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1. Introduction. Let 31 be a generalized quaternion algebra. The elements

of 21 may be written X = x+Ey, where x, y are numbers in a quadratic alge-

braic field F, E2 = a, a rational integer, and Ey = y'E,y' being the conjugate

of y with respect to F. The conjugate of X is X' = x'—Ey and the norm of

X is N(X) = X'X = xx'-ayy'. It is well known that if X, Y are in 31, N(XY)

= N(X)N(Y) and (XT)' = Y'X'. We shall assume thata^O.

Let ® be the ring consisting of all elements of 31 in the form x+Ey, where

x, y are in the set, G, of all integral algebraic numbers in F. We shall show that

there is a one-to-one correspondence between certain classes of left ideals

in ®, which we call regular classes, and those classes of binary Hermitian

forms in G, of determinant a, which represent positive integers. It will be

shown that every ideal in a regular class contains two elements which form

a basis with respect to G. The correspondence is then proved by a method

which is similar to a method, due to Dickson,f of proving the well known

correspondence between the classes of ideals in a quadratic algebraic field and

certain classes of binary quadratic forms.

We also prove a theorem on the existence of a g.c.d. and the factorization

of elements in © under the assumption that all the ideals in a regular class

are principal. Applications are made to a number of special quaternion alge-

bras. Some of the results thus obtained have been previously proved by other

methods, some are new. In particular, we obtain for an infinitude of algebras

the same results on the existence of a g.c.d. and on factorization as were ob-

tained by Dickson for the Lipschitz integral quaternions.

2. Ideals in ® and component ideals in G. An element in ® is said to be

singular or non-singular according as its norm is or is not zero. An ideal 2 in

@ is defined as a set of elements in ®, not all singular, such that if £i, £2 are

in ® and jji, rj2 are in 2, then Ziyi+^riz is in 2. J If r? is a non-singular element

in 2, ■n'-n = N{t)) is in 2. Hence 2 contains elements in G, not zero. Those ele-

ments of 2 which are in G form an ideal in G which we shall call the first

* Presented to the Society, April 19, 1935; received by the editors February 12, 1935.

t This was given in lectures at the University of Chicago in the spring of 1921.

X According to MacDuffee's definition, 2 is a non-singular left ideal. See his An introduction

to the theory of ideals etc., these Transactions, vol. 31 (1929), pp. 71-90. Since we shall not consider

any other kind of ideal, we employ the briefer terminology.

436



IDEALS IN GENERALIZED QUATERNION ALGEBRAS 437

component of 8. If X=x-\-Ey ranges over all the elements of 8, y ranges over

all the elements of an ideal in G which we shall call the second component

of 8. If an ideal p in G has a basis fi, f2, we shall write p = [fi, f2]. A principal

ideal in G defined by p will be written {p}. We shall now prove

Lemma 1. Let a= [coi, w2], b = [Xi, X2] be the first and second components

respectively of an ideal 8 in @. Then coi, w2, «3 = 0i+7iXi, w4 = ö2-f-75X2 form a

basis of 8, where b\, ö2 are properly chosen numbers in b.

By the definition of 6, 8 contains elements w3 = 0i+7JXi, co4=;ö2 4-22X2,

where the ö's are in G. Then every element of 8 may be written in the form

A = i4-x3w3+x4co4, where the x's are rational integers and t is in G. But t = X

—x3oj3—x4w4 is in 8. Hence t is in a and / = XiWi+x2co2, where the x's are rational

integers. Since -Ew3 = aXi+72oi, 2£<o4 = aX24-2?02, the 6's belong to b. This

proves the lemma.

We shall write 8 = [fi, f2, f3, f4] if the f's form a basis of 8. If £ is a non-

singular element of ®, the product 8£ is defined as the set of all elements ?7£,

where r? ranges over all the elements of 8. Then 8£= f2£, f3£, f4£]. We

shall now prove

Lemma 2. Let a, b be the first and second components respectively of an ideal

8 in @ and let A be the discriminant of G. Then a = abb, where a is a positive

rational integer and b is an ideal, without a rational prime factor, which is either

the unit ideal or a product of prime ideal divisors of aA.

