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Introduction

In recent years great advances have been made in the theory of dynamical

systems. Nevertheless comparatively few specific systems have been treated

by modern methods in such a way as to set forth the characteristic features

of the entire system. Among the specific systems which have been treated,

we may mention (1) the restricted problem of three bodies [Birkhoff 5],f

which is an irreversible dynamical system and further complicated by the

presence of singularities; (2) the determination of the geodesies on a surface

of negative curvature [Morse 2, 3; Birkhoff 4, pp. 238-248]; (3) a simple

type of reversible dynamical systems on surfaces of revolution [Price 1, 2];

(4) the billiard ball problem [Birkhoff 6; 4, pp. 169-179]. The purpose of
the present paper is to study reversible dynamical systems, with the emphasis

on those which have an oval of zero velocity.

It has been known for a long time that among the small oscillations

[Whittaker 1, chap. VII] of a reversible dynamical system at a position of

stable equilibrium there are two fundamental periodic orbits which join two

points of the oval of zero velocity and are traced with a backward and forward

motion. Part I of the present paper is devoted to proving that similar orbits

exist in the actual system at least for sufficiently restricted values of the

energy constant. These orbits appear to be one of the characteristic features

of a reversible dynamical system with an oval of zero velocity. The property

of reversible systems which distinguishes them from irreversible systems is

that their trajectories in the manifold of states of motion are grouped in sym-

metric pairs [see §2].

Using methods developed by Poincaré [1, vol. I, chap. Ill] and elabo-

rated by Painlevé [l], Horn [l] has shown that there exist certain periodic

orbits in the actual system which reduce to the fundamental periodic orbits

of the small oscillations system, but their exact nature was not determined.

In the present treatment a parameter n is introduced in such a way that p = 0

* Part of a paper presented to the Society, February 25, 1933, under the title A study of certain

dynamical systems with applications to the generalized double pendulum; received by the editors

February 9, 1934.

t We shall refer in this manner to the bibliography at the end of this paper.

51



52 G. B. PRICE [January

gives the limiting case of small oscillations. Then the equations of motion

are integrated in terms of series in parameters by Poincaré's method, and

two theorems on the analytic continuation of the fundamental periodic orbits

of the limiting integrable system are proved. The second theorem applies only

when the system is symmetric in the position of equilibrium. These theorems

show not only that analytic continuation is possible in certain cases in which

Horn's method fails, but also that the continued orbits always touch the oval

of zero velocity.

Part II, using the results of Part I, is devoted to a detailed study of mo-

tion in the neighborhood of a position of stable equilibrium in the case of two

degrees of freedom. The methods are those of analytic continuation [Birk-

hoff 4, pp. 139-143; Poincaré 1, vol. I, chap. Ill], surfaces of section, and

surface transformations [Birkhoff 1, 3]. First, the manifold of states of mo-

tion is studied, and a convenient representation of it is given in 3-space. Then

the limiting integrable system is treated in detail. Next some general the-

orems on a common type of surface of section are given. At this point the

presence of the oval of zero velocity introduces essential difficulties, since the

surface of section is formed from a periodic orbit which joins two points of it.

The existence of periodic orbits is established by applying the general theory

of surface transformations. Poincaré's Last Geometric Theorem is useful

here. When the system is symmetric in the position of equilibrium, the trans-

formation on the surface of section can be factored in certain ways, and more

specific results concerning periodic orbits are established.

The author wishes to acknowledge his indebtedness and express his thanks

to Professor Birkhoff, who proposed a problem which led to this paper and

made valuable suggestions concerning .the method of treatment.

Part I. Analytic continuation of periodic orbits

1. Definitions and assumptions. Let (y¿) and (y/), i = l, ■ ■ ■ , n, be the

position and velocity coordinates respectively of a dynamical system with

kinetic energy T and force function U. Throughout the paper a prime will

denote a derivative with respect to the time. Let the (y.) be principal coor-

dinates [Whittaker 1, chap. VII], and assume that T and U have the follow-

ing specific forms :

(' )       T = —   ¿ fa + Tiiiyx, ■■■ , yn)]yl y¡ («« = l; 5(¡ = 0, i 9* j),
2   i, j-i

(2)       U = -J2\?y? + uiyx,--- ,yn),
L  j_i
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where

(3) | Su + Tiiiyi, ■ ■ ■ , yn) \ * 0,

and the X¿ are either real or pure imaginary with

(4) \i9±Q (i=l, ••■,«).

Here the T^iy/) are functions which vanish at (0), and uiy¡) has no terms of

degree lower than the third ; we assume that these are entire functions of the

indicated arguments.

The equations of motion in the Lagrangian form can be written down at

once; because the determinant in (3) is not zero, these equations can be put

in the form

n

(5) y'i' = X.-y,- + Ef*'/ (Vu " • , yùyiy'i +Giiyi, ■ ■ ■ , y„),
*.!-l

where i = 1, • • • , n. The integral of energy is

(6) T = U + A/2.

Since we assume T to be a positive definite quadratic form in the veloci-

ties, it follows from (6) that the motion takes place in the regions U+h/2^0,

bounded by the oval of zero velocity Z with the equation U+h/2=0. This

system may be interpreted as a particle of unit mass moving on a surface with

(7) ds2 = 2Tidt)2

and iy/) as the coordinates, and acted on by forces derived from U [Birkhoff

1, pp. 202 and 212-213; 4, pp. 23-25]. A curve on the characteristic surface

(7) defined by a solution [y^t) ] of (5) will be termed an orbit of the particle,

and the curve [y¿(¿) ; y' it) ] in the manifold of states of motion M with the

equation (6) will be called a trajectory or stream line.

2. Reversible dynamical systems. Now If is a (2w —1)-manifold in the

2w-space with coordinates (y<; y/). We agree once and for all to exclude those

values of h which lead to a double point on Z, i.e., we assume the equations

(8) U + h/2 = 0, dU/dyt = 0 (i = 1, • • ■ , n)

have no simultaneous solution. With this restriction, M is an analytic mani-

fold, and there is no equilibrium solution y¡ = constant.

The usual existence theorems of differential equations [Birkhoff 4, pp.

1-14] can be applied to the system (5), (6). The orbits are regular curves

except at those points at which they touch Z, for only at these points can

iyi ) vanish. If an orbit touches Z, the particle approaches and recedes from
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it along one and the same curve, and spends only a finite length of time in

the neighborhood of the point. On the other hand, the trajectories are the

stream lines of a steady fluid motion in M. Since there are no double points

on Z, (yi ;yl') cannot vanish;hence the trajectories are regular curves without

exception.

Dynamical systems of the type introduced in §1 are known as reversible

[Birkhoff 1, p. 205; 4, pp. 27-29] ; their fundamental property is stated in the

following theorem.

Theorem 1. An orbit of a reversible dynamical system may be traced in

either direction; or again, the stream lines are paired, each stream line of a pair

being the symmetric image of the other in then-plane y i =0,i = l, • • • ,n.

The proof follows from the fact that if [y,(t); y'(t)] is a solution of (5),

then [yi(—t); —yl(—t)] is also a solution. The coordinates of symmetric

points on the two trajectories are obtained by combining the coordinates of a

point on the orbit with the two possible directions of the velocity vector.

Each trajectory of a pair will be called the symmetric trajectory of the first kind

of the other. If T* is a trajectory, its symmetric image of the first kind may

be represented by ViT*, where Fi may be thought of as a transformation.

Theorem 2. A necessary and sufficient condition that T* and VxT* be

identical is that the orbit which corresponds to T* pass through a point of Z.

The proof of this theorem and the foUowing one are left to the reader.

