ON THE EXPANSION OF THE REMAINDER IN THE
NEWTON-COTES FORMULA*

BY
J. V. USPENSKY

1. In Newton’s method for approximate evaluation of definite integrals
the interval of integration, say (0, 1), is divided into a certain number # of
equal parts and the integral of a given function f(x) is assumed to be ap-
proximately equal to the integral of the interpolation polynomial of degree
which at the points of subdivision has the same values as f(x). The resulting
approximate formula

1) j;lf(x)dx = A¢f(0) + AJ(%) + - 4+ 4./(1)

is known as the Newton-Cotes quadrature formula. The coefficients A4,,
Ay, v - -, A, depend on the number of divisions # and their values have been
computed by Cotes for #<10. In the following we shall call them “Cotes
coefficients.”

Formula (1) is exact for an arbitrary polynomial f(x) of degree not ex-
ceeding #. However, since for an even n

T B

formula (1) will be exact even for polynomials of degree n+1 if » is even.
Strange as it may seem, the expression for the remainder in the Newton-
Cotes formula was unknown till quite recently. It was only in 1922 and
1924 that J. F. Steffenson succeeded in giving a genuine expression of that
remainder first for an even and then for an odd #.f In this paper we shall
show that the remainder in the Newton-Cotes formula possesses an expansion
in all respects quite similar to the classical Euler-Maclaurin expansion, which
fact is interesting in itself and may be very useful in practice. The method
by which this result is obtained is similar to that employed in our paper On
an expansion of the remainder in the Gaussian quadrature formula,} but besides

* Presented to the Society, September 7, 1934; received by the editors August 9, 1934.

t The detailed derivation of the remainder in the Newton-Cotes formula can be found in an
excellent book by J. F. Steffenson, Interpolation, Baltimore, Williams and Wilkins, 1927.

1 Bulletin of the American Mathematical Society, vol. 40 (1934).
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simple means used in that paper it requires an elaborate study of certain
properties of Cotes coefficients.*

2. In a paper Sur les valeurs asymptotiques des coefficients de Cotest I have
shown that for large » and uniformly in 2 (1<k<n—1)

Ca [(—1)"-1 +(—1)»—k—1]’

¥ n (log n)? k n—k

while
1

nlogn'

A0=A"N

These formulas show that for sufficiently large »
(2) (= 1)¥14, >0, 40 > 0,
if 1<k<3%n; as to the signs of the remaining coefficients, they result from
the elementary relation

A,,,_k = Ak.
Now it is very important to determine the least value of # for and after which
inequalities (2) hold. It will be shown that 4,>0 always and that
(—1)¥14,>0 (1<k=<1in) for even n=8 and odd n=11.

3. From our article quoted abovef we take the following expression of

1 =n+1 t log((1=§) /) k=
Ay =—+ Cr (— 1)"“[f £x(1 — E)”—"dff dx
n 0 —

n 4 ot
1 log((1-6)/8) pln—k)z
(=0 [ - o [ )
Introducing here instead of x a new variable ¢ defined by
1 _E_ Ee’ =,

we can present A, in the form

* I must express my thanks to Professor G. Pélya for some very helpful suggestions in connection
with this investigation.

t Bulletin of the American Mathematical Society, vol. 31 (1925), pp. 145-156. See also G. Pélya,
Ueber die Konvergenz von Quadraturverfahren, Mathematische Zeitschrift, vol. 37(1933).

1 Attention should be called to the fact that many formulas on p. 147 of that article are marred
by typographical errors.
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1 1 Loet o g()(1 — §)ndidt
@ =42l ek [ f #O(1 = prdedt
n n o Yo 1—§\?2
w2 + (log ; t)
o(t) = 1 4 (= 1)ngn—b-1
o) (1 — £)rdtds

1—£\?2
m? + (log t)
£
1/2

(= D)*ndy > (= D)+ + (n+ DC f (1 — D F@E)d,

1 1 + (_ 1)ntn—k—1
Fo= [ .
vy, (log E t)

