
ON THE EXPANSION OF THE REMAINDER IN THE
NEWTON-COTES FORMULA*

BY

J. V. USPENSKY

1. In Newton's method for approximate evaluation of definite integrals

the interval of integration, say (0, 1), is divided into a certain number n of

equal parts and the integral of a given function f(x) is assumed to be ap-

proximately equal to the integral of the interpolation polynomial of degree n

which at the points of subdivision has the same values as f(x). The resulting

approximate formula

(1) J /(*)** = A0f(0) + ^i/(-) + • • • + Anf(l)

is known as the Newton-Cotes quadrature formula. The coefficients A0,

A\, < ■ ■ , An depend on the number of divisions n and their values have been

computed by Cotes for wíSIO. In the following we shall call them "Cotes

coefficients."

Formula (1) is exact for an arbitrary polynomial f(x) of degree not ex-

ceeding n. However, since for an even n

I    xl x-I ( x-\ ■ • ■ (x — i)dx = 0,

formula (1) will be exact even for polynomials of degree w + 1 if n is even.

Strange as it may seem, the expression for the remainder in the Newton-

Cotes formula was unknown till quite recently. It was only in 1922 and

1924 that J. F. Steffenson succeeded in giving a genuine expression of that

remainder first for an even and then for an odd w.f In this paper we shall

show that the remainder in the Newton-Cotes formula possesses an expansion

in all respects quite similar to the classical Euler-Maclaurin expansion, which

fact is interesting in itself and may be very useful in practice. The method

by which this result is obtained is similar to that employed in our paper On

an expansion of the remainder in the Gaussian quadrature formula,% but besides

* Presented to the Society, September 7, 1934; received by the editors August 9, 1934.

f The detailed derivation of the remainder in the Newton-Cotes formula can be found in an

excellent book by J. F. Steffenson, Interpolation, Baltimore, Williams and Wilkins, 1927.

Í Bulletin of the American Mathematical Society, vol. 40 (1934).
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simple means used in that paper it requires an elaborate study of certain

properties of Cotes coefficients.*

2. In a paper Sur les valeurs asymptotiques des coefficients de Cotes] I have

shown that for large n and uniformly in k (1 ^k^n — 1)

Cn    r(-i)*-1   (-i)"-*-1!

«(log«)2 L       k n — k   _T

while
1

A0 = An-
n log n

These formulas show that for sufficiently large n

(2) (- 1)*-Mt > 0, A0 > 0,

if l^k^^n; as to the signs of the remaining coefficients, they result from

the elementary relation

A„-k = Ak.

Now it is very important to determine the least value of n for and after which

inequalities (2) hold. It will be shown that ,4o>0 always and that

(-l)*-^4>0 (lái£i*) for even « = 8 and odd ra = 11.

3. From our article quoted abovet we take the following expression of

Ak(lgkgn-1):

i    n + i r rl /*i°g(u-{>/£)    ekx
Ak = — +-Cl (- 1)H        f*(1 - £)*-*a£ -dx

n n L •/ o J -» it2 -\- x2

fl /«log((l-{)/£)     e(n-k)x -l

+ (- l)n      £"-*(l - {)*dí--d*  •
•^o J -« xz + a;2     J

Introducing here instead of « a new variable í defined by

1-É
we can present yl 4 in the form

ex = t,

* I must express my thanks to Professor G. Pólya for some very helpful suggestions in connection

with this investigation.

t Bulletin of the American Mathematical Society, vol. 31 (1925), pp. 145-156. See also G. Pólya,

Ueber die Konvergenz von Quadratunerfahren, Mathematische Zeitschrift, vol. 37(1933).