• If u is in a, Eu is in 8 and hence u is in b. Therefore 6 contains a and a

= af)b where a is a positive rational integer and b contains no rational prime

factor. It remains to show that every prime ideal divisor of b divides aA.

b is narrowly equivalent to an ideal bi which is prime to bb', where b' is

the conjugate of b.* Then bt = bih where t, h are in G and N(t)N(h) >0. By

Lemma 1, 8= [awi, aco2, 6i+75Xi, o2+£X2], where bb= [coi, w2], 6= [Xi, X2], and

the b's are in b. It may then be shown that 8/ = %ih, where the first and second

components of 81 are abib and bi respectively. Therefore we may assume,

without loss of generality, that b is prime to bb'.

The rational integers (6/ —E\i)(bi+E\i) = btb' —aX^X/ (*=»1, 2) are in

8 and therefore

(1) bM - a\i\! = 0    (mod a = abb) (i = 1,2).

Let b= [ah, m«]- Then each a\irij(i, j = 1, 2) belongs to a and hence each of

apj (bi + EKi) — EaXiHj = apjbi (i, j = 1, 2)
is in 8. Therefore

* Bachmann, Allgemeine Arithmetik der Zahlenkörper, p. 373.
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(2) bib' =■0 (mod b) (»- 1,2).

Let bi be a prime ideal divisor of b which is prime to A. Since b is prime to

bb', we may assume that the X, are prime to bib/. Since b' contains no ra-

tional prime factor, and bi is prime to A, bi is prime to b'. Then by (2) each

bi = 0 (mod bi) and by (1), each aX.X/ =0 (mod bi). But the X; are prime to

bibi and hence the same is true of the X/. Therefore a = 0 (mod bi) and the

lemma is proved.

3. Classes of ideals in ©; reduced ideals. Two ideals 2 and Si will be

said to be equivalent if there are elements £, £i in ® such that = 8i£i and

N(£)N(%i) >0. After multiplying both sides of the last equation on the right

by we may assume that £ is a rational integer and A(£i) >0. It may then

be shown that equivalence is transitive. All the ideals equivalent to a given

ideal are said to form a class. An ideal in @ will be called a reduced ideal if

its second component is the unit ideal.

Lemma 3. Let 2 be an ideal in ® whose first component is abb as in Lemma

2. Then 2 is equivalent to a reduced ideal whose first component is aib, where

ai is a rational integer.

Since equivalence is a transitive property, by our proof of Lemma 2, we

may assume that the second component b of 2 contains no rational prime

factor and is prime to aaA. By Lemma 1, 2 = [acoi, au2, üi+EXi, o2+-EX2],

where bb = [coi, w2], b= [Xi, X2] and the o's are in b. Since b contains no ra-

tional prime factor, we may assume that Xi = A(b)=73, where N{b) is the

norm of b. Then B is prime to aaA and there is a number k in G such that

(3) Bk + U — 1 (mod aaA).

We shall assume without loss of generality that k is prime to B and that

N(p = k+E) = kk' —a>0. Then 2 is equivalent to 2i = 2p. 2i contains

Suppose the second component of 81 has a prime ideal divisor p. Since b'b'

= [wi, cos ], by (4X) and (42), p divides ab'b'. By (43) p divides Bk+b{.

If p divided ab', it would divide aaA and then by (3) it would divide 1.

Hence p is prime to ab' and divides b'. By Lemma 1, b' divides 61, b{.

Then by (43) and (44), p divides bk = [Bk, X2&]. But k is prime to {B\=W

and hence k is prime to p. Therefore p divides b. But we have seen that p

divides b', which is prime to A. Hence b is divisible by pp', contrary to our

(4)
(öi + EB)P

(b2 + £X2)p

003 ip

aw2p

aui\k -\- E(ao}{),

aw2k -f- E(au>2),

bxk + aB + E(Bk + 01'),

b2k + a\2' + E(\2k + bi).
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hypothesis that b has no rational prime factor. Therefore the second com-

ponent of 81 has no prime ideal divisor and 81 is a reduced ideal.