Theorem 3. A necessary and sufficient condition that an orbit which passes

through a point of Z be periodic is that it pass through a second point of Z, dis-

tinct from the first.

A periodic orbit which passes through a point of Z is thus a curve joining

two points of Z, and the particle traces this curve with a backward and for-

ward motion. The length of time required for the particle to pass from one

of the points of Z to the other is the same in either direction.

In certain cases, T and U are symmetric in the origin of coordinates on

the characteristic surface, i.e.,

(9) T(- yi} yi) = r(y,; yi),       tf(- yi) = Uiyi).

Theorem 4. If T and U satisfy (9), the orbits are paired, each orbit of a pair

being the symmetric image of the other in the origin; or again, the trajectories are

paired, each trajectory of a pair being the symmetric image of the other in the

origin of coordinates in M.

The proof follows from the fact that if [y,(t) ; y i (t) ] is a trajectory, then
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[—yi(l)', —yl{l)\ is als° a trajectory when (9) holds. Each trajectory of a

pair will be called the symmetric trajectory of the second kind of the other. If

T* is a trajectory, then V2T* will denote the symmetric trajectory of the

second kind. Thus when (9) holds, the trajectories are related by fours. The

group associated with T* is T*, V2T*, VXT*, and ViV2T*.

Theorem 5.IfT and U satisfy (9), a necessary and sufficient condition that

an orbit which passes through the origin be periodic is that it pass through the

origin a second time.

The proof follows from the fact that if an orbit passes through the origin,

it is its own symmetric image in the origin. Hence, the complete orbit can be

obtained by reflecting in the origin the part between any two successive pas-

sages through the origin. If an orbit passes through the origin at time t = t0

and closes at time t = h, then it passes through the origin at time t = ih+t/)/2

also.

As a consequence of Theorems 1 and 5, we have the following theorem, of

special importance later.

Theorem 6. If an orbit passes through the origin at time / = 0 and touches

Z at time t = t*, it is a periodic orbit with period At* and joins two points of Z

which are symmetric in the origin.

3. The limiting integrable system. The equations of motion and the

integral of energy are given by (5) and (6). We now replace the energy con-

stant h by y.2 and make the change of variables

(10) y i = nxi ii = 1, • • • , n).

The equations of motion and the integral of energy in the new variables are

n J

*{"   =  \?Xi + M E^*J 0**1,  •   •   •   , »Xn)x¿ Xf   H-GiißXl,  ■  ■  ■   , flXn),
k.i-1 P

n n

(11) E xl2 + 13 Tkjinxi, ■ ■ ■ , p.Xn)xkx'i
i—l k,j~l

n 1

= E ^iX?  -\-uilXXi, •  •  •  , IXXn) +  1,
«-1 P2

where i = l, ■ • ■ , n, and Tkl, G<, and u are entire functions whose series ex-

pansions have no terms of degree lower than the first, second, and third

respectively. Now for every value of u¿¿0 these equations represent the

actual system (5) and (6) for the value h=n2 of the energy constant. On the

other hand, p may be considered as a parameter in the equations of the
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system. The system is analytic in the parameter for all values of the par-

ameter, including p = 0.

For p = 0 the system (11) is integrable, being

*/' = \?Xi ii = 1, ■ • • , »),

(12) ¿*/»-¿V*í + l.
t-l i=X

This system is a limiting case of the actual system (5) and (6) obtained by

reducing the energy to zero and at the same time altering the units of length

according to (10). The solution of (12) for which (*¡; */) reduces at time

¿ = 0to (au;/3i) is

Xi = (a,/2)[exp iU) + exp (- X<i)] + (rV(2X<)) [exp (X</) - exp (- X<0],

xl = iaiki/2) [exp (X<0 - exp (- U)] + ißi/2) [exp (X<i) + exp (- X<*)],

where i = 1, ■ • • , n, and

(14) ¿0? -¿X/o^ + 1.
¿-1 i-l

We now suppose that ß of the Xi, 0<¿^rc, are pure imaginary. We can

suppose the notation is so chosen that they are Xi, • • • , X^. Then among the

solutions (13) there are k of special importance.

Theorem 7. The limiting integrable system (12) has the k fundamental

periodic trajectories

Xi = 0,

x¡ = 0 iÍ9*j; i = 1, • • • , n),

x¡= (1/ I X, [ ) sin ( | X,-| * + «,),

x'i  = cos ( I X,-1 / + 0,-) (J = I, ■ ■ ■ , k).

4. Solutions of the equations of motion in terms of series in parameters.

Our ultimate aim is to show that analytic continuation of the fundamental

periodic trajectories of the limiting integrable system is possible. With this

end in view, we shall obtain the solution of (11) in terms of series in certain

parameters, following a method developed by Poincaré [1, vol. I, pp. 58-63;

Moulton 1, chap. III].

Set

(16) Xi = Xi,        xi = y< ii = I, ■ ■ ■ ,n).

The system (11) thus takes the form
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dxi

~d7 = yi'

dyi
— = \?Xi + pYiixi, • ■ • , xn; yi, ■ ■ ■ , y„; p),
dt

(17)
n n

Y,y? + 12 Tijipxi, ■ ■ ■ , pxn)yiy¡
i_i t,j=i

" 1

=   E X»2 Xi2   H-: "(¡¿Xi, • •  •   , pXn)  +  1 ,
<-l M

where * = 1, • • • , n, and the F¿ are entire functions of the indicated argu-

ments. Now set

(18) t - t*(t0 + r)/t0.

Here /* is the new independent variable, r is a parameter, and t0 is a constant

whose value will be specified later. Now transform from the variables (a;¡; y¿)

to new variables (pi; q{) by means of

Xi = pi + y(,

yi = qi + Si (i9*j,im\t...tn),

1 /h + r. \
(19) xs = Pi + y, + -,-¡- sin (-| Xy| /* + 8,),

|   X; | \      to /

(h+r. \
y i = q¡ + oj + cos I-\\j\t* + Bj\.

Here 0y¿; 5<) are to be considered as parameters in the transformation.- The

equations of motion in the new variables are

dpi tp + T

— = —-— (?< + St),
dt* to

(20)
dqi      to + t
—t =-IX? (pi + yi) + nQiiPù a,-; yv, «<; p; r; t*) J,
dt* to

where i = l, ■ ■ ■ , n. The right hand members of these equations can be

expanded as power series in the 2n variables (pf; q/) and the (2n+2) par-

ameters (y¿; S,; p; t) with coefficients which are analytic functions of t*.

On carrying through the details of Poincaré's method and transforming back

to the original variables (*¿; y¿), we find the following solution of (17):
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Xi =

Xi = (1/2)[exp iU*) + exp (- \it*)]yi

+ (1/(2X,)) [exp (Kit*) - exp (- X¿*)]o,- + • • • ,

y i = (X,/2)[exp (X,/*) - exp (- X,î*)]y,

(21) + (1/2)[exp (X,/*) + exp (- U*)]&i + • • • ,

-y—p sin [~-- | X,-1 ** + 0,1 + (1/2) [exp (X,f) + exp (- X,/*)]7i
| Ai | L    to J

+ (l/(2XJ))[exp (X,/*) - exp (- X/»)]«, + • • • ,

y,- = cosp-^ | X,-1 t* + 0,1 + (X,/2) [exp (X;¿*) - exp (- A ¿*)]7y

+ (1/2) [exp (A/1) + exp (- X¿*)jí, + • • • ,

where îV/, t = l, • • • , n. This solution has the following properties:

(I) The series in (21) are series in the (2n+2) parameters (y<; ô<; p; t).

Except for the terms in p, the series are written out completely up to terms

of the second degree. The coefficients are real analytic functions of the real

variable t*. From (18) we see that the values of (a;*; yi) at time t = to+r are

obtained from (21) by setting t* = t0.