% Attention should be called to the fact that many formulas on p. 147 of that article are marred

by typographical errors.
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i   » + i. rl rl   *W(i -t)ndtdt1       n+ 1 t. C     C
0)      a» = - + ■-(- ly-vl

n n J o   J o
„•+^ogLj,y

</>(0 = t*-1 + (- l)»/"-*-1,

whence
1   rl     0(0(1 - £)*af«Ö

(- l)*-^t = (- l)*-i + (» + 1)C„* f    f

and
.1/2

,r* + (log-—^

(- l)"-lnAk > (- l)*-1 + (n + 1)C»*   f    (1 - OnF($dt,
J o

/.l /*-l _L   (_   D^n-t-1

F® - -,     ■     e„
•'-->   ,. + (logi^«)'

¿Í.

From this inequality it follows immediately that for an odd A ;S w/2 the coef-

ficient Ak is positive.

Integrating by parts we find

£ ,(-D"

J t/u-t)

tk-l + (_  l)n¿n-i-l ¿ „ _ ¿

dt >

and hence
■ 1/2 /.l ¿i-l _)_   (_   l)n¿»-*-l

*J + Aog ̂~ <Y 7T2 + flog ̂ -—^   )

tt'La Vl -£/     " »- A \1 - V     _]'

(«+i)cn* r'a-wf1 -

/i   (-i)n\ r1/2    (! -^)"d? i
>(»+l)Gf( — + -—-J-

"\A      «-A/Jo        ,  ,   /      1 -£\*        A^2
1r2  +  ^log__j

because

(n+l)C*   r112 (»+ 1)CB*   r1

k        J o n — k     J i/i

(n + 1)C„*   r1 1

k J a k
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Consequently for an even k = m/2

/ 1       (- 1)«\   rm      (1 - Ç)n<% 1
(4)   - nAk >(n + l)C* [ — + --)--L^-1-.

\k        n- k/Ja I      l-£\2 kir2
it2 + (log—- j

4. In order to draw the desired conclusions from this inequality we must

find a sufficiently precise and tractable lower limit of the integral

-1/2 (1-?)"
Kn =-d$.

Jo /       1 - S\2
T2 + (l°g^-j

Consider a more general integral

/» 1/2 £~a(l   —  i)H+a

Knia) =--de , -n<a^0,
J a /        1 — {y

,r2 + (log—J

which for a = 0 reduces to Kn. Since

d22Cn(a) /• !'2
/• 1/2 (1 — x)n+ax-"dx = (j>ia),

ida2

we obtain, by integrating this equation,

2i„'(- 2) 1   f«
2?„(a:) = 2v„(— 2) cos 7ra -)-sin 7ra H-I    4>i%) sin 7r(a — x)dx.

■k ir J -1

Taking here a = 0 we get

1   /*2
2v„ = 2Cn(— 2) H-I      <£( — x) sin wxdx.

■ÏÏ   J o

But

-/.

r(l + x)T(n + 1 - *)        &
*(- *) -        £*(i - *)"-*# =

l   r2 l
2*r„ > — I     w(x) sin 7rxdx

and Kn( — 2)>0; consequently

1    r2— I    «( .
7T   J0 2n"W!

where
r(l + x)r(« + 1 - x)

cü(ä;) =-
Tin + 2)

r(« + 2) 2"w

0 <;?<! if» = 5,
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As

n — 1 — 2x
u(x) — o)(x + 1) = -<>>(x),

n — x

we shall have a fortiori

n - 3     rl 1
Kn > - I   ooix) sin irxdx-

(n-l)fJ, 2"-hLnir'

On the other hand T(l+x) >e~Cx, where C is Euler's constant,

r(» +1 - x)

Tin + 1)

and

■^  g— xlog(n+l)

1    r1 1 / e~c \
—    I      6-x[C+log(n+l)]  Sjn 7rxdx   =-^      J   _|-\

îi. 7T2+   jC + l0g(«+   1)}2\ »+1/

Hence, finally,

n - 3                       1                      /           e~c \        n + 1
(» + 1)2C« >-¡-r   1 +-)-i