From this inequality it follows immediately that for an odd k <n/2 the coef-
ficient A, is positive.
Integrating by parts we find

whence

(= 1)ndy = (= 11 + (n + 1)C f ' f '
0 0

and

1 +(— nH»
Nk Gl sl E n—k
_ 1— £\ 1— £\
va-o 7 + (log——-e Et) x4+ (log : ¢ )
1 1 £ k (_ 1)»( s >n-—k]
w’[k(1—£>+n—k 1—¢ ’
and hence
1/2 1 k—1 — 1)ngn—k—1
et [Ca-pa [ ZEEDTT,
0 Ha-b n <log 1 ; Et)
1 (= 1z (1 — &dt 1
k{ - —_——
>("+1)C"(k+n—k>£ 1—8\2  Er?
w2 4 <log )
because
(n+41)Ck

Ex(1 — E)nrdE

k n—k

1/2 + 1)Ck 1
f £ (1 — £)vrdE 4 (— 1)'.("__).__f
0 1/2

1)C¥ 1 1
< .(n__l-___)___f Ek(l —_ E)"—kdE = —.
k 0 k
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Consequently for an even k<#n/2

L (=D - e 1
4) —nAk>(n+1)C,f‘(—k-+ n—k)j;

1—£\? krt
1r2+(log ; )

4. In order to draw the desired conclusions from this inequality we must
find a sufficiently precise and tractable lower limit of the integral

1/2 1 — §)»
K, ___f 1-8 i.

1— £\?
w4+ (log )
§
Consider a more general integral

1/2 —a(] — n+a
K,.(a)=f £ £ dt, —n<a=0,

1 — 2
-’ + (log E)
£
which for a =0 reduces to K,. Since

d?K,(e)
do?

1/2

+wmw=f (1 — p)vez—edz = ¢(a),

0

we obtain, by integrating this equation,
Ki(—2) . 1 re
K.(a) = K,(— 2) cosma + ————sin ra + — ¢(z) sin (e — x)dx.

™ m -2

Taking here « =0 we get
1 2
K,=K.(—2) +—f ¢(— x) sin wadx.
T Jo

But
1+ x)I'(n+ 1 — x) ¢
T'(n + 2) T
0<d9<lifn=5,

1/2
a—w=f go(1 — gyredt =

and K,(—2)>0; consequently
1

27»—1”1'.2

1 2
K, > —f w(x) sin rxdx —
mJo

where
T+ 2)T'(z+1 — x)

I'(n 4+ 2)

w(x) =
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n—1—2x
(@) — ol + 1) = ————w(x),
n—x
we shall have a fortiori
n—3 1 1
K, > ——f (%) sin Txdx —
(n — Drdo 27~ pg?

On the other hand I'(1+x) >e¢=, where C is Euler’s constant,

P_(_n_-_'-__l__x) > e—zlog(n+1)’
T(n+ 1)
and
1 ! 1 eC
__f e—zlC+log(n+1)] gin radx = (1 + )
rJo 72+ {C + log (n + 1)}2 n+1

Hence, finally,

(n+1)K>n_3 1 <1+ e‘c>_ n+ 1
" w—1m+ ([CHlog(n+ D]\ at+1)  2vipg2’

and, taking into account inequality (4),

1 (—D"\[»n—-3 1 eC
— ndy > CrtH{ — + 14
B n—k/ln—1 724 {C+log(n+1)}2 n+1

1 1
T ]_1___.

271y kw?

To prove that, for certain # and even k<#n/2, coefficients 4 ; are negative, it
suffices to verify the inequality

O | e e G
"\t n—-k/ln—1 4 {CHlog(n+1)}2 n+1

n+1 1
+ ]—1-———>0.
27y

kw?

)

5. If n is even the inequality (5) will be verified for all even values of %
if it is verified for £ =2; also, being verified for some even #, it will be verified
for greater values of #. Now, taking #» =12 and k =2, inequality (5) is verified;
hence for an even # =12, A, with even subscripts <#/2 are all negative. The
same being true for =8 and » =10 we may be assured that
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(— 1)%14, > 0, 1

IIA

k

IIA

n
-
2
for all even #=8. If # is odd =13 it suffices again to verify inequality (5)
for n =13, k=2; by direct computation we find that it is satisfied. Hence
n—1
2

for all odd #»=13. It remains to be seen whether this is true for =11. But by
direct computation I have found the following values of Cotes coefficients
for n=11:

(— 114, > 0, 1

IIA

k

IIA

)

2171465 13486539 3237113
A0=A11=_‘_—“‘; Ay =A, = _— 2= Ag= — —;
24 X 10! 24 X 10' 24 X 10'
25226685 9595542 15493566
A8 = 8 _— 4= 7 = —_— = Ag = ——m8m -
24 X 10' T2 X 10' 24 X 10!