(II) If T* be chosen arbitrarily, it is possible to find an e such that the

series converge absolutely and uniformly for 0^2*^7*, | *y<| =£«> |^»l = e>

\A= e> M=e-
(III) The coefficients of all terms not explicitly written out in (21) vanish

for t* = 0. The solution (21) thus satisfies the initial conditions

on = yi,

ßi = Si (i ^ j, i - 1, • • • , n),

«i = (1/1 Ai| ) sin Oj + yh

ßi = cos 0/ + 5,-.

(IV) For y<= 5¿ = ^ = r = 0, the trajectory (21) reduces to the fundamental

periodic trajectory (15) of the limiting integrable system.

5. Analytic continuation of the fundamental periodic trajectories of the

limiting integrable system. We shall now show that under certain conditions

each of the k periodic trajectories (15) can be continued analytically for

p>0. We shall give the proof in the case/ = 1; the proof in the other cases is

similar.

From the solutions (21) we select for special consideration those for

which 0, = 7r/2, bi = 0,i = l, ■ ■ • ,n. They are
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xi = (1/ | Xi | ) cos [Ho + t) I Xi | t*/ta] + (1/2) [exp (Xi<*) + exp (- XíÍ*)]ti

+  ••• ,

yi = -sin [ito + t) | Xi | t*/to] + (X,/2) [exp (Xi<*) - exp(- \it*)]yi

(23) +  " " '
Xi = (1/2) [exp iU*) + exp (- X¿*) }yt

+  ••• ,

y i = (X./2) [exp (Kit*) - exp ( - U*) ]y{

+  ■■■ ,

where i = 2, • • • , n. The orbits corresponding to (23) are characterized by

the fact that at time t* = 0 they pass through a point of Z. Now when p = 0,

it is possible to determine the parameters 7< and t so that the orbit (23)

passes through a second point of Z at time t* = to = n-/ | Xi |. We hereby define

to in (18). For p = 0, we have only to take 7,- = 0, t = 0.

We now seek to determine 0y<; t) as functions of p so that for every value

of p the orbit (23) passes through a second point of Z at time t* = to = it/ | Xi |.

A necessary and sufficient condition that an orbit pass through a point of Z

is that all the velocities vanish simultaneously. We therefore have the follow-

ing equations for determining (y<; t) as functions of p:

— sin ( I Xi \t + it) — I Xi I (sin 1O71 + • • •   =0,

1     1 /      I x< I  \
- I X¿ I I sin   —   x 17,- + • • •   =0,

\     I Xi I   /

■i[exp (txtt) -exp (- TxTt)] 7'+' ' ' = °'

/I V     A 1
Xi2(n—r + 7i) + Ex.?7i2+ — «Gm, • ■ • ,MTn) + i = 0.

\ I Xi 1 /       <_2 p2

Here ¿ = 2, ■ ■ • , k aria j = k + l, ■ • ■ , n. The last equation states that the

integral of energy is satisfied at time t* = 0. The equations (24) are power

series in (7»; t; p) with constant coefficients. For p = 0 they have the solution

7< = t = 0. If the Jacobian with respect to 0y¿; r) is not zero for 7í = t = 0, it

is possible to solve (24) and obtain (7^ t) as analytic functions of p at least

for p small. Direct computation shows that this Jacobian does not vanish

unless |Xi|/|Xi|, i — 2, • ■ ■ , k, is an integer. Since an orbit which passes

through two distinct points of Z is periodic by Theorem 3, we have proved

the following theorem [compare Birkhoff 4, pp. 139-143].
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Theorem 8. The jth fundamental periodic orbit of the limiting integrable

system can be continued analytically for p>0, at least for p small, if X¿/X,-,

iytj, i = l, • '• • , k, is not an integer; each orbit of the continuation joins two

points of Z and is periodic with period 2(7r/|X,| +r).

If the system has the symmetry specified by (9), another procedure is

possible, which gives additional information and in certain cases additional

results. Consider the trajectories (21) for which

(25) 0,-0, 7. = 0 (t-1, •••,»).

The characteristic property of the corresponding orbits is that they pass

through the origin when t* = 0. By setting ot = T = 0 when p = 0, we obtain

an orbit which passes through a point of Z when 2* = /o = t/(2|Xi|). We

hereby define t0 anew in (18). We propose to show that under certain con-

ditions it is possible to determine (¿5,; r) as functions of p so that the orbit

determined by (21) and (25) has this property for all values of p sufficiently

small. The following equations determine these functions :

cos (x/2 + | Xi | t) + (cos tt/2)c5i + . • . = 0,

f)', + - ••-"•
(1/2)[eip (iftn)+ exp(" iTí7i)]a,+ "-0'

(1 + S/)2 + 522 + • ■ • + 5„2 - 1 = 0.

Here i = 2, • • ■ , k, &ndj = k+l, ■ ■ ■ , n. The first n equations express the

condition that the velocities vanish for /* = /0 = 7r/ (21 Xi | ), and the last equa-

tion states that the initial conditions satisfy the integral of energy. The equa-

tions (26) determine the analytic continuation of the first fundamental peri-

odic trajectory (15) ; the equations for the others are similar.

Equations (26) have the solution 5< = r = 0 when p = 0. We can solve and

get (5¿; r) as analytic functions of p if the Jacobian does not vanish when

bi = T = 0. A direct computation shows that this Jacobian vanishes if and

only if Xi/Xi, i = 2, • • ■ , k, is an odd integer. The orbits (21) for which (9),

(25), and (26) hold pass through the origin for t* = 0 and touch Z when

t* = tt/(2IXi| ) ; hence, by Theorem 6 they are periodic. We have thus proved

the following theorem.

Theorem 9. If (9) holds, and if X¡/X,-, i^j, i = i, ■ ■ ■ , k, is not an odd

integer, the jth fundamental periodic orbit of the limiting integrable system can

be continued analytically for p>0; each orbit of the continuation is a curve which

(cos
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passes through the origin, is symmetric in the origin, joins two points of Z, and

is periodic with period 4(tv/(2 [ X,-1 ) + t) .

If the system is symmetric in the origin, the periodic orbits whose exist-

ence is established by Theorem 8 are identical with those established by

Theorem 9, because the continuation in each case is unique. However, since

Theorem 9 fails only when X¿/X,- is an odd integer, we see that it proves that

analytic continuation is possible in some cases when the first theorem fails.

Corollary I. At a maximum of the force function U in the case of two

degrees of freedom at least one of the fundamental periodic orbits of the limiting

integrable system can be continued analytically for p>0 unless Xi=X2.

This corollary follows from Theorem 8 and the fact that Xi/X2 and X2/X1

are not both integers unless Xi = X2. Important use will be made of this corol-

lary in later work.

Part II. Motion in the neighborhood of a position of stable equilib-

rium IN THE CASE OF TWO DEGREES OF FREEDOM

6. The manifold of states of motion. We continue the study of the dynam-

ical systems of Part I, but we now restrict attention to motion in the neigh-

borhood of a position of stable equilibrium in the case of two degrees of free-

dom. First we shall investigate the manifold of states of motion M.

The equation of M is T = U+h/2. We restrict h henceforth to values

for which the region of motion R about the origin on the characteristic sur-

face is homeomorphic to a circular disc. The oval of zero velocity is a simple

closed curve Z. There may be other regions of motion for the given value of

h, but attention will be confined to the one R about the origin.

