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Sufficient conditions for an extremal to give a minimum in the ordinary

fixed end point problem involve the Jacobi, Weierstrass, and Clebsch con-

ditions. It has been an outstanding problem to establish the corresponding

theorem in the problem of Lagrange without assumptions of normalcy or

analyticity. Carathéodory [3] reduced the assumptions as to normalcy by

introducing the notion of class. More recently Hestenes [4] has employed a

similar notion of order of normalcy in dealing with the Jacobi conditions. The

paper of Hestenes contains a number of important results independent of the

assumption of normalcy.

The present paper establishes sufficient conditions involving the Jacobi,

Weierstrass, and Clebsch conditions, employing for the first time, it is believed,

no condition of normalcy.

In establishing the desired theorem the writer has come upon a new and

powerful method of treating Mayer fields of secondary extremals. This

method has also proved the proper tool in attacking other problems not in-

volving a minimum. The fixed end point theorem is treated first and followed

by the theorem for the variable end point problem in the modified Bolza [1 ]

form.

The importance of freeing these theorems from the assumptions of nor-

malcy is readily seen upon recalling that the theorems now established lead by

simple transformations to corresponding theorems in the Mayer, parametric,

and other general forms of the problem, and include earlier theorems of the

same general character as special cases.

1. The functional. One is concerned with a set of functions

(1.1) fix, y, p),        4>ßix, y,p) (ß - 1, • • • , m)

of the variables

(1.2) x,        iy) = (yi, • • • , y„),        ip) = ipi, ■ ■ ■ , pn) im < n)

on an open region R of the space of the variables (#, y, p). We suppose the

functions (1.1) are of class C3 on R. Our functional is of the form
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/-  ff(x,y,y')dx,

subject to the conditions

(1.3) fa(x, y, y') = o (j8- 1, ••• ,m).

We term an element-(a;, y, y') differentially admissible if it satisfies (1.3). An

arc yt(x) is termed differentially admissible if it is of class D1 and its elements

satisfy (1.3).

We set

Fix, y, p, X) = / + X000 (ß = l,--- ,m).

By an extremal we mean an arc of class C2 together with multipliers A0C*:) of

class C1 which satisfy the conditions

-Fpi - Fvi = 0,        (y') = ip) Ü - 1, • - - , »),
dx

and the conditions (1.3). We suppose g is such an extremal and is of the form

yt = y<(*),      A0 = %ß(x)

for x on an interval

a1 á x ¿¡ a2.

It wiU frequently be convenient to suppose that g is an inner segment of a

slightly longer extremal. By an admissible arc we mean (in §§1, 2, 3, 4) a dif-

ferentially admissible arc which joins the end points of g. We shall enumerate

the conditions under which g affords a minimum to / relative to neighboring

admissible arcs.

It will be convenient to evaluate certain functions along g, that is, to set

[x, y, p, X] = [x, y(x), y'(x), \(x)].

We shall indicate such an evaluation by adding the superscript 0 to the func-

tion involved.

We assume that

(1.4) FpiP/2.2/>0 (i,j= 1, ••• ,n)

for each point x on g and set (z) 9* (0) for which

faPiZi = 0 (ß = 1, • • • , m).

We term this condition the Clebsch S-condition.
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One sets

E[x, y, y', X, Y'] = Fix, y, ¥', X) - Fix, y, y', X) - (F/ - yi)FPi(x, y, y', X).

We assume that

(1.5) Eix,y,y',\,Y')>0

for each set ix, y, y', X) in a neighborhood of the sets ix, y, y', X) on g and for

arbitrary sets (F'), provided merely the sets ix, y, y') and ix, y, Y') are dif-

ferentially admissible and distinct. We term this condition the Weierstrass

S-condition.

To define the third condition we set

2w(ij, y') = FViVir\{i\i + 2FViVjrMj  + FPiPjt]íri¡ (*, j - 1, • • • , fi),

$00?» v') = <PßPiVi  + 4>ßviVi iß = 1, • • • , m).