»- 1 ir2+ {C + log(«+ 1)}2\        n+lj       2"-1«7T2

and, taking into account inequality (4),

/ 1       (-l)n\r« - 3 1 / e~c \

\k      n- k/ln- 1 t2+   C + log(«+ 1)  2\        « + 1/

»+1 I

2"-1M7T2J

1

S.^-2

To prove that, for certain « and even k^n/2, coefficients A k are negative, it

suffices to verify the inequality

c./l + ízi^í"——_!_fi + —Ï
"Vé «    -    jfe/Lw-   1    7T2+   {C + l0g(«+l)}2\ «+1/

+1 n 1-   - 1-->0.
1W7T2J ^X2

(5)
»+ 1

2"

5. If « is even the inequality (5) will be verified for all even values of k

if it is verified for k = 2 ; also, being verified for some even n, it will be verified

for greater values of n. Now, taking n = 12 and k = 2, inequality (5) is verified;

hence for an even n = 12, A k with even subscripts = w/2 are all negative. The

same being true for w = 8 and n —10 we may be assured that



386 J. V. USPENSKY [May

n
(- \y-lAk > O, U1S-I

for all even »^ 8. If n is odd ^13 it suffices again to verify inequality (5)

for » = 13, A = 2; by direct computation we find that it is satisfied. Hence

n- 1
(- l)*-1^ > 0, lgAg-,

for all odd »è 13. It remains to be seen whether this is true for » = 11. But by

direct computation I have found the following values of Cotes coefficients

for » = 11:

2171465                           13486539 3237113
A„=AU = —-—-;   Ai = A10 = —-—-;      A2 = A9=-

24 X 10!' 24 X 10!' 24 X 10!'

25226685 9595542 15493566
As = As =-;   Ai = At  =-;   As = A<¡ =-•

24 X 10! 24 X 10! 24 X 10!

Hence the above property of Cotes coefficients holds for all odd »ell, but it

no longer holds for w = 9. It remains to show that A0 is always positive. The

sign of A o is the same as the sign of the integral

In =  I    (1 — *)(2 — *)•••(« — x)dx,
Jo

which, by setting

$(*) =   f  t(\ - 0(2 - t) ■ ■ ■ (n- t)dt,
J o

can be presented thus:

$(«)        f - *(*)
In =-h   I      —— ax.

n Jo       x2

But it is known that <£(x)>0 in the interval 0<#<«, hence 7„>0 and

A0>0.

6. For w=3 (mod 4) it is important to show that

(n-l)/2 n

E   kAk> —
*-o 8

for n ïï 11. To present the left hand member in a convenient form we may

use formula (3). Thus we get

C^/2                 0-1       n+i   [1    /M            (l-f)»0(O
2^   kAk = —-1-I       I    —     —;-;-r-rrd£dt,
t=.n 8« n      J n     J ni=-0 8» n    J0   J0 (      1 — £ \2

^2 + ^gL^^y
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where

*(0 = E (- î)*-^«*^*-1 -1"-"-1).
*=o

By an elementary transformation this expression becomes

<t>it) = nil - fffît),

xpii) denoting a reciprocal polynomial

... . J , _Cn-5)/2   (n-5)/2
iKO = 1 - C„_2/ H-Cn_2    t

(n-3)/2   (n-8)/2 (n-5)/2 Ctt-I)/2 n-3
+ C„-2 » — G  n_2       2 +•••+*

Using the following known identity,

«-3   <►_»« v»_,  f   yWdy
=-G „_2    (1 — /)-»

2 Jo   (1  -  J»""»

^(0 can be presented thus:

n-2 1       n-3 (n-5)/2  (»+l)/2
» — G„_2Í +   '   '   " C„_2        f

*m - - ~^-czr\\ -1)
J 0

»-3^(n-8)/2 n-2 -1N    f«    yt«-U/2dy
--n-2 (1   —  *;        (.1   +

n-2 ^,(n-3)/2  (ft—1)/2

(1  -  y)-»