Hence the above property of Cotes coefficients holds for all odd # =11, but it
no longer holds for #=9. It remains to show that A4, is always positive. The
sign of A, is the same as the sign of the integral

I,,=fn(1—x)(2—x)---(n—x)dx,
which, by setting ’
®(x) = f (1 =82 =12 - (n—2t)dt,
0

can be presented thus:

I=—+
n

x.

i ] L
(n) f (%) i
0 x?
But it is known that ®(x) >0 in the interval 0<x<#%, hence I,>0 and

4,>0.
6. For n=3 (mod 4) it is important to show that

(n—1)/2

> kA,,>§

k=0

for n=11. To present the left hand member in a convenient form we may
use formula (3). Thus we get

(D)2 m—1 n +1 (1 — 85 ()
2 kAr = f f 1— £\
<log : t)

dtdt,

k=0
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where
(n—1)/2

() = > (— 1)FICA(F1 — grh-1),
k=0

By an elementary transformation this expression becomes
o) = n(1 — W@®),
¥(#) denoting a reciprocal polynomial

(n—5)/2 (n—5)/2

Y({t) =1—=Cost+ -+ — Cra

(n—3)/2 (n—3)/2 (n—5)/2 (n—l)/2 n—3
+Cn—2 '—Cu—2 +"'+t
Using the following known identity,
—2 1 n—3 (n—ﬁ)/2 (n+1)/2
- Cn—zt + * - Cn—2

—3 az [t yDIi2d
- _ <n_z)/2(1 — zf y y ,
2 0 (1 _— y)"‘l

¥(#) can be presented thus:

— — _ t (n—=1)/24
Y = —"——ci-;’”*(l —pa ) [ 2
0o (1 — y=t
+ (1 l) + C(n—3)/2 (h—1)/2
- n—2 )
whence
i N20)) _ 2¢(n=1)/2 covn >0 i>0
i L+HA =02 (A —p—Q+n2 " a+n:” :

It follows that ¥(#) >0 for all real values of ¢ and the same is true of ¢(f) if
t<1.
This analysis shows incidentally that the algebraic equation

n—-5)/2 (n—5)/2 (n—38)/2 (n—8)/2

1= Crstt+ - —Cly + G

_ Cnr:—:)ﬂ (n—1)/2 + L + tn—s - 0
has only imaginary roots if =3 (mod 4); but if =1 (mod 4) it has exactly
two real roots as can be shown by similar considerations. Since

(n—3)/2 (n —1)/2

$(H) = n(1 = " + nC15 ()
n(n — 3) (n 3)/2 n—1 1 t ynDi2gy

s I ¢ s
2 R
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remains positive in the interval 0 <¢<1 it follows that

(n—1)/2 ne — 1 n+1
> kA >

k=0

1/2
[ a-omcwa:

1 ¢ t
G = ff @ a.

_ 1 — 2
/(-8 .4 (log 5 Et)

(6)

But integrating by parts we find

1 )dt ®(1) <I>(l S E)
t pu—
™ "’(1_£2> TR
£/ (1-%) T2 + (log E t) w2 + (log £ )
where
&(x) =f o(2)dt.
0
But since
6(t) > n(1 — 0" 4 nCo 7V — 1)
nn = 3) o-nis i
— —Ch 1 — ¢ dy,
2 2 ( - ) . (1 — y)t y

we find, after performing simple integrations,

acn
n—2
8 NH)>14+4—
® W (n+ 1)(n — 1)
On the other hand
» — 3\ -
10 <nC§_z””( 1-2 ) Ry
n—2 )
+al— 0"+ ——"E 3 Z;C‘J‘Ig”” £ - oy
whence
(n—3)/2
ZnCn—2 (n+1)/2 n
) < —m—— 1—-—(1 -1
® (n+ 1)(n —2) ( )

n(n — 1) Rl {ﬂ"-l)/? 2t<"+1>/2+ t<"+3>/2}
n—1 n+1 n+ 3

n—2
n— 2

and after simple calculations,
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©) fo”2<1>(lf )(1—z>ﬂs<(n—l_7)~

