
THE DIOPHANTINE EQUATION X*-DY2 = ZM*

BY

MORGAN WARD

I. Introduction

It has been known since the time of Euler and Lagrangej that solutions

of the diophantine equation

(1.1) X2-DY2=ZM

may be obtained by setting

X + D"2Y = (a + D"2b)M,      Z = a2-Db2,

where a and ö are any rational integers. In 1891, Pepinf claimed to prove

that if M is odd, and prime to the class-number of the quadratic field $(771/2)

while a and b are co-prime, all solutions of (1.1) in which X, Y and Z have

no common factor—for short, "primitive" solutions of (1.1)—are given by the

formulas above. Later, Pepin§ recognized that Z must be restricted to be

odd, while Landau|[ has pointed out (for a special case of (1.1)) that if D is

positive, the units of the quadratic field ®(7>/2) must be taken into account.

Consider for example the equation X2 — 5Y2 = Z3 to which Pepin's pro-

cedure should apply, since M is odd and the class-number of j?(51/2) is unity.

This equation has the primitive solution X = 2, F = l, Z=— 1. It should

therefore be possible to choose rational integers a and b such that

2 + 51'2 = (a + 51/2ö)3,       - 1 = a2 - 5b2.

From the second equation, a+51/2ö is a unit of $(51/2) and hence some

power of the fundamental unit t\ multiplied by plus or minus one. But since

the fundamental unit is 2+51/2, the first equation would imply that 2+51'2

is a root of unity. To obtain this particular solution, it would suffice to mul-

tiply (a+51/2o)3 by i?"2. But it is not at all obvious that such a device will al-

ways prove successful.

In the second part of the paper I utilize the theory of ideals to obtain

explicit formulas for all the primitive solutions of (1.1) under the restrictions

given below.

* Presented to the Society, December 2, 1933; received by the editors December 26, 1933.

f Dickson's History, vol. II, chapter XX.

% MemoriedellaPontificia AccademiadeiNuovi Lincei, vol. 8 (1891), pp. 41-42.

§ Annales de la Societe Scientifique de Bruxelles, vol. 27 (1909), pp. 121-170.

|| LTntermediaire des Mathematiciens, vol. 8 (1901), pp. 145-147.
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Fundamental Theorem. Let D be square-free, not equal to —3 or — 1,*

and incongruent to 1 modulo 8, and let M be any positive integer greater than

one, and prime to the class-number h of the quadratic field $ (Z>1/2), but not neces-

sarily odd.

Let a and b be rational integers such that (a, Db) = 1, and of opposite parity

unless the contrary is expressly stated. Define A m and Bm by

(1.2) (a + = Am + D^2BM.

Let 1,0} be the canonical basis of the field $(D112), and if D is positive, let

(1.3) 77 = r + cos

be the fundamental unit of the field. Define Ur and Vt (T = 0, 1, • • • , M) by

UT + K1/2Fr = 77t,    D = 2, 3 (4) or D m 5 (8),   h = 0 (3);

UT + Dl'2VT = 2VT,   D = 5 (8),   A ^ 0 (3).

7" Am all primitive solutions, and only primitive solutions, of the diophantine

equation

(1.1) X2-DY2=ZM

are given by the following formulas.

(I) D negative.

X = ± ^m,       F = + BM,      Z = ± (a2 - Db2).

(II) D positive and either congruent to 2, 3 (4) or congruent to 5 (8) with

A=-0 (3).

X = ± (AmUt + DBmVt),     Y = ± (AmVt + BMUT),    Z = ± (a2 - Db2)

(r - o, i, •• •, if - i).

(III) Z) positive, congruent to 5 (8), A^ 0 (3).

2X = ± (^Mc73r + DBMVST),  2Y = ± (ij,^ + ^m^), Z = ± (a2 - Z?o2)

(r = 0, 1, • • • , [(M - l)/3]).

