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Introduction

In his paper Note on the orthogonality of Tchebycheff polynomials on con-

focal ellipses,] Walsh has obtained a new orthogonality property of the

Tchebycheff polynomials cos k arc cos z arising by orthogonalization of the

set 1, z, z2, ■ • • over the range — 1 ¿ z ¿ 1 with the weight function 11 — z2 ¡ ~m.

Walsh showed that these polynomials have the same orthogonality property

on all confocal ellipses with the foci at ± 1 and with the same weight func-

tion 11—z2|_1/2. Another example of this kind is the set of concentric circles

with the weight function 1: the corresponding orthogonal polynomials 1,

z, z2, • • • are the same for all curves of this set, provided the common center

of the circles is at the origin.

Walsh raised the question whether there exist other pairs of curves with

suitable weight functions such that the corresponding orthogonal poly-

nomials would differ only by constant factors. A complete answer to this

question seems to be rather intricate. The following theorem may furnish

some indications as to the possibilities to be expected.

Theorem 1. Let Ci and C2 be two analytic Jordan curves, «i(z) and Wü(z)

awy corresponding weight functions, positive and continuous, and

poiz), piiz), p2iz), ■ ■ ■ , phiz), • • ■

a system of polynomials, the exact degree of pkiz) being k, simultaneously orthog-

onal on either of the curves,

Jniiz) pkiz)piiz) | dz\ = n2iz)pkiz)p¡iz) \ dz \ = 0,        k ^ I.
C\ J c.

Then one of the curves, say Ci, must contain the other (C2) and Ci is a level

curve in the conformai mapping of the region outside C2 onto the exterior of a

circle, the points at infinity corresponding to each other. Further there is an

analytic function Diz) regular and non-vanishing outside C2, z=<x> inclusive,

such that

* Presented to the Society, December 29, 1934; received by the editors June 29, 1934.

t Bulletin of the American Mathematical Society, vol. 40 (1934), pp. 84-88.
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| D(z) |2 = wi(z), z on Cx;   lim | D(z) |2 = «2(20), 20 on C2;
2—.2.

in the second formula z0 is an arbitrary point on Ct and z tends to z0 remaining

in the region outside C2.

This theorem is valid also under more general assumptions. For the sake

of simplicity we confine ourselves to analytic curves. The proof is a slight

extension of a known line of argument used in several papers of the author.*

The result stated above suggests in a natural way the following

Problem. To determine all Jordan curves C and all analytic functions D(z)

regular and non-vanishing outside C, z = 00 inclusive, possessing the following

property. Let Cr be a level curve in the conformai mapping of the region exterior

to C onto the region exterior to the circle \w\ = r 0, the points at infinity correspond-

ing to each other. The orthogonal polynomials

po(z), pi(z), • ■ ■ , pk(z), ■ ■ •

associated with Cr and with the weight function \D(z)\2 are independent of r

for r >r0. In other words it is required that

I   \D(z)\*pk(z)JJzj\dz\ = 0, k9*l,        r>r0.
Jcr

This problem admits of a complete solution. The present paper is devoted

to the enumeration of all the types satisfying the condition stated above.

There are altogether five essentially distinct cases, two of which have been

already mentioned above. In all these cases a linear transformation of the

variable z and a multiplication of the weight function by a positive constant

factor of course are still allowed. The orthogonal polynomials are not neces-

sarily normalized, the normalizing factor being in general different for dif-

ferent curves Cr. The five types in question are as follows.

I. Cr is the set of concentric circles \z\ =r,r>0;

D(z) = 1, pk(z) = 2*.

II. Cr is the set of concentric circles \z\ = r, r > 1 ;

D(z) = (1 — z-")-1, a a positive integer,

pk(z) = 2»,  0 ^ k < a; pk(z) = z*-"(2a - 1), * è «•

* Beiträge zur Theorie der Toeplitzschen Formen, II, Mathematische Zeitschrift, vol. 9 (1921),

pp. 167-190, especially p. 178; Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen

Ebene gehören, Ibidem, vol. 9 (1921), pp. 218-270, especially pp. 260-262.
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III. CT is the set of confocal ellipses with foci at ± 1 ;

Diz) = [z+ (z2 - l)i'2}"V - l)-i/" = {§(1 - w-2)}-i'2,

phiz) = wk + w~k,  2z = w + w_1,   | w | = r > 1.