Inequalities (6), (7), (8), (9) combined give

(n—3)/2

e 1 4Cn_ /2 1- d
10 k- 2> ["+ = ]f Sl
=0 8 n n(n — 1) 1 — §\?
w2 + (log )
1 n+1 ¢

8n  2min(n — 2)
Now using the lower limit of the integral

v (1 - ndg

1 — 2
° 1rz+<log ££>

given in §5 we find that the right hand side of the inequality (10) is positive
for n=15, and so

(n—1)/2 n
> kA > —
k=0 8
for n215. But this statement is true already for n=11as can be ascertained
directly by using values of Cotes coefficients for »=11 given in §5.
7. To derive the expansion of the remainder R, in the Newton-Cotes
formula we take for starting point the well known identity valid for 0<6=1

.()

1) = f(x)dx + Z

8=1

e - fe0)

—f l Bl( — )f"’(t)dt

in which B,(x) denotes the Bernoullian polynomial of order » (defined as in
Norlund’s Differenzenrechnung) and B,(x) is a periodic function:

B.(x) = B,(x) for0 < x < 1,
B.(x + 1) = B,(x) for all x.

Take I=2v=n+1 or n+2 according as » is odd or even. Set 6=0, 1/n,
2/n, - - -, 1, multiply the resulting equations by the corresponding Cotes
coefficients and take the sum; the result will be
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iAiBb (“i‘)
=0 n
ZoAcf( ) f f(x)dx + T{f(z»—l)(l) - f(2v-1)(0)}
O o (3
L (21’) 1 = 2v <; - t) dt,
since for s=1,.2, - - -, 2v—1

EA ;B, ( ) lB.(x)dx = 0.

=0

(11)

Setting for brevity

gm0 - w3 -0

it follows from (11) that

(12) R, f G, () f @ (t)ds.

(2 )!
From the definition of G,(f) we see that
G,(0) =G,(1) =0,

and without any difficulty (owing to the fact that 4,_;=4,) we can estab-
lish the following relations:

Go(l = 1) = (= 1)%G,(0), 32 AiBaucs (—;-) o,

=0
so that Gs,—1(#) can be written simply thus:
L z
G (2) = E AiBgs (— - l) ,
i=0 4
and from this expression, because
B! (%) = nB,_1(),

the following relations can be derived:

(13) G;,(t) = - ZSGza—l(t),

(14) Goes1(t) = 25(2s + 1)Gaaes(?),

1) Gat) = 25025 = [ Gua) + B () ]

=0
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8. For s=v functions G,(f) do not change sign in the interval 0 <¢<1.
To prove this fundamental property, let B, and «, represent, respectively,
the number of times G,,(f) and Ga,—1(#) change their sign when ¢ increases
from 0 to 1. Because Gs(0) =Gz (1) =0 it follows from (13) and Rolle’s
theorem that

B:+ 1= a,.
Again, using (14) and applying Rolle’s theorem twice, we get
o = e,
so that for s>v,
B:s+1=a,.

Since
Gyl — 1) = — Goi(t),

it follows that @, = 1 and it is important to prove that a;, =1.
To this end we notice first’that for 0<7=<1

Goi(t) = iAi-B.mv—l (i - t)
n

=0

= i i 25—2
= > A;By 4 <—‘ — t) + (2» — I)ZA'-(— — t> .
% n

=0 iSnt

Furthermore, B;,_i(x) being a polynomial of degree 2v—1,

n ; 1
ZAiBzr—l (‘i hd t> = f Bg,._.l(x - t)dx
0

=0 n
1
= —{By(1 — £) — Bo(— )} = — 121,
v

Hence G;,—1(¢) differs only by a constant factor from the function

t2r—-1 1: 2v—2
Ro(t) = -2 Ae(— - ‘) )

2 — iSnt n

and the number of times this function changes sign in the interval 0 <¢<1
is .
We shall now prove the following Fundamental Lemma:

FUNDAMENTAL LEMMA. The function Ro(t) changes sign once and only once
in the interval 0 <t <1, so that o, =1.