Consider the first component di, of Si. Every element of Si may be written

in the form (u-\-Ev)p = ku+av'-\-E(u'+kv), where u+Ev is in S. Hence if

X = u+Ev is in S, Xp is in tti if and only if u' = — kv. Then X= — v'(k'-E)

= — v'p' and the corresponding element in cti is —v'p'p= —v'N(p). Let q

be the set of all elements v of G such that —k'v'+Ev = — v'p' is in S. q is an

ideal in G and cti = q'A(p). Let b= [fi, f2]. Then aff(73^' + 0i) is in abb and

therefore -clBUp' = a£i(b1+EB)-a^(Bk'+bi) is in S (i = l, 2). It follows

from the definition of q that each aB%( is in q. Hence q divides a73b' and ai

= q'N(p) divides aBN(p)b.

By Lemma 1, the norm, wfJR), of an ideal 3f, according to MacDuffee's

definition, is the product of the norms of its components.* Then

n(2) = N(abb)N(b) = a*B2N(b).

It will be found that the determinant of the second matrix of an element £

in@is/Y2(Ö. Then «(8i) =»(8p) = «(8)A2(p) =a2B2N2(p)N(b)j The second

component of Si is the unit ideal and therefore w(Si) =7Y(ai). But we have

seen that ai divides aBN(p)b. It follows that cti = a-BiV(p) b and the lemma is

proved.

4. A basis of an ideal in @ with respect to G. An ideal in ® may contain

two elements Ui = gn+giiE(i = l, 2), where the g's are in G, such that an ele-

ment of ® is in S if and only if it may be written xwi+yw2, where x, y are in

G. Such a pair of elements will be called a basis of S with respect to G and we

shall write S= [coi, w2]. Let 1, 0 be a basis of G. Then 8= [wi, öcoi, w2, 0co2].

Since S contains a non-singular element, these four basal elements are linearly

independent with respect to the rational field.f Hence coi, w2 are left linearly

independent with respect to F. It will be understood hereafter when two

elements are referred to as a basis of an ideal in ® that they form a basis with

respect to G.

If the determinant is a positive rational integer, the w's will be said

to form a proper basis of S. We then define the norm of S as TV(8) = | ga\.

If the w's form a proper basis of 8 and £\ = i,i0Ji-Mi2w2 are elements of 8, it

may be shown that they form a proper basis if and only if the determinant

\tn\ =1. It may also be shown that A(8) is independent of the particular

proper basis employed. If £ = u+vE is in ® and = hn+hi2E (i — l, 2), we

find

* Loc. cit., p. 74.

t MacDuffee, loc. cit., p. 78, line 23.

t MacDuffee, loc. cit., Theorem 3, p. 74.
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Taking determinants, we have \ha\ = A(8)A(£). Since 8£ = [a>i£, co2£], it fol-

lows that if N(0 >0, the «<£ form a proper basis of 8£ and A(8£) = N~(2)N(g).

Lemma 4. 7/ aw iäeaZ Aas a proper basis, every ideal in the same class has

a proper basis.

Let 8 = [coi, «2], the indicated basis being proper, and let 8i be an ideal

in the same class. Then 8£ = 8i£i where N(£)N(!-i)>0. 8i contains elements

fi, f2, such that ö>(J=f<|i(* = l, 2) and %=■ [fi, f2]. To show that the f's form

a proper basis, let £ = u+vE, £i = «i+»i£, £i = hn+hi2E (i = l, 2). Then from

coi£ = fi£i we have

Hence | Ai3 | Afe) = A(8)A(£). But A(8) and N(£)N(b) are positive integers

and I hi,] is an integral algebraic number. Hence | A,-,| is a positive rational

integer and the f's form a proper basis of 8i. This proves the lemma.

An ideal 8 in © will be called a regular ideal if the corresponding ideal

b of Lemma 2 is the unit ideal. We shall now prove

Theorem 1. An ideal in © Aas a proper basis if and only if it is a regular

ideal.

Suppose 8 is a regular ideal. By Lemma 3, 8 is equivalent to a reduced

ideal 8i whose first component is the principal ideal defined by a positive

rational integer a. Then by Lemma 1, 8i= [a, aß, h+E, b2+Ed] where the

b's are in G. Since 6'(h+E)-(62+Ed) = 6'h-b2 is in 8i, ^=8% (mod a).