The functional

2a>iV, V')dx,

subject to the conditions

Mv,v') = 0 iß- 1, •••,»),

is termed the second variation. One sets

Qft?, V, M)   =  W + p.0$0.

The Euler equations corresponding to the second variation take the form

d
(1.6) —- 0,,. - 0„ = 0,        $0 = 0.

dx

The corresponding extremals

(1 • 7) ví = -mix),       Pß = Pßix)

are termed secondary extremals.

It is convenient to set

(1.8) Q«'-f<,        *0 = O.

For each value of x the equations (1.8) serve as a transformation from the

variables (t?, j?', p) to the variables (77, f). In particular the secondary extremal

(1.7) can be represented in the form

Vi = Viix),       r¿ = f i(x).
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If the components ??í(x) of a secondary extremal all vanish for two distinct

values of x, say a and b, but are not all identically null between a and b, the

values a and b are termed conjugate.

We shall assume that there is no value on the interval a1<x^a2 conjugate

to a1. We term this condition the Jacobi S-condition.

2. Anormal secondary extremals. Secondary extremals for which all the

components raix) are identically null on an interval (a, b) will be termed

anormal on (a, b). Other secondary extremals will be termed normal on (a, b).

In particular the solution rji = ^i = 0 is anormal.

Let a be a number on the interval a1 <a ^ a2. Let N(a) be a set of second-

ary extremals for which ra(a1)=0 and which contains the maximum num-

ber of such secondary extremals independent of secondary extremals which

are anormal on (a1, a). All secondary extremals for which ^¿(a1) =0 will be

linearly dependent on extremals anormal on (a1, a) and extremals of N(a).

Let ir(a) be the number of extremals in N(a). We observe that ir(a) is

monotonicaUy increasing. There will accordingly exist at most a finite set

of values of a, say ax, • • • , ar, such that

(2.1) a1 < ax < ■ • ■  < ar < a2

at which 7r(a) is discontinuous. The integer r may in particular be null. We

set

a1 = a0)        a2 = ar+1

and

N(ah) = Nk, ir(ath) = xA (A » 1, • • • , f + 1).

There will exist a set Mn oin — irn secondary extremals which are anormal

on (a1, ai) which with the extremals of Nn form a set A a of n independent

secondary extremals on which (rj) = (0) at a1. On the £th extremal of the set

A a suppose that

(2.2) r<(al)-&« (A - 1, • • • , »).

We suppose that the first n — wn extremals of the set A h form the set Mh.

Without loss of generality we can also suppose that the columns of the

matrix ||&a|| have been normed and orthogonalized. We introduce a set Mi

oin — iTh secondary extremals of which the ¿th satisfies the conditions (Hes-

tenes [4], §5)

Vtia1) = bik,        Ma1) =0       (A = 1, •■•,»- *■»).

A set of n secondary extremals which are independent and mutually con-
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jugate in the sense of von Escherich is called a conjugate base. The extremals

of Aa and M¡! together form a conjugate base 5a. Let the extremals of Sk be

represented by the columns of the matrix

(2.3)

The determinant

va(x)

&(*)
(i,j =!,-••,»).

(2.3)' Dhix) = \ vhnix) \

is called the determinant of the conjugate base. In (2.3) it will be convenient

to suppose that the columns which represent extremals of M{ come first.

We shall prove the following lemma.

Lemma 2.1. The determinant of the conjugate base S h vanishes at no point

on the interval

(2.4) aA_i < x ¿ ctk.

Let

(2.5) riiix) m Cjriiiix) (»,; = 1, ••• , n)

be an arbitrary linear combination of the columns of the determinant (2.3)'.

We suppose that mix) vanishes at some point x0 on the interval (2.4), and

shall prove that the constants c,- are then all null.

Let fiix) represent the components $\- of the &th anormal extremal of the

set Mh. One has the integral

■qui = const.

