.—

We pass on to the proof. Let Fix) have the assumed properties. Fixy) is an

almost periodic function in (x, y) and for each y an almost periodic function

in x. From the approximating properties of the Fourier expansion it follows

that the Fourier expansion of F vix) =Fixy) as ^-function may be derived

from the series (35) in a formal way, namely

(46) Fvix) ~ Y. «P-CD; y)D„i*X
O.P.«

where

(47) «„'D;y) = ¿t <x>AD)D„iy).
T-l

On the other hand, Fvix) =Fix)Fiy), and by Theorem 38,

(48) F„ix) ~ £ ap,iD) Fiy)D„ix).

A comparison of (46) and (48) yields, for any D, p, a,

(49) «,ÁD)Fiy) = 2Z«,riD)D.T(y).
r-l

Now we take y variable, and we again apply Theorem 38. This gives the rela-

tions (42) and (43). In order to prove (44) we need only compare the relations

(50) Fix'1) ~ 2Z c*iD)D„ix-*) = £ ap,iD)D~(x),

(51) Fix)* ~ 2Z *,AD)*L\Jx)

(which follow from the approximating properties of the Fourier series), and

observe that the representations {Dp„} also form a set of irreducible normal

representations of ®.

If we apply (44) to p = <r we find that app(D) is self-adjoint, and (43) gives

(app(D))2=app(D). Hence, each app(D) is a projection. It follows from (42)

and (43) that any two of them are orthogonal. Hence any finite number of
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them, and also their (infinite) sum, is a projection again. We still have to

prove that£j>,papp(D) is the unity and that (i) holds.

Let/be any element of §. We want to evaluate the difference

Fp(*)f - Ft(x)f, p>q,

Fp(x) being given by (41).    Let D be any representation occurring in

Fp(x)f-Fq(x)f. Writing

ßD(x) = £ ap„(D)D„(x),
p ,ff=i

we have

\\ßix)f\\2= ißix)f, ßix)f) =    E    Dp,ix)LÛxJiap,iD)f,aUD)f);

but

(<V(Z>)/, arviD)f) = (a„(Z>)*«„(/>)/,/) = (a„(D)apa(D)f, f) = ÔTp(avc(D)f, f) ;

hence

l|0(*)/H2 = Z ( £ D„ix)D„ix)\a„iD)f,f)
U,(T=1  \   T-l /

= E sU«»AD)f, f)
V ,(T=I

= 2Z(«„iD)f,f) = Z||aPP(ö)/||2.
P-i P=i

Thus

(52) ||F,(*)/ - Fq(x)f\\2 = E   E lk,0D*)/||2.
N-q+1 p-1

Since the app(D) are mutually orthogonal projections and the right side of

(52) is independent of x, it follows easily that the sequence of functions

Fm(x) is uniformly convergent in the topology 334. Thus F(x) is the limit of the

sequence (41) and is almost periodic also in the class 33?. Now

F(l) = lim F„(l) =  lim   YË ^(DN) = E *JP)>
m-*<*> m-*»   ¿v"=l P=l D,p

But F(l) = l, by assumption, and this proves the last missing part of (iii).

Conversely, let a set of elements ap„(D) of 33 satisfy (ii) and (iii). As

before, we deduce the relation (52). Hence the sequence Fm(x), defined by
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(41), is convergent, in the topology 334, to an almost periodic function F(x)

whose Fourier expansion is the uniformly convergent series (35). The group

properties of F(x) are easily verified from its series (35) on the basis of the

known properties (ii), (iii).

Theorem 40. Let the group ® be a metric, locally compact, separable space

in which the product xy is a continuous function of (x, y). We consider in ®

a right invariant Haar measure and the Hilbert space & consisting of all Lebesgue

measurable functions of integrable square in ®, and let Xix) denote, for each x,

the unitary operator which transforms every element fit) e§ into f if x).

In order that ® be compact it is necessary and sufficient that Xix) be an

almost periodic function o/33?.

Obviously X(x) has the properties

Xix)-i = £(*)*, Zixy) = Zix) Ziy), SE(1) = 1.

It follows easily that %ix) is continuous in the topology 33b.

If ® is compact, every continuous function is almost periodic and this

proves the necessity of our condition. Conversely, let Zix) be almost periodic.

We consider its Fourier expansion and the complete orthonormal system

i/v(77) constructed in the remark to Theorem 39. Consider one of its non-

empty subsystems (45) and denote it by fa-, ■ ■ ■ , fa. By the last relation of

the remark we have

(53) Fix)fait) = faixt) = Z DTpix)fait),
T

except perhaps for a /-set of measure 0, depending on x. By the theorem of

Fubini there is a value t = tQ for which (53) holds for all x except a set of

measure 0. As Dix) is unitary we obtain

Zkp(^o)i2 = z\uh)\2 = c.
p p

Upon integrating over @, the left side gives sD whereas the right side is C

times the total measure of ®. Thus jb>0 implies that C9*0 and that the

total measure of © is finite. If the total measure of ® is finite there cannot

exist an e0 > 0 and an infinite number of points on ® any two of which have a

distance >€o. This implies that ® is totally bounded. Being locally compact,

® is also complete. Hence the compactness of ®.
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