+ (1 - I)      + C„_2     /

whence

d ./*(<) 2i<»-1>'2 ^ohw 1
-=-C„_2      H-> 0;  / > 0.
dt (1 + 0(1 - O"-2     (1 - 0—Hi + O2 (1 + O2

It follows that ^(0 >0 for all real values of t and the same is true of 0(0 if

Kl.
This analysis shows incidentally that the algebraic equation

J . (n-5)/2 (n-6)/2 (n-S)/2    (n-3)/2
1   — C„_2f +   •  •  ■   — C„_2        / + C„_2 t

(n-5)/2  (»-D/2 n-3
— C„_2       f +**•+# =   U

has only imaginary roots if w = 3 (mod 4) ; but if »=. 1 (mod 4) it has exactly

two real roots as can be shown by similar considerations. Since

,n-l „(n-3)/2  (n-l)/2,

<K0 = «(1 - 0     + «Cn_2     t        (1-0

»(» - 3) (w_,)/a       ,._i i   /•«   y(n-1)/2¿y

-ñ-ün-2    I1 — "     U+*   2 I   7:-:—:
2 J0  (1 - y)«"1
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remains positive in the interval 0<¿<1 it follows that

(»-D/2 »2-l      n+\  c112
kAk >

4-0

.-i)/2 «2-1      n + 1   C1/2

E   kAk > —-+-(1 - f)-G(Oáf ;
4-0 on n     J o

G(Ö -  i'
J f/(l-£)

(6)

»•+(log—-|)

But integrating by parts we find

■(—)

f1 \l-t/«(0* *(D M - í>

where

+ (log —~ tj *2 + (log 1-i)

$(ar) =   I    0(0*.
•* n

But since

/ -, ,. v»-1 „C"-3)/2    (n-U/2,,
0(0   >  «(1   -  0 +  rcCn-2 / (1-0

»(» - 3) (n-3)/2/i        _i f ' y""1)/2 + y("~3)/2
-C„_2    (1 — 0 ~        :    ;       <■

2 Jo (1 - y)"-1

we find, after performing simple integrations,

(8) *(1) > 1 +
(n + 1)(» - 1)

On the other hand

0(0 <«cr-23)/2(i-—Vn-,,/2(i-o
\       n — 2/

W(«   -   1)     (n-3)/2  (n-3)/2
+ n(\ — 0      H-:-rC„_2     t (1 — 02,

2(n — 2)

whence

_    „(n-3)/2

*/.N     , ¿«0„_2 (»+D/2 n*(0 <-t        + i - (i - o
(n + 1)(« - 2)

«(«-1)    (n-3)/2 Ji("-1>/2     2/("+1»2      ti»+vn\

n — 2      "~2        I » — 1        « + 1        » +  3 Í '

and after simple calculations,
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(9) f       $(-\l-è)nd£<-
J, 11- 0 2(« - 2)

Inequalities (6), (7), (8), (9) combined give

->-3)/2
(„-n/2 n       r« + 1       4C„_2      "1   r

(io)    E kA*-T>\-+ ~f-ñ
4=0 8        L    » «(« — 1)J Jo

1 » +1

"2        (1 - £)»#

T2 + (log^y

8»      2tt2«(w - 2)

Now using the lower limit of the integral

I
1/2 (J   _  £)n¿£

7r2+(^log—pj

given in §5 we find that the right hand side of the inequality (10) is positive

for « = 15, and so

(n-l)/2 n

E     kAk>   —
4=0 8

for » ¡g 15. But this statement is true already for n = 11 as can be ascertained

directly by using values of Cotes coefficients for n = 11 given in §5.

7. To derive the expansion of the remainder 12n in the Newton-Cotes

formula we take for starting point the well known identity valid for 0 = 0 :£ 1

/•i '    B (6)
f(x)dx + E -^{fi-'KD - f-'KO)}

0 ,~1       s\

/.