IV. Cr is the same set as in III ;

Diz) = [z + (z2 - l)1'2}-"2(z2 - l)1'4 = |i(l - w-2)}i'2,

Pk(z)   =   (wk+1 —  W^k~1)/(w —   W~l) ,

where w is the same as in III.

V. CT is the same as in III;

D(z) = (z - iyi*(z + I)-1'* = (1 - wri)U*il + w-1)-1'2,

pkiz) = iwk+m - w-t-u^/iw1'2 - W"1'2).

It should be observed that Tchebycheff polynomials III, in addition to

the property discussed here, have another analogous one, viz. that they mini-

mize the max|z*+aiz*_1+ • • • | on all the ellipses defined above. This

property which was pointed out by Faber,* is analogous to that obtained by

Walsh. Our line of argument given in §1 applies without difficulty to Tcheby-

cheff polynomials minimizing the max w(z)| z^ + aiZ*-^ • • • | on prescribed

curves, w(z) being a given weight function, positive and continuous; thus for

this problem we are lead to a theorem analogous to Theorem 1.

In §1 we prove Theorem 1 concerning the question raised by Walsh. §11

contains a short discussion of the polynomials enumerated under I-V, par-

ticularly with respect to their orthogonality. In §111 we deal with the prin-

cipal problem and prove that the only possible polynomials orthogonal on

all level curves of a conformai mapping are those of §11. t

I. Proof of Theorem 1

1. Let us consider an analytic Jordan curve C with a positive and con-

tinuous weight function w(z). There is no difficulty in showing the existence

of an analytic function Diz) regular and non-vanishing outside C, z= oo

inclusive, with the boundary property

lim | Diz) \2 = nizo),

* G. Faber, Über Tschebyscheffsche Polynome, Journal für Mathematik, vol. 150 (1920), pp.

79-106, especially pp. 84-86.
t After having completed this paper, I communicated its main results to Professor Walsh who

kindly informed me that he also obtained the first part of Theorem 1 and proposed precisely the

same problem as stated above, without discussing it. These results of Walsh will appear in a mono-

graph of the Mémorial series, Paris, Gauthier-Villars, under the title Approximation by Polynomials

in the Complex Domain. Nevertheless, for the sake of completeness, we give here a short proof of

Theorem 1.
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where z0 denotes an arbitrary point of C and z tends to z0 from the exterior

of C. The function D(z) is completely determined up to a factor of the ab-

solute value 1.

The proof of this statement can be based on the conformai mapping of the

region outside C onto the region outside the unit circle \w\ = 1, the points at

infinity corresponding to each other. The mapping function and its inverse,

z = g(w) = gw + go + gxW.1 + g2w~2 + ■ • • ,

w = y(z) = yz + 7o + 7i2_1 + 72Z-2 + • • • ,    gy = I,

are uniquely determined under the assumption g>0. We write

■C[s(M')] = A(w),   I w I > lj w[g(w)] = viw),   \w\ — 1-

Then the function A(w) must satisfy the following condition:

lim | A(w) |2 = v(wo); \ w01 = 1, | w\ > 1,
w-mt

from which it can be computed by means of the Poisson integral

w + e(*/*                 w + el*
log v(e**) -

-r                  w — el*
dd,.

2. Let pkiz) =pkzk+ ■ ■ ■ denote the orthogonal polynomials associated

with C and with the weight function n(z), the normalization being arbitrary.

Then it is known* that the minimum ß£ of the integral

(2tt)-x f n(z) | 2* + axzk~x + ■ ■ ■ + ak |21 dz \

over the set of polynomials of degree k and with the highest coefficient 1 is

attained for the polynomial P^P^z).