2m+ix = ± rAMljT + 2>5jf7r)> 2^+iF = + G4MFr + BmUt), 4Z = a2 - ZXB2,

a + 6
a, b both odd. M + T = 0 (3) »/—-h r ■ 0 (2), and

a + b
M - T m 0 (3) */—-h r = 1 (2)

_ (r = 0, 1, • • • , M - 1).

* The solutions in the cases D= — 1 or D=— 3 are well known.
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If M — 2, we have in addition

2MX = + (AmUt + DBmVt),   2mY = ± (AmVt + BMUT),   2Z = a2 - Db2,

a, b both odd, T = 0 or 1.

In the final part of the paper, these formulas are applied to discuss several

allied diophantine equations; notably X2+D = ZM, 1+DY2 = ZM, X2N
—DY2N = ZN.

II. The primitive solutions of X2—DY2=ZM

1. Let D be a square-free integer not equal to — 1 or —3 and incongruent

to .1 modulo 8, and let M be an integer ^ 2 and prime to the class-number of

the quadratic field St = St{Dl>2). A solution X = A, Y = B, Z = C of the dio-

phantine equation

(1.1) X2 - DY2=ZM

will be said to be primitive if A, B, C are rational integers with no common

factor save unity. For brevity, we shall speak of "the solution A, B, C."

We shall adhere to the notations of Landau's Vorlesungen; italic letters

are reserved for rational integers, small Greek letters for integers of the

field St, and small German letters for ideals of St. A square bracket enclosing

a Greek letter denotes the corresponding principal ideal; thus [a], [ß], ■ ■ ■ .

Round parentheses enclosing two or more letters denote greatest common

divisors, (a, b), (a, fj), • • • ; enclosing a single letter, they denote that it is

to be used as a modulus. The conjugate of a number a of St is denoted by a.

The following three lemmas are easily proved.

Lemma 1.1. If A, B, C is a primitive solution of the diophantine equation

(1.1), then both A, B, C and A, D, C are relatively prime in pairs.

Lemma 1.2. If A, B, C is a primitive solution of the diophantine equation

(1.1), then (i) if M^3, C must be odd unless D = l (8); (ii) if Af = 2, C must be

odd unless D = 1 or 5 (8). In the latter case, if C is even, C/2 must be odd.

Lemma 1.3. If M is prime to the class-number of the algebraic field St, and

if a is any ideal of St, then if aM is a principal ideal, aisa principal ideal.

Lemma 1.4. If A, B, C is a primitive solution of the diophantine equation

(1.1) and if C is odd, then the principal ideals [A +D1I2B] and [A— Dll2B]

of the quadratic field St are co-prime.

For otherwise, there exists a prime ideal p of St such that

[A + D"2B] = 0 (p),       [A - D^B] = 0 (p).

Then [CM] = [A +Dl'2B] [A-D^B^O (p), so that



450 MORGAN WARD [November

C = 0 (p), and ([2], p) = 1 since C is odd.

Since p contains both A +D1'2B and A — D1/2B, it contains their sum 2^4

and hence A itself. Therefore the rational prime which p divides divides both

A and C contrary to Lemma 1.1.

Lemma 1.5. If D is congruent to 5 modulo 8, and if I, u is the canonical

basis for the integers of the field St, and if (c+wd)M =c'+ud', where c and d

are rational integers, then if M is prime to three, d' is even when and only when

d is even. If M is divisible by three, d' is always even.

For 5 = D = (2co +1)2=4co2+4co +1 (8), so that

co2 =■ w + 1 (2).

If d is even, d' is obviously even for any value of M. If d is odd, we have

either c+ud = l+o) (2) or c+ud=u (2). In the first case, (c+wo!)2=co24-l

=.« (2), (c+o}dy=u2+u = l (2), {c+wdY=c+wd (2). In the second case,

(c+ud)2=o}2 = l+u (2), {cA-wd)3=o}2+w = \ (2), (c+ad)* = e+od (2). Hence

in either case, if M = N (3), N = 0, 1 or 2, {c+ud)M = {c+ud)N (2), from which

the rest of the lemma easily follows.