Suppose first that h is so restricted that U has only a single critical point

in R, a maximum at the origin [see (2) and (4)]. Then the contour curves

U+h/2 = c are simple closed curves surrounding the critical point. Then a

homeomorphism between the points of R and the unit circle C: u2+v2Sl

can be established as follows. Let the points on the curves U+h/2 = c cor-

respond in a one-to-one and continuous manner with the points on the circle

u2+v2 = (1 —2c/h), each point (xx°, x2°) of i?f corresponding to a point (u0, v0)

of C. Then as c varies from k/2 to 0, the contour curve expands from the origin

and sweeps through 7?; the corresponding circle expands from the origin and

sweeps through C. Now a point of M is obtained by combining the coordi-

nates (xi°, x2°) of a point of R with the coordinates of a point (yi, y2) on the

ellipse T(:ci0, x2° ; yx, y2) = U(xx°, x$)+h/2 [see (16) for the notation]. This

ellipse is real and non-degenerate if (xi, xi) is an interior point of R; it is the

t For convenience, the variables y of §§1 and 2 have been replaced by x.
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point ellipse yi = y2 = 0 when (xi°, x2°) is on Z. Let the points on this ellipse

correspond to the points on the circle £2+?72 = l — (uf+Vo2), the points on

corresponding rays through the origins corresponding. This circle degenerates

to a point when and only when the ellipse degenerates to a point. We thus

establish a one-to-one and continuous correspondence between the points

of M and the unit 3-sphere 53: u2+v2+£2+r¡2 = 1 in 4-space.

It is possible to give a representation of M in 3-space. Put R into cor-

respondence with C in the way explained above. Then put the points of the

ellipse T{xx°, x2° ; yx, y2) = U(xx°, xt°)+h/2 into one-to-one and continuous

correspondence with the points of the line segment — [l — (uo2 +i>o2)]1/2

2¡wá [l — (wo2+J>o2)]1/2, the two end points being considered identical, by

means of

(27)       (arc tan y2/yi)[l — («o2 + vo2)]112 = irw,       — x ^ arc tan y2/yi ^ x.

By definition, w shall be zero when yx and y2 vanish simultaneously. We have

thus put M into one-to-one and continuous correspondence with the points

of the unit sphere S2: u2+v2+w2^l, the points (u, v, w) and (u, v, —w) of

the bounding sphere being considered identical.

Consider the general case now. Assume that R is homeomorphic to C with

no restriction on the number of critical points of U. Then by the method just

explained, we can put M into correspondence with S2 with the stated conven-

tion about points of the bounding sphere. But S2 can be put into one-to-one

and continuous correspondence with 53, the unit 3-sphere in 4-space. We

have proved this, because in the first case we put both into correspondence

with M. We have thus proved the following theorem.

Theorem 10. If R is homeomorphic to a circular disc, then M is homeo-

morphic to S3, and also to S2 with the points (u, v, w) and (u, v, —w) of the bound-

ing sphere considered identical.

It is obvious how these results are to be extended to dynamical systems

with n degrees of freedom.

We have also the following important theorem concerning the steady

fluid motion in M.

Theorem 11. The steady flow in M possesses an invariant volume integral.

This result may be established most easily by transforming to Hamil-

tonian coordinates [Birkhoff 4, p. 212]. The result is well known, and the

details are omitted [see also Birkhoff 1, pp. 211-212; Poincaré 1, vol. Ill,

chaps. XXII-XXIII].
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7. The limiting integrable system. A detailed study of the limiting inte-

grable system will be made now. By setting n = k = 2 in §3, we find that the

equations of motion are

dxi dyi

(28) -T--*.        -r = A**< (¿=1,2)dt dt

and that the integral of energy is

(29) ¿(tf + lx,!»*,*)- 1.
t-i

The general solution of (28) and (29) is

a* i     i
.... Xi = -y—r sin ( I X< | / + O/),       ai« + ai = 1,
(6ö) I A,-1

yi = at cos (\\i\t + 0i) (i = 1, 2).

The region of motion R° is the interior of the ellipse | Xi 12x? + | X212xî = 1,

whose boundary is the oval of zero velocity Z°. The axes of this ellipse lie

along the xx- and a;2-axes and are respectively the first and second funda-

mental periodic orbits Oi° and 02°. The manifold of states of motion M° is

the ellipsoid (29).

Consider also the representation of M° in 52. Now R" is mapped on C by

(31) « = | Xi| xi,       v = | X2| x2.

The representation in S2 can be completed as explained in §6. A trajectory

corresponds to a curve in 52 which may be called a stream line or line of flow.

Consider in particular the lines of flow which represent Oi° and 02°. From

(27) and (31) we see that 02° is represented by the ellipse

(32) v2 + Aw2 = 1, u = 0.

The direction of flow is the same as that of the rotation which carries the

positive w-axis into the positive u-axis. Similarly, Of is represented by a

curve in v = 0. It is composed of the diameter of S2 which lies along the

M-axis and the semi-circle w = (i— u2)112, v = 0 [or w= —(1—u2)112, v = 0].

The flow is such that its direction is positive along the «-axis.

Theorem 12. The surface SS°: a;i = 0, yi^O is a surface of section for the

limiting integrable system.

From (29) we see that SS° is the semi-ellipsoid

(33) yi2 + y22 +|x2|2x22 = 1, yi ^ 0,
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in the plane xx = 0. The boundary is given by xi = 0, yi = 0; it is the ellipse

which bounds the semi-ellipsoid. The boundary of SS° is therefore the closed

stream line which corresponds to 02°. Equations (30) show that any stream

line crosses SS° when / has a value which satisfies |Xi|i+0i = 2rax, m any

integer; hence, every stream line crosses SS° an infinite number of times, and

the interval of time between any two successive crossings is 2x/|Xi|.

Next we must show that the angle at which a trajectory crosses 55° is of

the first order in the distance to the boundary. The direction components of

the stream line are given by (28) ; the surface of section is defined as the inter-

section of the two 3-spaces 22í=i (yt2+ |X¿| 2x,2) = 1, xx = 0 with yi^O. By a

straightforward calculation, using the formula developed in the next section

for the angle of intersection of a curve and a 2-surface in 4-space, we find

that if \f/ is the angle at which a stream line crosses SS°, then

yi
(34) sin p =-—-■-■•

(X2W + yi2 + yl)1'2

Since 55° is the semi-ellipsoid (33), it is clear that yi may be taken as a

measure of the distance of a point on it to the boundary. From (34) it then

follows that \j/ is of the first order in the distance to the boundary. The fact

that every crossing of SS° by a stream line is in the same sense follows from

sin ^=ï0 in (34), but it will be geometrically obvious when we consider the

representation of SS° in S2. Thus SS° satisfies all the requirements of Birk-

hoff's definition of a surface of section [Birkhoff 1, p. 268], and the proof is

complete.

Now consider the representation of SS° in S2. Since SS° lies in xx = 0, (31)

shows that the corresponding surface in S2 lies in u = 0. Again, since yxl=0 on

SS°, it follows from (27) that - [l-v2y2/2^w^ [l -v2]l¡2/2; hence, SS° is

represented by the ellipse E: v2+4w2Sl. We have seen already that the

boundary of E represents 02°.

An orbit on which yi > 0 corresponds to a stream line in S2 on which u is

increasing. When the orbit crosses the x2-axis, the stream line in M° crosses

SS°, and the stream line in S2 passes through E. On the other hand, if vi <0

when the orbit crosses the x2-axis, the stream line in M° does not cross SS°,

and the stream line in S2 passes through m = 0 on the exterior of E. It is thus

possible to visualize the flow in M°. We observe among other things that all

stream lines cross the representation of SS° in S2 in the same sense.