We show first that

(1) lim MAg-*-1'2 = | Z>(oo) |.
k—»oo

Indeed we have

H¿ = min (27t)-1 I I A(w) |21 g(w)k + a1g(w)k~1 + • ■ • + ak |21 g'(w) \\dw\
J l wl-i

= min (2-7t)_1 i | A(w) {(giw)/w)k + axw~ligiw)/w) k~1

J \w\-X

+   ■ ■ ■ + akw-*}g'(wyi2\2\dw\,

* See for example the second paper of the author quoted above, p. 231.
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where the integrals should be interpreted as the limits of the corresponding

integrals over the circle | w\ =r as r—>l+0. The function under the absolute

value sign is regular for \w\ > 1. Hence, we get a lower estimate for p¿*,

Pk2 è | A(»)g*g1/2|2 = | P(°°) |2g2*+1.

An upper estimate for pk2 can be obtained for instance by using the poly-

nomials fkiz)=ykzk+ ■ ■ ■ introduced by Faber* as the principal parts of

the expansions of y (z)*, k = 0,1, 2, • • • . Faber shows by elementary methods

that

lim/t(z)7(z)-' = 1

is valid uniformly outside a level curve |y(z)| =p, p<l, provided p is suffi-

ciently near to 1. Now, as a consequence of the minimal property we have

Pk2 ¿ (2t)-1 f W(z)|a*(z)|2|dz|,
J c

where qkiz) is an arbitrary polynomial of degree k with the highest coefficient

1. We put

m

qkiz) = 2~2 akyh~kfk-h(z),    k^m,    ao=l,
h-0

where m and the constants ak are to be specified later. Using the asymptotic

estimate above of the/*(z) we obtain

lim ipkg-"-112)2 ¿ lim (27t)-1 f w(z)
—♦oo k—..o %J n

lim
k

22<xhyh-kg-k-ll2yiz)k-k dz

s* \    m "i

¿i2ir)-i\   «(z) \22<xkg-h-ll2y(z)~h   \dz\

/> m |2A(w) £ ahg-h-ll2w-hg'iwyi2   \dw\.

|tt|_l| h-0

We now choose for the polynomial

X ahg~hw-h = 1 + • ■ •
h-0

the mth partial sum of the power series expansion of the analytic function

ig/g'iw)yi2iAico)/Aiw)).

By taking m sufficiently large the deviation of the last integral above from

* Loc. cit., p. 83.
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|A(oo)|2 can be made arbitrarily small (Schwarz's inequality). Thus (1) is

established.

3. The following formula is merely another expression of (1) :

Urn (2T)-1g-2*-1   f »(«) | Pklpkiz) |21 dz |
A-.» J ç

= lim (21r)-1r2*-1   f        | A(w)piTipk[g(w)]g'(wyi2\i\dw\ - | A(oo)|».
*->» •/ |tt|_i

On putting

g-*-u*Aiw)p¡r1pk\giw)]g'iw)1i3 = A(oo)it)A 4. aiWai*-i + 02<*>w»-J + • • •

we may write this as

lim(|ai<*>|2 + | a2w\2-\-) = 0.
A-.«

Hence we get, uniformly for \w\ èr, r > 1,

lim (ax^w-1 + a2ww~2 +•••)= 0.
A—»CO

This yields the asymptotic formula

(2) pk(z) ~ pkgk+1>2D(co )y(z)ky'(Zy/*D(z)-1

which is valid uniformly outside an arbitrary level curve Cr, r > 1.

This formula shows immediately that the set pk(z) uniquely determines

the mapping function 7(2) as well as the function D(z). The proof of Theorem

1 is thus complete.

II. Five types of orthogonal polynomials

1. It is well known that on an arbitrary circle \z\ =r,

(3) I       z"zl\dz\ =0,        k 9* I.
J |*|-r

This equation is valid for arbitrary integral values of k and I.

2. The polynomials listed under II, in the special case a= 1, were intro-

duced by the author.* Their orthogonality may be verified in the foUowing

manner. On putting \z\ = r > 1 we have

f       i*-K* - l)zl~Kz - 1) I 1 - 2-11-21 dz I = r2 f       z^-iz'-11 dz I = 0
J |«|-r J \z\-r

(ft 2  M2  1. k9*l).