Lemma 1.6. If D is congruent to 5 modulo 8, not equal to —3, and negative,

the class-number of the quadratic field St is always divisible by three*

Lemma 1.7. If 77 is congruent to 5 modulo 8 and positive, and if

(1.3) i) = r + us

is the fundamental unit of the quadratic field St, then the class-number of St is

divisible by three when and only when the rational integer s is even.\

2. Let A, 73, C be a primitive solution of (1.1). During the next three

sections of the paper, we assume that M ^ 3, so that C is necessarily odd.

If 1, co is the canonical basis of the field St, we have

co2 = z)1'2,   Ü = - co if D = 2, 3 (4)-   2co + 1 = 7?1'2,

(2.1)
lo = - 1 - co if D = 5 (8).

Let

K = ^+co5, \ = k = A-o>B UD=2, 3(4),
(2.2)

k = A + B + 2aB,    X = k = A - B - 2wB if D =. 5 (8).

Then in either case, k and X are integers of St, and k\=A2—DB2 = Cm or

(2.3) [k][a]=[C]".

* Dirichlet-Dedekind, Zahlentheorie, 4th edition, 1894, p. 244.

t Dirichlet-Dedekind, work cited, p. 250.
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Since C is odd, the principal ideals [k] and [X] in (2.3) are co-prime by-

Lemma 1.4. Hence there exist two ideals a and b of St such that

y.-0»,      [A] = 6",      [C] = ab,      (a, b) = l.

Since M is prime to the class-number of the field St, a and b are principal

ideals of St by Lemma 1.3. Denote them by [a] and [ß] respectively. Then

[K] = [«*],        [X] = [ßM],        [C] = [a][8],       ([a], [ß]) = 1.

Moreover, since X is conjugate to k, ß is conjugate to a. Therefore there

exist two units «i and e2 of St such that

« = €10^,      \ = tiäM,      C = t2aä,       ([a], [a]) = 1.

Since aa = /Va is a rational integer, e2= +1. Let 77 be the fundamental

unit of the field St. Then there exists an integer R such that 61= ± nR.

Divide R by M, and let the quotient and remainder be Q, T:R = QM + T,

0 5= T s£ Af — 1. Then if we write a' for ??Qa, we have

(2.4) K=±r]Ta'M,    \=±r,-Tä'M,    C = ± a'ä', O^T^M-l,

(2.5) ([«']> [a']) - 1.

If D is negative, the only units in St are + 1, since ZM — 1, —3, and (2.4)

holds with T = 0. Henceforth we retain only the positive signs in (2.4).

3. IfZ> = 2, 3 (4), a'and a'in (2.4) are of the form

a' = a + coö,       a' = a — too,       u2 = D,

where a and 0 are rational integers. Then

(3.1) (a, Db) = 1.

For otherwise, there exists a prime ideal p of $ such that a=0 (p), Db = u2b

= 0 (p), so that a =«6 = 0 (p),a' = a'=0 (p) contradicting (2.5).

Since C = a2—Db2 is odd, we must have

(3.2) a, b of opposite parity if D is odd, a odd if D is even.

Nowa'M =AM+D1'2BM, where

(^jDaM-2b2 + {^jD2ak

BM = (^jaM-lb + (^^DaM~3b3 +

AM = aM + ( _ )DaM-262 + (  . )D2aM-ibi + ■

(3.3)

If the fundamental unit 17 is r+us in the case when D is positive, we

write r = ui,s=vi,u = D1'2,
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r,T = [y + ws)t = UT + D^Wt (T = 0, 1, • • • , M - 1).

(2.4) then gives us our final formulas:

(3.4)    A = UTAM + DVTBM,      B = UTBM + VTAM,      C = a2 - Db\

where if D is positive, T may have any integral value from 0 to M — 1, but

if D is negative, T is zero.