Hence we may assume that o2=ö'6i. Since 1, 6' also form a basis of G, it fol-

lows that 8i= [a, h+E]. The indicated basis of 8i is proper and therefore by

Lemma 4, 8 has a proper basis.

Suppose 8 has a proper basis and let abb and b be the first and second

components respectively of 8, as in Lemma 2. By Lemmas 3 and 1,8 is equiva-

lent to an ideal 8i= [aiwi, ai«2, bi+E, b2+Ed] where ai is a positive rational

integer, b = [coi, oj2], and the ö's are in G. Since 8 has a proper basis, by Lemma

4, 8i has a proper basis Pi = gn+gi2 E(i = 1,2) and A(8i) = | ga \. 8i contains

bi+E and therefore for properly chosen numbers fa, fa in G, fa/j.l+faLi2 = b1+E.

Then fagi2+t2g22 = 1 and

fl = gMßl — gl2ß2 = A(80,

f2 = tiß! + faß2
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form a proper basis of 81. Since fi is a rational integer, f2 is not in G. There-

fore the first component of 81 is the principal ideal defined by fi. But the first

component of 81 is aib and b contains no rational prime factor. Hence b = {1}

and 8 is a regular ideal. This proves the theorem.

A class of ideals which contains a regular ideal will be called a regular

class. By Lemma 4 and Theorem 1, every ideal in a regular class is regular.*

5. The class of forms corresponding to a regular ideal. If a, c are ra-

tional integers, b is in G, x and y range over all the numbers of G, and b', x',

y' are the conjugates of b, x, y respectively, then

(5) /(x, y) = axx' 4- bx'y 4- b'xy' + cyy'

will be said to be an Hermitian form in G of determinant bb' — ac. If /i(xi, yi)

is obtained from / by a linear homogeneous transformation on x, y of deter-

minant unity, with coefficients in G, f and /1 will be said to be equivalent. /1

is an Hermitian form of determinant bb' — ac. All the forms equivalent to a

given form will be said to form a class.

Let 8 be a regular ideal. By Theorem 1, it has a proper basis o>i = gu

+gi2 E(i = 1, 2) and A (8) = | ga\. Since each £w< belongs to 8, we have

(6) Eo>i = baui + bauz (i = 1, 2),

where the b's are in G. The general element of 8 is A as written below, where

x, y range over all the numbers of G:

X = xwx 4- yu>2 = (guX 4- g21y) 4- (g12x 4- g22y)E,

EX = fawi 4- l2o>2 = (guh 4- g2ll2) 4- (g12fa 4- g22l2)E,

where li = bux'-\-b2iy' (i—l, 2). Then

N(X)

where

(7) f(x, y) =

guX + g2iy gi2X 4- g22y

guh + gufa gi2h + g22fa

x y

h fa

gu gu
= 7V(8)/(x, y)

x y

fa fa
= bi2xx' — bux'y 4- b22xy' — b2\yy'.

Since/(x, y) is rational and is in G for every x, y in G, it is a rational integer

for every such x, y. It may then be shown that b12, ö2i are rational integers

and ön = — b22. Hence / is an Hermitian form in G. We shall see later that the

determinant of / is a. f will be said to correspond to the proper basis, coi,

o)2, of 8.

* It may be shown that for a regular ideal 8, n(8) = ^V2(8).
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We have seen that fi = /iiWi4-/i2co2(i = 1, 2) form a proper basis if and only

if the t's are in G and \ta\ =1. The form corresponding to such a basis is

fi(xi, yi) =A7(xifi4-y1f2)/A7'(S). Hence f* is transformed into /i by the trans-

formation

(8) x = tuxi + faiyi,      y =       + fcsyi,

and/is equivalent to/i. Conversely if/is transformed into/i by (8), the t's

being in G and | = 1, then/i is the form corresponding to the proper basis

f, = 2,icoi+/<2&>2 (» = 1, 2). Hence there is a one-to-one correspondence be-

tween the proper bases of 8 and the forms in the class C, containing/. We shall

say that C corresponds to 8.