Let
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R(t) = (— 1)kgzr—h—1 _ZA‘.(i _ t)‘h—k—z

w—k—1 & '\n

for k=0, 1, 2, - - - , 2v—2. These functions differ only by constant factors
from the successive derivatives of Ro(f). With the exception of Ry,_5(f) they
are continuous, but

Ros(t) =t — D A;
iSnt

has discontinuities at the points 1/#,2/n, - - -, (n—1)/n. By the fundamental
property of the Newton-Cotes formula,

Ri(1) = Ry(0) = 0.
Also
Ri(1 — 2) = (— 1) 'R:(2),

whence it follows that for an even subscript % there is always a change of
sign at ¢=1.

Let N, in general represent the number of changes of sign of R(£) in the
interval 0 <¢<1. Then by Rolle’s theorem

Niy+ 1= Nipy
for k=0,1,2,---,2r—3. Hence
No+ 2v— 2 =< Ng_s
and also
No+ 2v — 3 £ Nys.

Now it is possible to assign a certain upper limit to N,,—s. To this end we dis-
tinguish the following cases:

Case 1: n=2v—22>8 and divisible by 4. The interval 0 <¢{<3} may be di-
vided into (v+1)/2 intervals:

1 1 3 3 5 v— 4 v — 2
I0<t<—; —<t<—; —<t<—; -3 <t < s
n n n n n n n
v — 2 vy — 1
<t <
n n

In the interval 0<¢<1/#n, since 4,>0, Ry_2(f) might change sign, but not
more than once. In the last interval (v—2)/#<t<(v—1)/n no changes of
sign occur, since Ra,_2(f) changes its sign at t=2% and 4,1 <0. In each of the
intervals of the type (2k—1)/n<t<(2k+1)/n the sign may change at most
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once, since 4,; <0. Considering that R,,_,(f) may change sign at end points
of the intervals, the total number of changes of sign in the interval 0 <¢<3
cannot exceed »—1; in the interval § <#<1 there is exactly the same number
of changes of sign and the sign changes at {=3. Hence N;,_s<2v—1 and
No+2v—2 =< N3, and this necessarily implies No=1, Np_o=2r—1.

Case 2: n=2r—2210 and n=2 (mod 4). By very similar considerations
we find again N, <2y —1, whence No=1, No,_o=2v—1.

Case 3: n=2v—1213, v odd. Divide again the interval 0<{<%} into
(v+3)/2 parts:

1 1 3 v— 4 v—2 v—2 v — 1
0<t<—; —<t<—;-+; <t < ; <t< ;
n n n ” n n n
v — 1 1
<t<—-
n 2

In the first interval there might be at most one change of sign. There are no
changes of sign in the last interval, since R,,_2(#) passes at ¢ =3 from negative
to positive values. Neither does the sign change in the interval (v —2)/n <t
<(v—1)/n, since at the right end of this interval R, _,(f) is negative. Alto-
gether R, ,(f) in the interval 0<¢<j cannot have more than (v—1)/2
+(#—1)/2=v—1 changes of sign. Hence N, _<2v—1 and again No=1,
Noy o=2w—1.

Case 4: n=2r—12=11, v even. In a similar manner we find 2»+1 as the
upper limit of N,,_,. The inequality N¢+2» —2 <2r41 shows only that either
No=1 or No=3. To remove the last possibility we take into consideration
R,,_5(¢). First from the inequality Ng_s+1=N_, we conclude N _3=2v.
Further, for small values of ¢

2

Rzy_a(t) = - 7 + Aot > O,
and
(n—1)/2
1 1 1 (=Ds2 1 =Dz 1 i
n— n— im0
Rys(—)=-—+— Ad;— — idi=———"——<0
: “( 2) 8 ' 2 ;o n Z:o 8 n
because
(n—1)/2 n
> Ay > —
1=0 8

in case =3 (mod 4) and #=11. Thus 3N, is an odd number, hence
N3,_3=<2v—2. From the inequality
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No+2ﬂ—3§N2'_3§21l—2

we conclude again No=1, N,,_s=2r—2. This proof does not apply to n=2,
4,6,3,5,7,9. But the truth of the Lemma in these particular cases can be
verified directly. This verification is not very laborious, since everything re-
duces to testing whether certain algebraic equations have roots between 0
and 1, and in all cases this is easily decided by application of the well known
and simple Laguerre criterion.