1 Bt(e - 0

o *!

in which ü„(x) denotes the Bernoullian polynomial of order « (defined as in

Nörlund's Differenzenrechnung) and £„(#) is a periodic function:

5„(*) = Bn(x) for 0 = z < 1,

5„(x + 1) = S„(x) for all ¡s.

Take / = 2»' = m + 1 or »+2 according as n is odd or even. Set 0 = 0, 1/«,

2/«, • • • , 1, multiply the resulting equations by the corresponding Cotes

coefficients and take the sum; the result will be
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ÍAif(~)=    f   fix)dx+    M n     {f»*-»(l) -/»-»($}
,=o       \»/       ^o (2k)!

- I   ^tttt Y,AíbJ-- t)dt,
Jo     (2k)!    <=o \« /

since for s —1,2, • • • , 2v — 1

¿AiBA — )=   f   3s(x)¿* = 0.
<_o \ » /       Jo

Setting for brevity

í:aí\bp(^- - A - -ß,(^)} =gp(o

it follows from (11) that

(12) 22n = —- f Gu(t)f»'\t)dt.
(2k)! J0

From the definition of GPit) we see that

Gp(0) = G„(l) = 0,

and without any difficulty (owing to the fact that A„-i = At) we can estab-

lish the following relations :

G„(l - 0 = (- 1)«G,(0,  ¿¿<23*-i(—^ = 0,
,=o \ » /

so that G2«-i(0 can be written simply thus:

GW-i(0 = E^Ä-if— - n,
,=0 \ « /

and from this expression, because

b:íx) = »s_i(*),

the following relations can be derived :

(13) Gi(t) = - 2sGu-i(t),

(14) G'2:+,(0 = 2j(2* + DCfc_i(0,

(15) GÎÎCÔ = 2j(2s - 1) [gWO + ¿AiSu-t (~\\.
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8. For s^v functions G2s(0 do not change sign in the interval 0<i<l.

To prove this fundamental property, let ßa and a, represent, respectively,

the number of times G2s(t) and G2i_i(0 change their sign when t increases

from 0 to 1. Because G2s(0) =G2,(1) =0 it follows from (13) and Rolle's

theorem that

ft+lá «..

Again, using (14) and applying Rolle's theorem twice, we get

a, Û a,-i,

so that for s^v,

ft + 1 = a,.
Since

G2,-i(l - 0 = - G2,_i(0,

it follows that a, ^ 1 and it is important to prove that a, = 1.

To this end we notice first that for 0 ^ t ^ 1

G2,-i(0 = ¿1*3^-1 ( — - t)
i-0 \ » /

" /  i \ /  i \2"-2

= YAiB2,-A-t) + (2v- i)E^.(-0     •
i_o \« / <gni     \n /

Furthermore, U2„_i(a;) being a polynomial of degree 2i> —1,

E^2,-i(— - t]=   {    £2»-i(z - t)dx
,_o \» I       J a

-{b2,(\ - 0 - 52,(- 0} = - t2--1.
2v

Hence G2r-\(t) differs only by a constant factor from the function

fit—I /  l \ 2v— 2

Ro(t)=~-r-T,M--t)     ,
2v — 1     ism     \n        /

and the number of times this function changes sign in the interval 0 < t < 1

is av.

We shall now prove the following Fundamental Lemma:

Fundamental Lemma. The function 120(0 changes sign once and only once

in the interval 0<t<\, so that a, = 1.

Let
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(—  I)*/2'-*"1 / i \2»-t-2

Rk(~t] =    o        2,       1    -2>'(- - 0
2k — k — 1      ¿s„i    \»        /

for k=0, 1, 2, • • • , 2k —2. These functions differ only by constant factors

from the successive derivatives of 220(0- With the exception of 222,_2(0 they

are continuous, but

22¡¡_í(0 - t - E Ai
i'ání

has discontinuities at the points 1/», 2/», ■••,(»— 1)/». By the fundamental

property of the Newton-Cotes formula,

22,(1) = 22,(0) = 0.