Theorem 2. If C and G are the classes of Hermitian forms in G which

correspond to the regular ideals 8 and 8i respectively, then C = Ci if and only if

8 and 8i are equivalent.

Let/(x, y) of (5) be a form in C. We may assume, without loss of general-

ity, that a j£ 0. Suppose C = G- Then/ corresponds to a proper basis coi, w2 of 8

and to a proper basis fi, f2 of 8i. From (5), (6), and (7) we have

Emx = — bu>i 4- ffxo2,        Jgfj = — ofi + af2,

Eco2 = - ccöi + b'u2,       J5f2 = — cfi + o'f2,

and 0+£)wi = aw2, (o+E)^ = af2. From 7Y(xwi+yw2) = A(8)/(x, y), it fol-

lows that N(ui) = aA(8)^0. Similarly, Nfa) = aA(8i). Then ZV(«0^(fO >°-
We have

2aco{ = [aui, aw2)o>{ = [acoi, (o + E)wi\u{ = |a, 6 4- E\N(<ai).

Similarly, = [a, b+E]N(^). Since a^O, 8W7V(?0 =8^1 7V(wO and 8,
and 8 are equivalent.

Conversely, suppose 8 and 81 are equivalent. Let coi, w2 form a proper basis

of 8. As in the proof of Lemma 4, w,£ = r,£i 2), where A(£)A(£i) >0 and

the f's form a proper basis of 81. Let / of (7) be the form in C corresponding

to the above basis of 8. The coefficients of / are defined by (6). But from the

last equations and A(£i) 5^0, it follows that each to,- in (6) may be replaced

by the corresponding {*,-. Hence / is also the form in G corresponding to the

above basis of 81. The theorem follows.

6. The correspondence between regular classes of ideals and classes of

forms. We shall prove

Theorem 3. There is a one-to-one correspondence between the regular classes

of ideals in ® and the classes of Hermitian forms in G, of determinant a, which

represent positive integers.
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By Theorem 2, for every regular class of ideals there is a uniquely deter-

mined class of Hermitian forms in G. Also no class corresponds to two classes

of ideals. To prove the above theorem, it is therefore sufficient to show that

(a) if C is a class of forms corresponding to a class of ideals, then C contains

a form which represents a positive integer and is of determinant a, and (b)

every class of Hermitian forms in G of determinant a, which represent a posi-

tive integer, corresponds to a regular class of ideals in ®.

By Lemmas 3 and 4 and Theorem 1, every regular class of ideals contains

an ideal 8 = [a, b+E], where a is a positive integer and b is in G. The indi-

cated basis of 8 is proper, A(8) =a, and the form corresponding to this basis

is N[ax+y(b+E)]/a=f(x, y) where/ is given by (5) and c = (bb'—a)/a.

Then/ represents the positive integer a, the determinant of/ is bb' — ac = <x

and the class containing / corresponds to the regular class containing 8. This

proves (a).

Let C be a class of Hermitian forms in G of determinant a, which repre-

sent a positive integer, and let/of (5) be a form in C. We may assume, with-

out loss of generality, that at^O. Since bb' — ac=a, it is readily shown that

there is an ideal 8= [a, b-\-E]. If X = ax-\-y(b-\-E) is the general element in

8, N(X) =af(x, y). If a>0, the above basis of 8 is proper, A(8) = a, and C

corresponds to the class of ideals containing 8. Suppose a<0. From af(x, y)

= N(X) and our hypothesis that/represents a positive integer, it follows that

® contains an element £, of negative norm. Then 8£= [a£, (&+£)£], the indi-

cated basis of 8£ is proper, A(S£) =aA(£), N[xa£+y(b+E)£] =aN(Of(x, y),

and C corresponds to the class of ideals containing 8£. This completes the

proof of the theorem.