Let a transformation T be defined on SS° as follows : a stream line which

crosses SS" at P has its next succeeding crossing at P' and its £th succeeding

crossing at P<-k\ Then P' = T(P) and P^ = Tk(P). We proceed to study T.
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It is possible to use (x2, y2) as coordinates on SS° since

(35)
x2 = x2,       y2 = y2,

yi = (1 -|X2|2*22 - yi)1'2

is merely a parametric representation of (33) with (x2, y2) as the parameters.

Then T can be expressed in terms of (x2, y2).

Assume that the stream line has its first crossing at t = 0 ; then from (30)

the coordinates of P are

(36) Xi =
a2

sin d2,        y2 = a2 cos 62,

and the coordinates of P(k) are

a2

(37)

x2    =

Ik)

y2   =

/[ x2 \
(   -   2^ + fc),

a2   cos
(

X,

Xi

X,

Xi
2kir + 62■)■

From (36), (37) we see that T has the invariant function F= \\2\2x£ +yï,

and that each of the curves F = a22 is a path curve of T. From (35) it follows

that this path curve is the ellipse yi = [1 — a22 ]1/2 on SS°. By letting a2 take

on all values on 0¿o2¿l, we get a family of ellipses which fill up SS°. The

path curves and F exist because the dynamical system is integrable [Birk-

hoff 3, pp. 114-115]. There are two integrals of (28) besides (29) :

(38) \\i\W + y? = a? (* - 1, 2).

Of the three integrals, only two are independent.

In order to see more clearly the nature of T, we transform to new

parameters (£, rf) by means of

(39) £ = | X2| x2,        ri = y2.

Corresponding to (36), (37) the coordinates of P, Pw are now

(40) £ = a2 sin 62,        r¡ = a2 cos 02;

£* = a2 sin

(41)

Vk a2 cos

(\ —
\\ Xi

(\ —
\\ Xi

Ik-K + 02■)■

ikw + eA.

Expand the right hand member of (41) and substitute from (40). Then
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(42)

/I X, I       \ /I Xt I       \
{* =      icos I    —    2¿xl+7jsin(    —    2ibr),

\ I Xi I        / \ I Xi I        /

(\ x» I      \ /I X2 I      \
jjt = — £ sin I     —    2kir ) + V eos I     —    2kw ],

\ I Xi |        / \ | Xi l        /

i.e., Tk is a rotation about F0: ? = tj = 0 of 55° into itself. The point P° is

therefore invariant under T ; (39) shows that it corresponds to 0?. If | X21 /1 Xi |

is a rational fraction p/q, p and q without common factors, then F« rotates

SS° through p complete revolutions, and every point is invariant. In this

case, every trajectory is closed and periodic. If |Xs|/|Xi| is irrational, P° is

the only invariant point of T and its iterates, and the only closed and

periodic orbits of the system are Ox°, 02°. These results prove the following

theorem.

Theorem 13. The transformation T on SS° is a rotation. The center of ro-

tation P° is an invariant point which corresponds to Oi°. 7/ | X» | /1 Xi | is rational,

every trajectory of the system is closed and periodic; if it is irrational, only Ox"

and Of are closed and periodic.

Consider T on E in S2. The path curves yx* = a? on SS° correspond to the

curves

r    (I- ax2 - v2\ll2l
(43) (1 - v2)1'2 arc tan   ± I-J       =itii.

As ax varies from 0 to 1, we get a family of simple closed curves beginning

with the ellipse (32) and shrinking down to its center. The center of rotation

on SS" corresponds to the center of E, which is therefore an invariant point.

We have previously shown that the stream line representing Oi° crosses E at

its center. We may thus picture T on E as a distorted rotation which carries

each of the curves (43) into itself.

8. A formula in geometry. We turn aside from our main subject to prove

a formula that was used in the last section.

A 2-dimensional surface in 4-space is defined by

(44) f(xx, ■■■ ,xi) =0,       faxx, ■ ■ ■ , xi) = 0,

and a unit vector C:(c) has its initial end at the point (xi°) of the surface.

The problem is to obtain a formula for the angle which C makes with (44).

Definition. The angle which C makes with the surface (44) is the comple-

ment of the angle between C and the normal to the surface which lies in the 3-plane

containing C and the tangent 2-plane to the surface.
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We assume that the two 3-surfaces in (44) are not tangent at Oc,i),i. e.,

we assume that the rank of the matrix

(45)
/-i

<t>x.

is 2 [a subscript letter denotes a partial derivative with respect to that

letter]. The tangent 2-plane to the surface at (x?) is given by

(46) fXiixi - xi) - 0,       <¡>Xííxí - x?) - 0.

A repeated subscript in a product denotes a summation with respect to that

subscript from 1 to 4. The two 3-planes in (46) are distinct since the rank of

(45) is 2; taken together, therefore, they define a 2-plane.

Now determine the 3-plane which contains the tangent 2-plane (46) and

the given vector C. All 3-planes which contain (46) are given by

(47) Af.tixi - xi) + B<pXiixi - x») = 0.

This plane contains C if and only if it contains its end point ix? +c,). Sub-

stitute the coordinates of this point in (47) and solve for A, B; the result is

(48) A = <bXia,       B = - fXid.

Now if A, B as given by (48) are both zero, we see that C lies in the tangent

2-plane (46) of the surface. Then C is tangent to the surface (44).

Assume henceforth that C does not lie in the tangent 2-plane;.then A, B

are not both zero and the required plane is

(49) i4,Xid)[fXjixj - x?)] - ifXxa) [4>Xiixj -*/>)]- 0.

The oo * normals to the surface at 0^°) have the direction components

(50) pifXi + Pí<í>xí.

Now determine pi, p2 so that (50) lies in (49). A point on the vector (50) is

(x? +pifXi+p2<px/). Substitute in (49) and solve for pi, p2. The result is

Pi  = ifxdziXtxjCi)  —   (4>xé>xt)(fXjCj),

p2  =   -  (fxJXx)(4>x¡Ci) +  (<t>xJx,)(fXjCj).

Substitute these values for pi, p2 in (50), and we have the required normal

vector A : (»i). Then if \p is the angle at which C crosses the surface (44),

/ x        \        ict-rii)
(52) cosí-4')= ■

\2   . V     (mm)m

One detail remains. It must be shown that pi, p2 are not both zero, for if
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they were, N would be a null vector. The desired result foUows from (51)

when we assume that (45) is of rank 2, and that A, B in (48) are not both

zero.

9. Some results on surfaces of section and surface transformations.

A common type of surface of section for reversible dynamical systems with

two degrees of freedom is formed as follows: Take a closed orbit O without

multiple points which either has no point in common with Z, or is an orbit

traced with a backward and forward motion between two points of Z. Con-

sider all points (xi, x2 ; yx, yi) in M such that (xx, xi) is a point of O and (yx,

yi) is a velocity vector which is tangent to O or lies on a certain specified side

of it. These points form a surface 2.

Theorem 14. The surface 2 is an analytic surface.

Suppose first that O does not pass through a point of Z. Take any point

P on O and rotate the axes so that the tangent at P is parallel to the x2-axis.

Then the equation of O near P can be written in the form Xx = 4>(x2), where <p

is analytic. Suppose 2 is formed with the velocity vectors for which yi ^

y2cp'(x2), the prime here denoting a derivative with respect to x2. Then 2

is defined by

M(xx, x2; yx, yi) ■ T - U - h/2 = 0,

xx = <t>(x2),       yx ~=-ytcb'(x2).