Also

22,(1 - 0 = (- W-'Rkit),

whence it follows that for an even subscript k there is always a change of

sign at t = \.

Let Nk in general represent the number of changes of sign of 22,(0 in the

interval 0</<l. Then by Rolle's theorem

y»+iá Nk+1

for £ = 0, 1, 2, • •■ , 2k —3. Hence

No + 2k -  2  =   #2,-2

and also

N0 + 2k - 3 = 7V2l,-3.

Now it is possible to assign a certain upper limit to 2V2r-2. To this end we dis-

tinguish the following cases:

Case 1: » = 2k — 2 = 8 and divisible by 4. The interval 0</<| may be di-

vided into (k + 1)/2 intervals:

11               3     3               5            K-4             v- 2
0 < / < —; — < t < — ; —-</<—;•••;-< t <-;

n     n n     n n n n

v - 2              k - 1
- < t < -

n n

In the interval 0</<l/w, since Aa>Q, 222„_2(0 might change sign, but not

more than once. In the last interval (v — 2)/n<t<iv — \)/n no changes of

sign occur, since 222„-2(0 changes its sign at t = \ and yl„_i<0. In each of the

intervals of the type (2& — l)/n<t<(2k + l)/n the sign may change at most
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once, since .424<0. Considering that R2v_2(t) may change sign at end points

of the intervals, the total number of changes of sign in the interval 0 </<|

cannot exceed v — 1 ; in the interval \ < t < 1 there is exactly the same number

of changes of sign and the sign changes at t = \. Hence N2v-2^2v — 1 and

N0 + 2v — 2^Nî,-2 and this necessarily implies iVo = l, Ns,-s = 2v — 1.

Case 2: n = 2v — 2^l0 and w = 2 (mod 4). By very similar considerations

we find again N2„-2^2v — l, whence 7V0 = 1, N2,-2 = 2v — 1.

Case 3: n = 2v — 1 S: 13, v odd. Divide again the interval 0<t<\ into

(j»+3)/2 parts:

11               3            v-4             y-2v-2             v-1
0 < * < — ; — <*<—;•■■ ;- < t <-; - < t <-;

n     n n n n n n

v - 1 1
- < t < — ■

n 2

In the first interval there might be at most one change of sign. There are no

changes of sign in the last interval, since 122„_2(0 passes at / = | from negative

to positive values. Neither does the sign change in the interval (v — 2)/n<t

<(v — \)/n, since at the right end of this interval 122,_2(0 is negative. Alto-

gether 122,_2(0 in the interval 0</<^ cannot have more than (v —1)/2

-\-(v — \)/2=v — \. changes of sign. Hence N2v-2-¿,2v — \ and again IVo = 1,

AV-2 = 2i/-l.

Case 4: w = 2p —lïïll, v even. In a similar manner we find 2^+1 as the

upper limit of N2,-2. The inequality Na+2v — 2 ^ 2v +1 shows only that either

^0 = 1 or iVo = 3. To remove the last possibility we take into consideration

122,.-3(0- First from the inequality N2,-%-\-\^N2v-2 we conclude Nu-»^2v.

Further, for small values of /

t2

122,-s(0 =-h Aot > 0,

and

/1 \        1     1 <»dty2

Mt)-t+t Ia'
because

(n-l)/2 n

E   i¿i > —
t=o 8

in case n = 3 (mod 4) and »ell. Thus ^N2v-3 is an odd number, hence

^2,-3 si 2v — 2. From the inequality

(n-l)/2

E   iAi1 (n^/2        1     TU
—   E  iAi =-<o
n    ¿_o 8 n
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No + 2k - 3 =■ #2,-3 = 2k - 2

we conclude again 7Vo = l, N2,-3 = 2v — 2. This proof does not apply to « = 2,

4, 6, 3, 5, 7, 9. But the truth of the Lemma in these particular cases can be

verified directly. This verification is not very laborious, since everything re-

duces to testing whether certain algebraic equations have roots between 0

and 1, and in all cases this is easily decided by application of the well known

and simple Laguerre criterion.