9. Now that the equality o, =1 is proved it follows immediately that
B:=0 for s=v, that is, G,,(f) does not change sign in the interval 0 <t<1. It
suffices now to make use of formula (15) and apply repeatedly the integra-
tion by parts in (12) to obtain the following expansion of R,:

(16) R, = Ec’{f(2v+2a-—l)(1) — f@rta=0(0)} 4 cpferti(g),

8=0

where

1 id 7 v-+28
(]7) Cs = -_ ZAiBzv+23 <—'> = - Yorts
n

S+ 2 o (2 + 29)!

and £ is an unknown number between 0 and 1. To show that this expansion
possesses all the properties of the Euler-Maclaurin expansion it remains to
prove that the numbers

Yovy Yor+2y Yov+4y ©

alternate in sign. But this is almost evident if we notice that

1
f G2,+2,(t)dt = T Y2rt2s
(]
and that G,,42,(f) has the same sign as

Grri2s(0) = (20 + 25)(2v + 25 — Dyarais.
It is easy to see that ¢, is negative, so that in general
(= 1)*%, > 0.

The expansion (16) is especially useful when all the derivatives of an even
order = 2» have the same sign in (0, 1). For then, retaining a certain number
of terms in (16), the error in estimating R, will be less in absolute value than
the first neglected term and of the same sign.

10. Perhaps the simplest way of calculating coefficients ¢, is to use their
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expression (17). Since values of B, (x) can be expressed simply through

Bernoullian numbers for x=1%, }, 1, %, we have for n=2, 3, 4, 6 very elegant
expansions:

S )iz = Lo+ y(5) + s}

(_ l)k—x(l_zz—zk) B, . et
P 3 (Zk)!{f(zk (1) — St )(0)},

J @iz = %{f«» +y(s ) + 3f(%> + 10}

(= D=1 — %) B,
k=2,3,- 8 (2k)!

j;lf(x)dx = 516{7f(0) + 32f(711-) + 12f<—;—> + 32/(—‘1—) + 7f(1)}

1—5.20% 4 442
— 1)
+k—§ (=1 45 (Zk)'

j:)lf(x)dx = %{41/’(0) + 216f<%> 1 275 (?) " 272f(—;—)
+27f<%> + sz(%) n 41f(1)}

1 — 7.242% 4 7.3¢-2% _ g¢—2%k B,
— 1)k—1
+k-§v-.( ) 840 2r)!
X {f(zk—l)(l) - f(zh—l)(o)} .

The following table gives values of vz, Yovi2, Yar4, Yori6 for =57, 8:

+

+

{f(zk—l)(l) — f@=1(0) } ,

{fe-1(1) — fE-1(0)},

n Yor Yov+2 Yav+4 Y2r+6

5 11 _ 7 15351 _ 64427
22.3.7-54 2-3-55 22.11-58 3-7-13-57

; 167 _ 2665 1387331 _ 103112581
2-32.5.78 2:3-11-77 3-5-13-7° 32.712

g 37 _ 235873 134671787 _ 180237358327
219.3.11 224.3.5-7-13 23t.32.5 232.32.5-17
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It might be of interest for practical computers to know that the remainder

in the much used G. F. Hardy’s formula can be expanded in the same manner.
We have in fact

fo }(x)dx = %[O.14f(0)+0.81f(%>+1.1f<%>+0.81f<%)+0.14f(1)]

1
+ o {fO(1) — f©0)}

21772800
1—29.21-2% 4 81.31~% —81.61-%
+ 2 (1
k=4,5,8, 300

X —DE_{ pow(1) —es0(0) }
(2k)! )
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