We have thus shown that in the case D = 2, 3 (4), every primitive solution

A, B, C of (1.1) is of the form (3.4). We shall now show that if a and b are ra-

tional integers subject to the conditions (3.1), (3.2), the formulas (3.4) al-

ways give a primitive solution of (1.1).

It is obvious the formulas always give a solution of (1.1), and that for

such a solution, C is odd. To show that the solution is primitive, it suffices

to prove that (A,B)=1.

If (A, B)^l, there exists a prime ideal p of St such that A=B=0 (p)

so that A±D1'2B=0 (p). Since UT±D1'2VT is a unit of St and A±D1'2B

= (Ut + D1i2Vt)(Am±D1i2Bm), AM + D1i2BM = (a±Dli2b)M^0 (p) or a

±Dl>2b = 0 (p). Therefore 2a^2Dl'2b=0 (p); or since (a, Db)=\, 2 = 0 (p),

and A =B=0 (2). But then CM = A2-DB2 = 0 (2), so that C would be even.

4. If D = 5 (8), a' and a' in (2.4) are of the form

(4.1) a' = c + ud,       ä' = c-d-wd,       (2co + l)2 = D,

where c and d are rational integers which are co-prime by (2.5). There are

two cases according as D is negative or positive.

If D is negative, the class-number of St is divisible by three by Lemma

1.6. Hence (M, 3) =1. Since 1 is the fundamental unit, we obtain from (2.4)

a'M = (c+a)d)M = k = A+B+2Bw. Therefore, by Lemma 1.5, d is even. If we

write d = 2b, c = a — b, we have a' = a+Dxl2b. Hence

k = A + BD112 = (a + Dl'2b)M = AM + D^2Bm.

Thus we obtain as in the previous case D negative and congruent to 2 or 3

(4),

(4.2) A = AM,      B = BM,      C = a2 - Db2a,       (a, Db) = I.

Since M S; 3, C is odd by Lemma (1.2). Therefore a and 6 must be of opposite

parity. AM and BM are as in (3.3).

Conversely, it may be shown as in §3 that if a and b are rational integers

of opposite parity, the formulas (4.2) always give a primitive solution of

(1.1).
Next, assume that D is positive, and denote the fundamental unit of the

field St by
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(1.3) 7j = r + cos,

as in Lemma 1.7. Then if the class-number of St is divisible by three, s is even.

Writing s = 2v, r = u — v,

v = u + vD1'2, VT = UT + VTDl>2        (T = 0, 1, • • • , M - 1).

Then by (2.4), (4.1)

a'M = (c + cod)M = rjTK = c' + cod'

where d' is even. Since (M, 3) = 1, d is therefore even by Lemma 1.5. On

writing d = 2b,c = a — b,we obtain therefore

(4.3)    A = UtAm + DVtBm,      B = UTBM + VTAM,      C = a2 - Db2.

a and 6 here are of opposite parity, and (a, Db) = 1. Conversely, we may show

as in §3 that (4.3) always gives a primitive solution of (1.1).

) If the class-number of St is not divisible by three, the integer s in (1.3)

is odd. We obtain therefore from (2.4) and (4.1)

(r + ws)T(c + cod)M = k — c' + cod',      d' even.

Therefore if d is even, T must be divisible by three by Lemma 1.5. On the

other hand, if d is odd, we have the following restrictions on T and M ac-

cording to the parity of r in order that d' may be even.

If r + cos =■ 1 + co (2) and c + o>d = 1 + co (2), then T + M = 0 (3);

if t + cos = 1 4~ co (2) and c + cod = co (2), then T - M = 0 (3);

if t + cos = co (2) and c + cod = co (2), then T + M = 0 (3);

if r + cos = co (2)       and c + cod = 1 4- co (2), then T - M = 0 (3).