Upon making use of (2.5) and of the fact that the constants (2.2) are normed

and orthogonalized we find that (Hestenes [4], §5),

Viia^Jiia1) m Ck » Viix)Fiix).

We infer that jj<(«) in (2.5) can vanish only if

Ck  =  0 ik   =   1,  •••,« —  7T»).

The columns involved in (2.5) thus belong at most to extremals of Aa, and

in particular in (2.5), ^(a1) =0 for each value of i. But r¡i(xo) =0 where xa

is on the interval (2.4). We infer that

(2.6) Viix) =0        (a1 ¿ x ¿ xo) (i = 1, • • • , n)
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since Xo is not a conjugate point of a1.

We can show that

(2.7) !»<(*) -0 ia1úx^ah).

To that end let y represent the secondary extremal obtained by combining

the extremals of A7a with the same constants as are used in (2.5). If c were

the maximum value of x such that 77,(3;) =0 on the interval (a1, c), and

c<ah, the function ir(a) would be discontinuous at c. In fact for a>c, the

set N(a) could be taken as one which included the extremals of Nie), y, and

possibly other extremals. We infer that (2.7) holds as stated.

But according to the nature of Nh the identity (2.7) is valid only if all

constants c,- in (2.5) are null. The lemma follows directly.

3. Curves which are admissible relative to a conjugate family. Let K be

a set of n independent mutually conjugate secondary extremals, and let L

denote the set of all extremals linearly dependent on the extremals of K. Let

the extremals of L be represented by giving their components rji and multi-

pliers pß as follows:

m - cmaix) ii,j = l, • • • , «),

pß = CiPßiix) (ß = 1, • • • , m).

We make no assumption concerning the vanishing of the determinant

| r¡ii(x)\. By the Hubert integral belonging to L we mean a line integral in

the space of the variables

(X, C)   =   (X, Cx,  ■   ■   ■   , Cn)

of the form

77 = J   (0 - nvi.Vi' )dx + Sln'din

in which the variables rji, pß are to be replaced by the respective right members

of (3.1) and in which we set

ni = cj n} (x),

dvi = va(x)dcj + CjTiii(x)dx.

The Hilbert integral will thus take the form

(3.2) 77=    \   A(x, c)dx + Bi(x, c)dd.

The variables (c) are arbitrary and x lies on the interval (a1, a2). That the

integral 77 is independent of the path in the space (x, c) follows in the usual
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way from the fact that the members of the set K are mutually conjugate ex-

tremals.

The equations

Í3.3) ru = CjTiijix)

define a transformation from the space (x, c) to the space (x, -q). Let

(3.4) Cj = Cj(x)

represent a curve of class D1 in the space (x, c). The image under (3.3) of a

curve of the form (3.4) will be termed a curve in the space (x, r¡) which is

admissible relative to L. This curve will be of class D1, but not every curve of

class D1 in the space (x, -q) will in general be the image of a curve in the space

(x, c) of the form (3.4), as examples would show.

We can however prove the following theorem.

Theorem 3.1. If the Clebsch S-condition holds, any segment y of a secondary

extremal of a conjugate family L affords a minimum to the second variation

relative to curves X which join y's end points and are admissible relative to L.

In the space (x, c), y is represented by a straight line 70 on which x alone

varies, while X is represented by a curve X0 of the form (3.4). The curve 70

does not necessarily join the end points of Xo in the space (x, c). If in particular

the first end points of 70 and X0 are distinct, these end points can be joined in

the space (x, c) by a straight line p on which x is constant. The line p will

correspond under (3.3) to the common first end point of 7 and X. Along p

the Hubert integral H will be null. It follows that H has the same value

along 70 as along X0.

Proceeding formally as in the case of ordinary Mayer fields, one sees that

E2(x, r¡, v', P, v')dx
■1

where E2 is the Weierstrass ¿-function for the second variation, with

Vi = Ci(x)rnj(x),     rjí  = Cjix)r¡i¡ix) (i, j - 1, • • • , »),

pß = Cj(x)pßi(x) (ß = 1, ■ ■ ■ , m)

therein, and with jj/ taken as the ith slope of the curve X at the point x on X.