We propose to show that one or the other of the sets (x2, yi), (x2, yi) can

be taken as the parameters of an analytic representation of 2 in the neigh-

borhood of P. Substitute from the second equation in (53) in the first. Then

if the equation M [<p (x2), x2 ; yx, y2 ] = 0 gives either yi or y2 as an analytic func-

tion of the other two variables, the desired result follows. Now M = 0 can be

solved for y¿ if dM/dyi=dT/dyi9*0. The desired result follows then unless

both of these partial derivatives vanish. But dT/dyx, dT/dy2 vanish simul-

taneously only at points on Z, and O has no point in common with Z by

hypothesis. Hence, 2 is analytic in the neighborhood of P, and since P was

any point of 0, 2 is analytic throughout.

Now suppose that O joins two points of Z. The proof given above applies

to any interior point of 0; hence, it will be sufficient to show that the part of

2 arising from points of O near Z is analytic. The orbit is given to us from the

equations of motion in the parametric form

(54) xx = xx(t),        x2 = x2it).

If O touches Z at P°:(xi°, xi), it is not regular there, i.e., both xi and x2

vanish there. We shall show, however, that this state oí affairs results from



1935] ON REVERSIBLE DYNAMICAL SYSTEMS 69

the fact that the particle reverses its direction of motion there, and not from

the nature of the curve itself.

Now if O passes through P° at time t = 0, equations (54) are

Xi = »i° + a2<2 + ad* + ■ - - ,

x2 = xi + b2t2 + M4 + • • • ,

only even powers of / occurring, because the equations of motion and the

initial conditions

Xi = xi, y i = 0, x2 = xi, y i = 0,        / = 0,

are unchanged when / is replaced by — /. Let T and U be

1 2
T = — E Tijixi, Xi)x- x-,       Ta = Ta,

2 i,i-i

U =   ¿7(^1, Xi).

Since T is a positive definite quadratic form, we have

(56) \Tn\>0.

From the equations of motion, we find that a2, 62 satisfy the equations

Tu(xi, z2°)a2 + Tnixf, x£)b2 = U,,ixf, xi3),

Tnixf, xi)a2 + T22ixi, x£)b2 = U^xP, xi).

But since there are no double points on Z by hypothesis [see (8)], we see

that a2, b2 are not both zero. Suppose b2^0. Then it is possible to solve the

second equation in (55) for t2, obtaining an analytic function of ix2—xi).

Use this function to eliminate t2 from the first equation in (55). We obtain

a2
(58) xi = <bix2 - xi) = xi + — (^ - xi) + ■ ■ ■ ,

bi

which defines a real analytic curve which crosses Z. The orbit is formed from

the part of this curve which lies in R. The irregularity at P° is therefore due

to the reversal of the direction of motion and not to the nature of the curve

itself.

Furthermore, the curve (58) is not tangent to Z at P°. Using the values of

a2, h as given by (57), we find that the curves are tangent if and only if

(59) TnUxf - 2TnUxlUx, + TuUx2 = 0.

But this is impossible, because there are no double points on Z, and the

quadratic form is positive definite. Also, (56) and (57) show that if we choose
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the axes so that Ux, = 0 at P°, then b29*0, and the equation of the curve along

which O lies can be written in the form (58) near P°.

We can now complete the proof that 2 is analytic. Rotate the axes so

that Z is parallel to the Xi-axis at P°. Then UXl = 0 at P°, and near this point

the equation of the curve along which O lies can be written in the form (58).

Furthermore 2 is defined by the equations

,,rtX M(xlt x2; yx, y2) = 0,
(60)

xx = <b(x2 - xi*),        yx è y2<t>'(x2 — x2°).

Then (yx, yi) can be taken as the parameters on 2, for substitute from the

second equation in (60) in the first. The resulting equation can be solved

for x2 if its partial derivative with respect to x2 is not zero. At P° this partial

derivative reduces to UXl9*0; hence, x2 can be expressed analytically in terms

of (yi, y2). Substitute now for x2 in the second equation in (60), and we have

xx also expressed analytically in terms of (yi, yi). Thus we have proved that

2 is analytic in all cases.

Theorem 15. The angle at which a trajectory crosses 2 is of the first order

in the distance to the boundary.

Now it can be shown that (yi—y2<f>') is an infinitesimal of the first order

in the distance from a point on 2 to the boundary. Also, 2 is defined by equa-

tions and inequalities of which (53) are typical. The direction components of

a stream line are dxx/dt, dx2/dt, dyx/dt, dy2/dt. Let yp be the angle which the

stream line makes with 2 at the point of crossing. Now the two 3-dimensional

surfaces in (53) and (60) are never tangent since O is never tangent to Z.

Then the formula developed in §8 can be used for determining fa Remember-

ing that dM/dt=0 because M = 0 is the integral of energy, we find by a

straightforward calculation that

. - (Mx2 + Mx2 + Mv2 + Mv2)(yx - y2<t>')

Here (mx, ■ ■ • , mi) denotes a vector which differs from the vector («i, • • • ,

w4) of §8 only by a factor. An examination shows that it is not a null vector,

not even on the boundary of 2. Since there are no double points on Z, the

first factor in the numerator is not zero. For the same reason, the stream lines

are regular curves at every point, and the first radical in the denominator does

not vanish. Then the theorem follows immediately from the fact that

(yi—y2<t>') measures the distance to the boundary of 2.
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If O does not touch Z, 2 is bounded by two closed stream lines corre-

sponding to 0 traced in the two directions, and it is homeomorphic to a ring

bounded by two concentric circles. If O joins two points of Z, 2 is bounded

by a single closed stream line which corresponds to 0, and it is homeomorphic

to a circular disc. In all cases 2 is an analytic surface; the angle at which a

stream line crosses 2 is of the first order in the distance to the boundary; and

all stream lines which cross 2 cross it in the same sense. Then if it can be

shown that every trajectory of the system crosses 2 at least once in a given

interval of time, it follows from the definition that S is a surface of section.

We proceed to the proof of a theorem which gives an important qualita-

tive result on the nature of the orbits of a reversible dynamical system.

Theorem 16. If there exists a periodic orbit O joining two points of Z from

which a surface of section SS of type 2 can be formed, and if R is homeomorphic

to a circular disc, there exists at least one further periodic orbit joining two points

ofZ.

In the first place, since O joins two points of Z, SS is bounded by a single

closed stream line and is homeomorphic to a circular disc. Since SS is a sur-

face of section, there is an analytic transformation T on it defined in the

usual way. Furthermore, T has a certain number of invariant points [Birk-

hoff 1, p. 287]. To each invariant point Pi an integer bi is assigned as follows:

Draw the vector from a given point Q in the neighborhood of Pi to its image

Q' under T. Then when Q describes a small circle about Pi in the positive

direction, the vector rotates through the angle 25íx. Now the sum of the S{

for all the invariant points on SS is 1 [Birkhoff 1, p. 290; note that the for-

mula should be (2a+¿ — 2)].

Assume now that the theorem is false, i.e., assume that O is the only pe-

riodic orbit which joins two points of Z. Then each invariant point of T arises

from a closed orbit which does not touch Z. Corresponding to such orbits

there are two stream lines in M and they are distinct [Theorem 2]. Since O

divides R into two regions, each of these stream lines crosses 55 and gives

rise to the same number of invariant points of T. Hence, to each invariant

point Pi there is a unique second invariant point Q,; the number of invariant

points is even.

Now if it can be shown that Pi and Qi have the same number 5,-, it will

follow that the sum of the ôi is an even number in contradiction to the fact

that it is 1. But ôi is determined from the equations of variation and is the

same for Pi and (?,-. The theorem follows.

At the same time we have proved that under the hypotheses of Theorem

16, the following theorem is true also.
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Theorem 17. The invariant points of T and its powers are paired, the two

points of a pair being distinct unless the corresponding orbit joins two points of

Z.