7. Principal ideals. If rji, jf», • • • , ijf are elements in ® not all singular,

the set of all elements 2~2iiVi> where the £'s are in ®, form an ideal which

will be written 8 = {771, 772, • ■ • , Vr \ ■ If r = 1, 8 will be called a principal

ideal. It will be observed that a principal ideal {77} has a proper basis ±77,

£77 and hence by Theorem 1 it is a regular ideal. It may be shown that if 8

is a principal ideal and 8£ = 8i£i where A(£)A(£i)?^0, then 81 is a principal

ideal.

If X=Xi5^0, where X, Xi, 5 are in ®, 5 is said to be a right divisor of X.

If 5 is also a right divisor of an element ju in ® and if every common right

divisor of X, p is a right divisor of 8, then 6 is said to be a greatest common

right divisor, or g.c.r.d., of X, p. An element of ® of norm ± 1 is said to be a

unit. Let ax be the product of the rational prime divisors of a which are

divisible by prime ideals of the first degree in G or let cti = 1 if a has no such

divisors. Then every prime ideal divisor of b of Lemma 2 is a divisor of aA-

We shall now prove
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Theorem 4. Let every regular ideal in © be principal. Let X, p be elements

in © and assume that A(X) ^0. If © contains a non-regular ideal, assume that

A(X) is prime to «iA. Then X, p have a g.c.r.d., 5, which is uniquely determined

apart from a unit left factor, and 8 = %\ + -np, where £, rj are in @. 7/X has no ra-

tional prime factor and A(X) = +pvpi.pT, where the p's are rational primes

arranged in an arbitrary but fixed order, then X — Ti- t».irr where N(iri)

= ipt (* = 1, 2, • • • , r) awo! eacA tt< is uniquely determined apart from a unit

left factor.

Every rational integer in an ideal is divisible by the first component of

the ideal. Therefore by Lemma 2 and the definition of aly an ideal is regular

if it contains a rational integer prime to «iA. Consider the ideal in @, 8

= {X, p). If © contains a non-regular ideal, by hypothesis 8 contains a ra-

tional integer, X'X = A7(X), which is prime to «iA. Hence in every case 8 is a

principal ideal {X, p\ = \ b\, where 5 is in ©. Then X=Xi5, p=p\8, 8=%\ + r)p,

where Xi, pi, £, -n are in ©. If f is a common right divisor of X and p, by the

last equation it is a right divisor of 5, and 5 =«if where ei is in @. Then 8 is a

g.c.r.d. of X and p. Suppose f is also a g.c.r.d. of X and p. Then f = e25 where

e2 is in @. X is non-singular and therefore 8 is non-singular. It follows that

eie2 = l and the e's are units in ©. This proves the first part of the theorem.

To prove the second part, consider the ideal 8= {pr, X}. As before 8

= {irr}, X=Xi7rr, pr = prirr where Xi, irr, vr are in @. Dropping the subscripts

r, we have p2 = N(v)N(ir). Suppose A(tt) = +1. Then 8 is the unit ideal, and

for properly chosen £, -n in ©, %\ = L+r]p. Taking norms, we have A(£)A(X)

= 1 (mod p), whereas A(X)=0 (mod p). Suppose N(w)=p2. Then N(v)

= +1, X=Xi7t = ^Xi*'-1 and v*1 is in ®. Then p is a divisor of X, contrary to

hypothesis. Hence Niw) = +p. Employing the ideal {pr-i, Xi}, we find simi-

larly Xi =X27rr_i where X2 is in © and A(7rr_i) = + ^r_i. Continuing this process,

we fmdX = 7Tr ?r2.xr where A(ir,-) = +pi (i= 1, 2, • • • , r). By the first

part of the theorem, these tt's are uniquely determined, apart from unit left

factors. This completes the proof of the theorem.

8. Applications. In this paragraph, we shall employ the foregoing results

to determine a number of special quaternion algebras for which the con-

clusions of Theorem 4 are valid.

Lemma 5. If for every rational integer a>l and for every number b in G

such that N{b)—a = 0 (mod a), there is a number b0 in G such that b0 = b (mod a)

and 0< I N(bo) —<x\ <a2, then every regular ideal in © is principal.