From the fact that the Clebsch 5-condition holds it follows that E2 is never

negative for differentially admissible sets (x, 77, tj') and (x, 77, j;')- We conclude

that

A2 è 0,
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and the theorem is proved.

We add the following lemma.

Lemma 3.1. There exists a positive constant b so small that any segment of a

secondary extremal y on which a^x^a+b, where a is on the interval (a1, a2),

affords a proper minimum to the second variation relative to differentially ad-

missible curves of class Dl which join y's end points.

The proof of this lemma is readily given upon setting up a Mayer field of

secondary extremals containing y. Cf. Morse [7], Lemma 3 and Theorem 4.

Such a Mayer field exists for x on the interval (a, a+b) provided 5 is a suf-

ficiently small positive constant.

4. Fixed end points, sufficient conditions. We continue with the following

lemma.

Lemma 4.1. In order that the second variation be non-negative for differenti-

ally admissible curves which join the end points of the segment (a1, a2) of the x

axis, it is sufficient that the Clebsch and Jacobi S-conditions hold along g.

We return to the notation of §2, and in particular to the constants ak.

(e) If d is a sufficiently small positive constant, any secondary extremal

y on which x varies on an interval of the form

(4.1) a1 é x ^ «a + d ik = 0, 1, • • • , r + 1)

and on which (tj) = (0) when x = a1, affords a minimum to the second varia-

tion relative to differentially admissible curves of class D1 which join its end

points.

To prove (e) we turn to the conjugate base

5a (h = 1, • • • , r + 1)

of §2, and recall that the determinant Dh(x) of this base does not vanish on

the interval (2.4). There accordingly exists a positive constant ¿0 indepen-

dent of h such that Dh(x) does not vanish on the interval

(4.2) cth_x <x^ah + d0.

We suppose moreover that ¿0 is less than the constant S of Lemma 3.1. State-

ment (e) is valid if we set d = do, as we shaU now prove.

Statement (e) is valid if k = 0 by virtue of Lemma 3.1. Proceeding induc-

tively we shall assume that (e) holds for d = da and k = h — 1, and shall prove

that (e) holds for d = d0 and k = h.

Let y be a secondary extremal on which (rj) = (0) when x = a1, and on which

x varies on the interval (4.1) for k = h. Let X be a differentially admissible

curve which joins the end points of y. Let a be the segment of X on which
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(4.3) a1 ¿ x ¿ «a_i + d0

and b the remaining segment of X, so that we can write

X = a + b.

Now any differentially admissible arc whose end points are not conjugate

can be joined by an arc r¡i(x) belonging to a secondary extremal (Hestenes

[4], Lemma 7.2). With this understood let t be an arc vÁx) belonging to a

secondary extremal and joining the end points of a. We introduce the curve

P  =  T + b.

The curve p joins the end points of y.

We are assuming that (e) holds for d = d0 and k = h — l. Hence

(4.4) Ia ^ IT.

It follows that

(4.5) I^h è Ir+t.

We shall now establish the inequality

(4.6) Ir+i > Iy.

To that end we represent curves 77 ¿(x) belonging to secondary extremals de-

pendent on Sh in the form

(4.7) r,i = Cjriijix).

We regard (4.7) as defining a transformation from the space (x, c) to the

space (x, 77). This transformation is non-singular for x on the interval (4.2).

The curve b is accordingly the image in the space (x, c) of a uniquely defined

curve

Cj = Cjix) (J = 1, • • • , n)

of class D1 on the interval

(4.8) a4_i + do ¿ x ¿ ah + d0.