9. Now that the equality a, = 1 is proved it follows immediately that

0i = O for sïïk, that is, G2s(0 does not change sign in the interval 0<i<l. It

suffices now to make use of formula (15) and apply repeatedly the integra-

tion by parts in (12) to obtain the following expansion of 22„:

(16) Rn =   Tjii{/»rt*-«(l)  - /C2H-i.-l>(0) }   + Ci/(2H-»)({))
s=0

where

,.»\ 1 ^ A    r, (   Í\ ?2'+2'
(17) c. =-E^<52,+2s [ —    =-

(2k+20! tí W (2k+20!

and £ is an unknown number between 0 and 1. To show that this expansion

possesses all the properties of the Euler-Maclaurin expansion it remains to

prove that the numbers

72,, 72.4-2, 72M-4,  •   ■   •

alternate in sign. But this is almost evident if we notice that

/Gi,+i,(t)dt = — 72,+2»
0

and that G2,+2,(t) has the same sign as

G2„+2s(0) = (2k + 2s) (2v + 2i — l)72„+2s-2.

It is easy to see that c0 is negative, so that in general

(- l)"-^ > 0.

The expansion (16) is especially useful when all the derivatives of an even

order =2k have the same sign in (0, 1). For then, retaining a certain number

of terms in (16), the error in estimating 22„ will be less in absolute value than

the first neglected term and of the same sign.

10. Perhaps the simplest way of calculating coefficients cs is to use their
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expression (17). Since values of B2l(x) can be expressed simply through

Bernoullian numbers for x = \,\, \, §, we have for « = 2, 3, 4, 6 very elegant

expansions:

j fix)dx = -|/(0) + 4/(y) + /(1)|

,_,      (-D'-'il -22-2*)     Bk   .
+    E I- 7T777{/(2*-1,(l)-/(2*-1)(0)},

i-2,3,-- 3 [2k) I

J'/CX—j{/W> + v(y) + 3/({) +/<!)}

._,      (- i)k~l(l - 32~2k)     Bk   . .

+  E-—-77777 {/^'(D-Z^HO)},
i-2,3." O (¿«)!

^W = l{7/(0) + 32/(1) + 12/(1) + 32/(|) + 7/(1)}

1 — 5-22-2* + 4-42-2*    25,
+ E (-D*———-Tr—TÍ/'^'a)-/^-1'^)},

fc_s.4.- • 45 (2¿)!

/.'**■ * ¿¡{41/(0)+216/(l)+ 27/ (t) + 272>(t)

+ 2r/()) + 216/(|.) + «/(!)}

! _ 7.2«-» + 7.3«-»* _ 6«-»     25,
+  y   (-i)*-i-—-!-—

kJU.~ 840 (2¿)!

x {/(2*-l)(i) - fi2"-l)io)}.

The following table gives values of 72„, 72^+2, 72K+4, 72>+e for n = 5, 7, 8 :

72k 72"+2 72v+4 72»+6

11        7 15351      64427

22-3-7-54    2-3-5B        22ll-58    3-713-57

167        2665 1387331     103112581

2-32-5-76    2-311-77      3-513-79      32-712

37 235873 134671787 180237358327

219-311 224-3-5-7-13 231-32-5 232-32-5-17
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It might be of interest for practical computers to know that the remainder

in the much used G. F. Hardy's formula can be expanded in the same manner.

We have in fact

jf(x)dx = jïo.Uf(0)+0.81f(—\+l.lf(-^\+Q.SÎf(—Wl4/(1)1

+-{/í5)(l) -/(5)(o)}21772800u J       "

_ l-29-21-2*+81-31-2*-81-61-2*
+   E  (-D*-1-

4=4^6.... 300

(2A)!

Stanford University, Calif.