* Über trigonometrische und harmonische Polynome, Mathematische Annalen, vol. 79 (1919),

pp. 323-339, especially p. 324.
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Further for k^.1, z=rei+, r>l,

/■                                                                                                  /• x      %k—l                           /• w        g*

zk~liz- 1)| 1 - z~l\-21 dz | = r3 I      -<ty = r3 I      -d4> = 0.
|,|-r                                                                      J-t  z — 1                  J_, r2 — z

In the case a>l the vanishing of the integral for k^a, l^a, k^l can

be shown in the same way, and is trivial for k<a, l<a, k^l. The only fact

which still remains to be proved is that for k^a,l<a,

/'                                                                            CT   z     zzk-"iza - l)zl I 1 - z-a h2\dz\- r2a+1 I      -d4>
|.|-r                                                                          J-r za - 1

CT        z"      i rV
=  r2«+l    I -(— Jdc6   =  0

./_, r2a — z"\z J

which is easily verified.

3. Type III has been treated by Walsh. The proof can be presented in

the following simple way. We have

| <fc | = | 4(1 - w-2) \\dw\,

and for r > 1, k j^l, in view of (3),

/(w* + ar*)(w"' + w~l) | dw\ =0.
|w|=r

In case IV we have only to show that iork^l

/•* \w\-r

yj*+l  —   2f—*— 1     iQl+1  —  W~ l~

|u,|_r W —  W~l W — W   1

1 — W~
dw

= —r~2 \        iwk+1 - w~k-1)iwl+1 - w-1-1) \dw\ =0,
4       J i„i_4       J |„|_

which again follows from (3).

Finally, in case V, for k^l,

-I-1 1 - w-1!2] áwl
2J|«,|-r Wl/2  -   w-l/2 =l/í_=¡-l/2       I I

= — r-i J        (w*+1/2 - w-*-i/2)(to,+1'2 - M)-!-1/2) I áw I =0
2 •/ |u|-r|w|

if we use the equation

/   •J liol-r

W*+1/2W¡+1/2| ¿TO [   =  0

(«I-
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which is valid for arbitrary integral values of k and I, provided k9*l.

III. Solution of the principal problem

1. With the notation of §1 our assumption can be written in the form

f       pk[g(w)]pl[g(w)]\A(w)g'(wy'2\2\dw\ = 0,     k9*l,    r>l.
J |t»|~r

As the first step of the proof we shaU derive a power series expansion of

the form

Aiw)g' iw)ll2pk[giw)] = X*w* + XaiW~x + \k2w~2 + • • •

(4)
= Xaw* + Qiciw),

where \k9*0. Let Awm be the second term of the power series expansion of the

left-hand member of this formula. By hypothesis, if 0 ^m<k, we must have

/iXkw" + Awm + • ■ • )(Xmwm + • • •   ) | dw\ = 0,    r > 1.
|w|-r

Here the principal term for large values of r is obviously

•»   v I-r

A\m | wmwm\ dw\ = 2irA\mr2m+1.

Hence ^4=0 and the desired result follows. By (3) and the orthogonality

condition we have for ¡19* I,

I        (A*w* + <2*(«0)(XV + Qiiw)) I dw I

=   I        X;tX¡w*w!| dw| + C*(w)C}¡(w) I dw I =0.
•I \w\-r J \w\-r

Hence

or

f   e*(«o0i(«o I dw 1 = 0, « ?i/,

XAiXar-1 + X42X¡2r-3 + • • • = 0,     ft 9* I.

Consequently

XaiAu = A(c2X¡2 = • • • = 0,    ft 9* I.
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Thus we see that no column Xaa (ft = 0, 1, 2, • • • ) of the matrix (X*a) (k = 0,

1, 2, • • • ; k = I, 2, ■ ■ ■ ) can contain more than a single element 9*0.

2. Let now \w\ >\t\ >1. We consider the function

(5) G(w, t) = A(w)g'(wy>2g'(ty'2/{A(t)(g(t) - g(w))}.