Let Cj" be the value of c,(x) when x =an-i+do. For x on the interval (4.3), r

will coincide with the curve of the family (4.7) determined by the constants

c¡°. The curve r is accordingly the image under the transformation (4.7) of

the straight line

Cj = Cj° ia1 ¿ x ¿ 07,-1 + d0)

in the space ix, c). The curve r+b is thus admissible relative to the conjugate

family determined by 5a. The inequality (4.6) follows from Theorem 3.1.
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Combining (4.5) and (4.6) we find that

(4.9) Ia+h ^ Iy.

Statement (e) is thereby proved.

The lemma is a consequence of statement (e) in the case where k=r+l.

It will follow from the next lemma that under the conditions of Lemma

4.1 the second variation is positive definite.

Lemma 4.2. 7"/ the Clebsch and Jacobi S-conditions hold along g, there exists

a conjugate base of secondary extremals whose determinant does not vanish on the

interval a1 ̂  a; 5ja2.

The proof of this lemma is nearly the. same as the proof of Theorem 3,

Morse  [7].

We start with the conjugate base Sr+x of §2. The determinant formed

from this base does not vanish at x = a1. We can accordingly choose a base

■nu(x)

Uiix)
(Í,j  -   1,  •   •   '   3  »)

for members of the family in which the jth column represents a member of

the family such that

2  - x* 'VU — °i-

The superscripts 1 and 2 are used to indicate evaluation for x = al and x = a2

respectively. We introduce a second conjugate family H with base B of the

form

rjaix)

faix)

and such that

bi, Ci,      Ci,      °i.

We represent the family 77 in the form

Vi = Ujrjij(x),

Çi =  Uj Çii\X) ,

where the symbols u¡ represent constants.

The conjugate base B will serve as the conjugate base whose existence

is affirmed in the lemma.
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To establish the truth of this statement we assume that it is false, and

hence that the determinant \va\ vanishes at some point x = c on the interval

(4.10) a1 ¿ x < a2.

There will then exist an extremal y oí H determined by a set of constants

(w) 5¿ (0) such that 77¿(c) =0 on 7 for each i. Let X be a curve which consists

of the x axis from x = al to x = c and of the curve 77¿ = 77¿(x) belonging to 7

from x = c to x = a2. Upon evaluating the second variation 2 along X from

x = o1 to x = a2 we find that

2

h = UjUiUj — UiUi.

On the other hand there will be a secondary extremal p dependent on

the baseSr+i for which the curve t7,(x) joins the end points of X. This extremal

will have the form

77.- = va(x)Uj,        f,- = {"</(*)«*,

and we see that

2
Iß Ci j Ui Uj.

It follows from statement (e) of the proof of the preceding lemma that h^I».

But this is impossible since (w) ¿¿ (0).

We infer that the determinant | r/;,(x)| does not vanish on the interval

(4.10). The base B will thus serve as the base of the lemma, and the proof is

complete.

We come to a basic theorem.

Theorem 4.1. In order that the extremal g afford a proper minimum to J

relative to neighboring admissible curves, it is sufficient that the Clebsch, Jacobi,

and Weierstrass S-conditions hold along g.

The conjugate family of secondary extremals whose existence is affirmed

in the last lemma forms a Mayer field of secondary extremals covering a

neighborhood of the segment (a1, a2) of the x axis. This family can be used

as in Morse [7], Theorem 4, to establish the existence of a Mayer field of

primary extremals including g and covering a neighborhood of g.

The theorem follows in the usual manner.

5. General end conditions. We turn to the problem under general end

conditions. The preceding results lead to a set of sufficient conditions involv-

ing the Jacobi condition which make no assumption concerning normalcy.
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The form of the problem is a modification of the Bolza problem introduced

by the author (Morse [8]). We suppose that we have an extremal g as before.

Points near the first and last end points of g will be denoted by (x1, y1) and

(x2, y2) respectively. The end conditions have the form

(5.1) x' = x'(a),        yi' = yi'(a) (s = 1, 2; i = 1, • • • , »)

where (a) represents a set of r variables ah. The functions x'(a) and y,'(a)

are assumed to be of class C2 for (a) near (0) and to yield the end points of g

when (a) = (0). No assumption is made concerning the rank of the matrix

of the functions on the right of (5.1). The differential conditions are as be-

fore, but the functional J is replaced by the more general functional

f(x, y, y')dx
*'(a)

in which d(a) is a function of (a) of class C2 for (a) near (0).