By Lemma 3, every regular ideal 8 is equivalent to an ideal 8i = [a, b+E],

where a is a positive rational integer and b is in G. If a = 1, 8i = {1} and 8

is principal. Suppose a>\. 8i contains (6'—E)(b+E) =bb'—a=0 (mod a).
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Then by hypothesis, 81 = [a, b0+E], baba' —a = ac, 0< \c\ <a and 8i(ö0' —E)

= [c, — bj+E]a. If \c\ = 1, it follows as before that 8 is principal. If \c\ >1,

repetition of the process leads to the case a = 1. Hence 8 is principal and the

lemma is proved.

Let F be the field defined by r1/2. It may be shown for each of the follow-

ing cases that the hypothesis of Lemma 5 is valid. Hence the conclusions of

Theorem 4 are valid for these cases.*

(r, a) = (- 1, - 1), (- 1, 3), (- 3, + 2), (- 3, 5), (5, + 2), (5, + 3),

(5, + 7), (5, ± 13), (- 7, - 1), (13, + 2), (13, ± 5), (- 3, - 1).

Consider the question of the existence of non-regular ideals in ©. By

Lemma 3, every non-regular ideal is equivalent to a reduced ideal 8 whose

first component is ab, where a is a positive rational integer, b ̂  {1}, and every

rational prime divisor of A^b) is a divisor of aiA. Let b= co2]. Then 8

= [owi, aw2, bi+E, bi+EQ] where the b's are in G. By (1),

(10) ZV(Ji) - a m 0 (mod b).

Suppose now «i = 1 and A = 1 (mod 4). Then every rational prime divisor, p,

of 7V(b) is a divisor of A, and by (10), N(2bi) =u2=Aa (mod p), where u is a

rational integer. We have then

Lemma 6. If A = l (mod 4), «1 = 1 and if a is a quadratic non-residue of

every prime factor of A, then every ideal in @ is regular.

It will be observed that, by this lemma, the conclusions of Theorem 4 are

valid for each of the cases (9), except the first three, with no restrictions on

N(X) except that 7V(X) ^0.

Consider the case where a = t = 3 (mod 4), a > 0, t < 0 and ar contains no

square factor. It may be shown that if / of (5) is an Hermitian form in G

of determinant a, then a and c are not both even and a, 6, c have no rational

prime factor in common. Hence / is a properly primitive form. By a result

due to Humbert,! there is only one class of such forms. Hence by Theorem

3, every regular ideal in @ is principal and Theorem 4 is applicable. It will

be noted that A =4t.

* For the case (—1, —1), see Dickson, Arithmetic of quaternions, Proceedings of the London

Mathematical Society, (2), vol. 20 (1922), pp. 225-232, Theorems 3, 8. For the cases (-3, -1) and

(—7, —1), see Dickson, Algebren und ihre Zahlenlheorie, pp. 163, 167, 193, 195. Several of the re-

maining cases above were treated by Griffiths, Generalized quaternion algebras and the theory of num-

bers, American Journal of Mathematics, vol. 50 (1928), pp. 303-314; in particular, see pp. 309-310.

t Humbert, Sur le nombre des classes deformes d indeterminees conjuguees, indefinies, de determi-

nant donne, Comptes Rendus, Paris, vol. 166 (1918), pp. 865-870; Dickson, History of the Theory of

Numbers, vol. 3, p. 275.
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Suppose, in addition to the above conditions on a and t, that for every

prime factor p of a and every prime factor q of r, the Legendre symbols

It may then be shown that in (10), N(b) has no odd prime divisor. Hence in

this case every ideal containing an odd rational integer is a principal ideal

and Theorem 4 is valid with «iA replaced by 2.

Griffiths showed that a certain condition was satisfied by each of the

algebras she considered.* This condition is similar to our Lemma 5 in that it

insures a certain descent. By employing our Lemma 3, it may be shown that

if her Lemma 2 is valid for a given ®, then every regular ideal in © is princi-

pal and hence Theorem 4 is applicable.

Throughout this paper, we have considered only left ideals. It will be

observed that if X, Y are in ©, then (X+Y)' = X' + Y' and (XY)' = Y'X'

are in ®. Hence @ is reciprocal to itself and from each of our results we may

obtain at once a parallel result for right ideals.

* Loc. cit., Lemma 2, p. 305.
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