10. Analytic continuation of the surface of section. For the present as-

sume only that Xi^X2. Then by Corollary 1, §5, at least one of the two orbits

Ox0, Oi can be continued analytically for ;u>0. Suppose the notation is so

chosen that it is 02° which can be continued. Then for p = 0 the system has the

surface of section SS° as described in §7.

For _p = 0 the periodic orbit 02 reduces to 02°, which lies along the line

Xx = 0; since 02 varies analytically with p, it follows that for p sufficiently

small its equation can be written in the form

(62) xx = <p(x2, p),       faxt, 0) s 0.

We shall now show that for each value of p the surface in M defined by (62)

and the inequality yi ^ y2d<p/dx2 forms a surface of section 55 which is the

analytic continuation of SS°.

The surface 55 is a surface of the type 2 studied in §9. It is an analytic

surface in M which varies analytically with p and reduces to SS° for p = 0.

As shown in §9, it forms a surface of section if every trajectory cuts it at

least once in a fixed interval 6 of time. It was shown in §7 that this require-

ment is satisfied for p = 0. Now the intersections of a given stream line with

55 are determined by the intersections of the corresponding orbit with (62).

These orbits intersect at an angle different from zero for p = 0, and since they

vary analytically with p, they continue to intersect at least for p >0 but small,

with the length of time between successive crossings of SS uniformly bounded.

Conceivably this argument might fail in the neighborhood of the boundary of

SS, but here we have recourse to the equations of variation for the trajectory

corresponding to (62). A detailed consideration shows that every trajectory

continues to cross 55 for p sufficiently small, and that the length of time be-

tween successive crossings is uniformly bounded; hence, SS is a surface of

section as stated.

The definition of T on 55 is the same as in previous cases. Now R is

homeomorphic to a circular disc [§6], and all the other hypotheses of Theorem

16 are satisfied. This theorem proves that the equations corresponding to (24)

have a solution for each value of p so long as the surface of section exists.

Continuation of Oi° is therefore possible, but our results do not show that this

continuation is unique.

Theorem 18. If\x9*\2, there exist at least two periodic orbits joining two

points of Z for p>0 but small.
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Suppose now that neither Xi/X2 nor X2/Xi is an integer. Then by Theorem 8

both Oi and Oi can be continued analytically. There is an invariant point

P on SS which corresponds to Oi, the continuation of Oi. For p = 0, T is a

rotation about P° through an angle not an integral multiple of 2x. Then ¿5

for P° is 1, and P° is said to be a simple and stable invariant point [Birkhoff

1, pp. 287-288]. Now the nature of T about Pis determined by the charac-

teristic exponents for the corresponding trajectory [Poincaré 1, vol. I, chap.

IV]. The characteristic exponents are continuous functions of p; hence, for

p.>0 but small, P is a stable invariant point. Then it is possible to consider

55 a ring surface with P the inner boundary. We shall show that under

certain conditions Poincaré's Last Geometric Theorem can be applied to the

transformation on this ring [Poincaré 2; Birkhoff 2, and 1, p. 294].

In the first place, T is an analytic transformation of the ring into itself

which carries the boundaries into themselves. In the second place, T has an

invariant area integral as a result of Theorem 11 [Birkhoff 1, p. 285]. Finally,

there are rotation numbers aB and ap associated with the transformation on

the two boundaries of the ring [Birkhoff 3, pp. 87-88]. We have shown in §7

that for p = 0 the two rotation numbers are equal. We shall show by means of

an example, however, that aB and aP are functions of p and in general are

not equal. Then Poincaré's considerations prove the following theorem

[Poincaré 2, §3; Birkhoff 1, pp. 297-298].

Theorem 19. If aB^ap, there exist infinitely many periodic orbits.

The limiting integrable system affords a good example to show that the

conclusion of this theorem may not hold if aB = ap [see §7].

As an example to show that aB and aP are not identically equal, consider

the system for which the equations of motion and the integral of energy are

xi' = - | Xi|2xi + 2p,2*!3,

(63) xi' = - \\2\2x2,

yi + yi + | Xi \»xf + | X2 |2x22 - p2xi = 1.

For all values of p there are two periodic orbits Oi, 02 joining two points of

Z, and they lie along the two axes. The surface of section SS is defined by

Xi = 0, yi ^ 0. As in the limiting system p = 0, we may take (x2, y2) as the coor-

dinates on the surface.

For all values of p the point x2 = y2 = 0 is the invariant point P on 55 and

corresponds to Oi. The equation of Oi is Xi = xiit, p), x2 = 0; its period is

[2x/|Xi| +Ti(p.)], where ti(0) =0. The period is independent of the amplitude

only for simple harmonic motion, however; hence, Ti(p) ^0.
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Consider aP first. A nearby orbit to Ox is Xx = Xx(t, n) +£i, x2 = £2, and from

(63) we find that the equations of variation are

ÍÍ'- -\\x\2tx + op2[xxit,p)]2tx,

&"- -\\2Ht.

From the second of these equations we obtain

£2 = fc° cos \\2\t+ Oh0/ | X, | ) sin | X* 11,
(65) ,      . .      . ii

Vi — — | Xi1 is0 sin | X21 t + 7j2° cos | X21 /.

Here (£2, t]2) are coordinates in the neighborhood of P and correspond to

(x2, y2), and (£2°, r¡i) is the point on 55 through which the stream line passes

at time t = 0. To find the point into which it is carried by T, we have only to

set t= [2x/|Xi| +rx(ß)] in (65). By introducing new coordinates as was done

in §7, we show that the limiting transformation at P is a rotation through the

angle

(66) — | X, | [2x/|Xi|+n(M)].

Then aP is given by (66).

Now consider aB. The orbit corresponding to the stream line which forms

the boundary B is Xx = 0, x2 = sin | X21 /, which is periodic with period 2x/1X21.

The equations of variation are found in thé usual way to be

<67) ii" = -|XiNi,
«'- -|X2|2£2.

The first equation determines the intersections of the varied stream line with

SS; the stream line crosses 55 when £i = 0, i]x=^0. As in previous cases, we can

use (£2, r¡2) as coordinates on SS near B. Then equations (65) hold. A stream

line which crosses 55 at t = 0 has its next crossing at i = 2x/|Xi|. Then (65)

show that T on B is essentially a rotation through the angle

{68) - 2x | X21 / | Xi |.

Then aB is given by (68).

Comparing (66) and (68), we see that ap and aB are in general not equal

since Txiß) féO. Our conclusion is the following: If the system really depends on

p, i.e., if it is not identical with the limiting integrable system for all values of p,

.then aP and aB are not equal in general for p>0.

11. Symmetric systems. We shall now suppose that the system is sym-

metric in the origin on the characteristic surface, i.e., we assume that (9)

holds. As we have already seen, a system of this kind has special properties,

which we shall now study, in greater detail.



1935] ON REVERSIBLE DYNAMICAL SYSTEMS 75

Assume now that neither | Xi | /1X21 nor | X21 /1 Xi | is an odd integer. Then

by Theorem 9 both Oi and Oi can be continued analytically for p>0; for

each value of p these orbits pass through the origin and are symmetric in this

point. A surface of section 55 can be formed from either one of these orbits ;

let it be formed from 02. All the results of §10 apply in the present case, but

the symmetry leads to special properties of T. In order to state the results

more easily, we employ the representation of M in 52 [see §6].

It is clear that R can be deformed into C:u2+v2¿ 1 in such a way that

symmetric points are carried into points symmetric in the center of C, and

so that Oi and 02 lie along the diameters v = 0 and u = 0 of C respectively.

Then the stream lines in 52 have the essential properties of symmetry pos-

sessed by the stream lines in M; also 55 is represented in 52 by the ellipse

£in the plane u = 0.