By an admissible curve y and set (a) we mean a differentially admissible

curve 7 and set (a) such that y satisfies the end conditions with the set (a).

The problem is one of determining conditions under which g and the set

(a) = (0) afford a minimum to / relative to J's value for admissible curves y

and sets (a) for which y neighbors g and (a) neighbors (0).

We assume that g and the set (a) = (0) satisfy the transversality condition

(Morse and Myers [6])

(5.2) [(F° - F°Piyi)dx  + Fp^y']î +¿0 = 0,

as an identity in the differentials dah in terms of which dx", dyf, and dd

are to be expressed.

The second variation is the functional (Morse [8])

2«(jj, r¡')dx (h, k = 1, • • • , r),
al

subject to secondary end conditions of the form

(5.4) j?' = c'a«a (J = 1, 2; h = 1, • • • , r),

where bhk and c\h represent constants of which bhk = bkh- It is here understood

that x1 = a1 and x2 = a2. The differential conditions are as before. A curve y

and set (u), such that y is differentially admissible and satisfies (5.4) with

the set (u), is termed admissible.

For a problem under general end conditions Mayer has stated a suf-

ficiency condition in terms of a quadratic form. Bliss [2] and Hestenes [4]
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have modified this condition. We introduce a further modification of this

condition which simplifies its use.

To that end let

(5.5) riipix),    Up(x),    uhp      (i = 1, ■ ■ ■ , n; h = 1, ■ ■ ■ , r; p = 1, ■ ■ ■ , q)

be a set of a secondary extremals and constants (w) which satisfy (5.4).

Suppose moreover that this set contains the maximum number of admissible

secondary extremals and constants (w) which are independent of sets

77,-(x)=0, f,(x), (w) = (0) belonging to anormal secondary extremals. Each

admissible secondary extremal and set (w) is linearly dependent upon the

members of the set (5.5) together with an anormal secondary extremal and

set («) = (0). We consider the family

(5.6) ■m = Vptiipix),       U = VpUpix),       uh = vpukp,

of admissible secondary extremals and corresponding sets (w). Upon evalu-

ating 2 along the member of this family determined by ft>) one obtains a

quadratic form Hiv). By the Mayer S-condition we mean the condition that

Hiv) be positive definite.

The theorem here is as follows.

Theorem 5.1. In order that the extremal g and set (a) = (0) afford a mini-

mum to J relative to neighboring admissible curves and sets (a) it is sufficient

that g and the set (a) = (0) satisfy the transversality condition, that there be no

conjugate point of x = a1 on the interval a1<x<a2, and that the Clebsch, Weier-

strass, and Mayer S-conditions hold.

Hestenes [4] has shown that g and the set (a) = (0) afford the desired

minimum provided the second variation is positive definite for admissible

sets (77) and (m). Cf. Currier [5]. The problem here is accordingly to show

that the second variation is positive for non-null admissible sets (77) and (w).

We observe that x = a2 is not conjugate to x = a1. For otherwise there would

be a secondary extremal for which 77^0, which would satisfy the end con-

ditions with the the set (w) = (0), and would appear with this 77<(x) and set (w)

as a member of the family (5.6) for which (d)?¿(0). We would then have

2200=0, contrary to hypothesis.

It follows from the preceding sections that each secondary extremal for

which a1 ¿ x ¿ a2 gives a proper minimum to 2 relative to admissible curves

77,(x) which join its end points. That 2>0 for admissible secondary extremals

and sets (w) for which (77) and (w) are not both null follows from the positive

définiteness of Hiv). Hence 2 is positive definite as stated.

The proof of the theorem is complete.
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