It is regular for / fixed in \w\ >\t\ and has a simple zero at infinity. Therefore

it admits of a representation of the form

(6) G(w, t) = 4>x(t)w-1 + <t>t(t)w-2 + <t>3(t)w-* -\-.

We shall show that

(7) (2iri)_1XA f      t"G(w, t)dt = Qk(w),  \ w \ > r > 1.
J   \t\-T

Indeed the left-hand member is, on account of (4),

Pk[g(t)]
(2Ti)-1A(w)g'(wy2 f PklS{t)j    g'(t)dt - (2x*)-' f       Qk(t)G(w, t)dt.

J \t\-r g(t)  - g(w) J \t\-r

On writing r = g(t) we obtain for the first term

(2Tri)-lA(w)g'(wyi2 f   ^—dr = 0
JcrT   —   Z

since z=g(w) is outside CT. The integral of the second term, being taken over

a large circle \t\ =R, tends to 0 as R—»°o. Thus we get the residue Qk(w).

An alternative form of this result is

(8) (27ri)-1X* f      t"ci>h(t)dt = \kh     (ft = 0, 1, 2, • • • ; h = 1, 2, 3, • • • ).
J |i|-r

3. There is no difficulty in obtaining explicit representations for the func-

tions ¡i>h(t). From (6) we have

4>x(t)= -A(n)g-v2g'(ty>2/A(t),

<t>2(t) = - A(^)g-^(g'(ty'2/A(t))(g(t)/g +const.).

A direct expansion shows that c&aCO is of the form g'(t)ll2/A(t) multiplied by a

polynomial in g(t) oí the exact degree (h — 1).

In virtue of (8) and of the remark above concerning the vanishing of the

\kk in a fixed column, we see at once that the Laurent series expansion of

<f>h(t) cannot involve more than one negative power of /, that is, 4>k(t) must

be of the form
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bt-» + bo + bit+ ■ ■ ■ +¿>A_ií4-1,    Ím^O,    /3>0.

As a consequence of this <t>i(t)/4>i(t), hence also git), must be rational. This

function cannot have other poles than 0 and °° ; otherwise 4>k(t) would have a

further pole provided h is sufficiently large. Thus we find

(10) git) = gt + go + git'1 + • • • + IJT-.

4. On denoting the exact orders of c/>t(i) and of git) at t = 0 by p and cr

respectively we first assume cr = 0, that is,

git) = gt + go,   4>iit) = - A(oo)/A(i) = bt-> + bo.

This yields types I and II given in the Introduction.

Next assume a >0. We now distinguish two principal cases.

(a) Qo(w) is not identically zero, that is, there is at least one coefficient

Xoa^O. We know by (8) that 4>n(t) has a simple pole at t = 0. Then, by (9),

P + ih- l)<r = 1.

Consequently we have to consider the following possibilities :

*- i,   p = i;

h = 2,    cr = 1,    p = 0.

Under the first hypothesis we have on account of (4) for k = 0,

g'(i)l/2/A(0 = 6o + air1,    g'ity>2Ait) =co + citr1,    b0, bu c0, ci^O,

whence

g'it) = boco + iboci + biCo)t~l + biCir2,

so that o0Ci+oiCo = 0 and

git) = bocot + go — bicit~l = go + bocoit -\- r1),

while

r      /       bi2     \y12 /co\ll2/bo - w-v'2

4(,)"H1 -un] /(»• + »«-(¡r) \17TTP) ■
This is our type V.

The second hypothesis gives at once

g(t) = gt + go + git'1     (g, gi * 0);     g'(ty'2/A(t) = const.,

which is type IV.
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(b) Qa(w) is identically zero, that is, A(i)g'(t)ll2 = const. Then

<j>xit) = const, g'it),    p = <r + 1,

and from (4) for k= I we find that Xi^O. Consequently </>„(/) has a pole at

t = 0 of the exact order 2. Now the exact order of the pole / = 0 of <f>h(t) is

p + (h - l)cr = o- + 1 + (ft - l)o- = ho- + 1.

For h=a we have cr2+l =2, o- = 1, which corresponds to type III. Our proof

is now complete.

Königsberg, Pr.