Now it was shown in §2 that the stream lines are related by fours. The

significance of this fact is that there are two transformations Fi and F2 which

when applied to a stream line and its transforms by Vi and F2 yield four and

only four stream lines. In 52 the transformation Fi is

u' = m.       »'" = v,
(69) '     . .

w' = w+ [1 - iu2 + v2)]112,

coupled with a reversal of the direction of flow [see Theorem 1 and (27)].

By reversal of the direction of flow, we mean the following: if the flow pro-

ceeds from P to Q on the given stream line T*, it proceeds from Q' to P' on

ViT*. If necessary w' in (69) is to be reduced modulo 2[l — iu2+v2)]112.

As shown in §2, T* and ViT* correspond to a single orbit traced in the two

directions. Obviously Fi2 =2, the identity.

In Si we find that F2 is denned by

«' = —«,       v' = — v,

w' = w+[l- iu2 + v2)]li*,

without reversal of the direction of flow [see Theorem 4 and (27)]. Again w'

is to be reduced modulo 2 [l — iu2+v2) ]1/2 when necessary. Then V22 =1.

Now Fi and V2 generate a group with the four distinct transformations

2, Vi, V2, FiF2. We see that FiF2 is merely a reflection in the w-axis in 5j with

reversal of the direction of flow, and that (FiF2)2 = 2. By applying the trans-

formations of this group to T*, we obtain three others. The four stream lines

are permuted among themselves by any transformation of the group. Now

the four are not always distinct [see §2]. If the orbit corresponding to any

one of them is its own symmetric image or is a curve touching Z, there are
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at most two distinct stream lines; if it is both, the four are identical. In all

other cases the four are distinct.

Now if T* is closed, the other three stream lines of a group are closed;

hence, with the obvious convention in case they are not all distinct, we have

the foUowing theorem.

Theorem 20. The invariant points of T and its powers and the closed peri-

odic trajectories of the system occur in groups of four.

Now 55 is represented by E in the plane u = 0; hence, T may be expressed

in terms of the coordinates iv, w). Since (FiF2) carries a stream line into a

stream line with reversal of the direction of flow, we see that if Tk carries

(vo, Wo) into (vx, wi), then Tk also carries i~vx, wi) into i—v0, wa). It follows that

(FiF2)7(FiF2)7 = 7. Then (FiF2)7 is a transformation U with period 2:

( Fi V2) T = U,U2 = I. Hence, T = ( Fi F2) U. We have thus proved the following

theorem.

Theorem 21. The transformation T is the product of two transformations,

one of which is a reflection in the w-axis, and both of which have the period 2.

Now suppose that Tk carries a point (0, w0) into (0, wi) ; then by the itali-

cized statement above, Tk also carries (0, wi) into (0, w0), and both points are

invariant under T2k. They correspond to a single closed stream line. Let the

segment v=0 on E be denoted by AB. A point on AB corresponds to an orbit

passing through the center of symmetry, and the above statement is equiva-

lent to Theorem 5. Thus, if we can prove that there are points on AB which

are transformed into points on AB, we can conclude that there exist closed

periodic orbits passing through the center of symmetry.

In the first place, there exists an invariant point P oí T on AB. It is the

center of E, the point at which the stream line corresponding to Ox crosses E.

Now consider the images of AB on E under T and its powers. If the rotation

numbers aP and aB [see §10] are unequal, the image of AB under T and its

powers is a spiral, and we can assert that there is an integer N such that the

image of .47? under Tk for k^N intersects AB in points distinct from P.

This is proved as follows. The rotation numbers for Tk on the boundary B of

E and at P are kaB and kaP. Then for k sufficiently large, say k = N, kaB and

kaP correspond to transformations differing by at least one complete cycle;

for k =pN, they differ by at least p cycles. Hence, the image of AB under 7*

intersects AB at least for k^N, and the number of such intersections be-

comes infinite with k.

Suppose that Qx on AB is carried into Q2, distinct from Qlt on AB by

Tm, and that m is the smallest power of T for which this happens. Then Qx, Q2
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are invariant under T2m and correspond to a periodic orbit 0 which passes

twice through the center of symmetry; the two branches there have distinct

tangents since Qi, Q2 are distinct. The corresponding stream line crosses SS

2m times. Since R is divided into two parts by 02, we see that O crosses 02

twice for each crossing of 55 by the stream line, i.e., O crosses 02 4m times. We

therefore say this orbit is of type Oim. An orbit Oim cannot touch Z, because

it has two distinct branches at the center of symmetry. We have thus proved

the following theorem.

Theorem 22. If aB^aP, there exists an infinite number of closed periodic

orbits of type Oim, there being one or more for each m^N.

We proceed to establish the existence of an infinite number of periodic

orbits of a second type.

The transformation

(71) */-**,       yí = -yi (¿=1,2),

transforms M into itself and in particular carries SS into a surface SS' which

is also a surface of section. The surfaces 55 and SS' are bounded by the

same closed stream line, and taken together they form a surface homeo-

morphic to a 2-sphere. In 52 the transformation (71) is Fi; hence, 55' is

represented in 52 by E', the part of the circle u = 0 which lies outside of E.

By means of (71) we extend the definition of T on 55 to the combined

surface SS+SS'. Each half of this surface is a surface of section; hence,

the stream lines define a transformation of it into itself. Since 02 divides R

into two parts, a stream line which crosses 55 iSS') at Q has its first succeed-

ing crossing of the surface at Q' on SS' iSS). Then the new transformation is

that which carries Q into Q'; we designate it by T112 since it has the obvious

property that its square is T. Also T112 is not a sense-preserving transforma-

tion; it has the nature of a reflection.

We return to the representation in 52 in order to simplify the exposition.

The stream line which crosses E at P also crosses E' at P'. Then P' = T^2iP).

Associated with the transformation of P into P' by T there is a rotation

number which is obviously aP/2; the common boundary B of E and E' is

transformed into itself by T112, and the corresponding rotation number is

aB/2.

Suppose ri+1'2, k an integer, carries (»0, wa) into (»i, w/). Apply the trans-

formation (FiF2), and we see that Tk+112 also carries (—»i, w/) into (—v0, w0).

Then as before (FiF2)71/2(FiF2)ri/2 = 2. Set iViV2)T1'2 = V. Then T"2

= (FiF2)F, where V2=I. Thus by defining T on the entire surface SS+SS'
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we are able to factor 7 into the product of four factors, each with the period

2:7 = (FiF2)F(FiF2)F.

Now if Tk+l'2 carries (0, wi) into (0, wi), it also carries (0, wi) into (0, wi),

and both points are invariant under T2k+1. One of these points is on E. Let

A'B' designate the line segment s=0on E'. Then if we can show that the

image of AB under 7*+1/2 intersects A'B', we can prove the existence of

further periodic orbits. Now the image of AB under F*+1/2 is a spiral which

always intersects A'B' at P'. For k sufficiently large, and at least for k>N,

this spiral intersects A 'B' at points other than P'. The number of such inter-

sections becomes infinite with k. Each such intersection gives an invariant

point on E under F»+i

Suppose that Q is such an invariant point on E under F2m+1, and that

this is the lowest power of T under which it is invariant. The corresponding

orbit O passes twice through the center of symmetry and crosses 02 (4ot+2)

times. This orbit is therefore said to be of type 04m+2. The orbits of this type

may or may not touch Z. The orbit Ox, which corresponds to P on E, is in-

cluded in this class with m=0. We have thus proved the following theorem.

Theorem 23. If aB9*ap, there exist an infinite number of periodic orbits of

type Oim+2, there being one or more for each m^N.

Similar results can be obtained if it is assumed that the system is sym-

metric in one or both of the axes on the characteristic surface.
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