Let us write

2r,T = Ur + VTD1'2 {T = 0, 1, • • • , M - 1).

a' = a+D1/2b if d is even; 2a' = a+771/2o if d is odd, where, in the first case,

d = 2b, c = a — b, and in the second case, d = b, a = 2c — b, so that a and b are

both odd. The four cases above when s is odd may then be stated as follows:

T+ M = 0 (3) if r - (a+ b)/2 = 0 (2),

r - M sb 0 (3) if r - (« + 6)/2 5l (2),

The solutions of (1.1) are given by the following formulas:

(4.5)      2A = (73^ + DVSTBM,   275 = c73r7i^ + V3TAM,   C = a2 - Db2,

a, b of opposite parity, (a, Db) = 1, 0 S T ^ [(Af - l)/3)],

or
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(4.6) 2M+^A = UtAm + DVtBm, 2M+lB = UTBM + VTAM, 4C = a2 - Db2,

a, b both odd, (a, Db) = 1, and T restricted by (4.4).

It is easily shown as before that both (4.5) and (4.6) give us primitive

solutions of (1.1) with the specified restrictions on a, b and T.

The possibility of primitive solutions of (1.1) of the form (4.6) seems

to have been overlooked heretofore. On taking Z> = 5, M = 3, T = 0, a = b = \

in (4.6), we obtain the solution 2, 1, —1 of X2 — 5 F2 = Z3 discussed in the

introduction.

5. The case when M = 2, D = S (8) requires separate discussion, as we see

from Lemma 1.2 that primitive solutions of

(5.1) X2-DY2=Z2

will exist of the form X = A, Y = B, Z = C = 2E, where A, B, E are odd and

co-prime. The other solutions with C odd may be obtained from our general

formulas in §4. In the present case, we write

(5.2) 2k = A + B + 2c*B, 2\ = A - B - 2uB where as usual2co + 1 = D1'2,

or letting A+B = 2G,

k=G + wB,      X=k,      kX = E2,       [k][\] = [E]2.

If we now apply the reasoning used in §2 to this ideal equation, we deduce

that either

k = (c + oid)2, E = (c + oid)(c + wd), or
(5 • 3)

k = (r + o>s)(c + o>d)2,       E = (c + o>d)(c + o>d),

where r+as is the fundamental unit of the field St. To agree with our former

notation,let U0 = 2, V0 = 0, Ui = 2r—s, Vi = s, 2c—d = a,d = b. Then

8k = (UT + D^2VT){a + Dl>2b)2,      4£ = a2 - Db2,       T = 0,1,

so that

4,4 = UT(a2 + Db2) + 2abDVT,      AB = VT{a2 + Db2) + 2abVT,
(5.4)

2C = a2 - Db2,       T = 0, 1,

where a and b are both odd, and (a, Db) = 1. As before, (5.4) always gives a

primitive solution of (5.1) with Z even.

For the case M = 2, it may be noted, a knowledge of all of the primitive

solutions of (1.1) gives us immediately the most general solution of (1.1). On

collecting all of our results, we obtain the fundamental theorem stated in

the introduction.
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III. Applications of the formulas

6. Consider the diophantine equation

(6.1) X2-D = ZM,

where D is square-free, negative, ^ — 1 or —3, incongruent to 1 (8), while

M is prime to the class-number of the quadratic field $(7?1/2). Then if X = A,

Z = C is a solution of (6.1), A, +1, C is a primitive solution of (1.1). Con-

versely, any primitive solution of (1.1) with 73=+1 gives a solution of

(6.1) . Accordingly, all solutions of (6.1) are obtainable by setting F = +1

in the formulas of case I of the fundamental theorem; thus

/M\ /M\
(6.2) ± 1 = f    J aM-^b + {    JDaM-W + ■ ■ ■ .

If M is even, the last term on the right of (6.2) is G/ii)Z)<M-2»2 abM~\

Since the numbers (Y), (If), ■ ■ ■ , (i^-i) are au even when M is even, (6.2)

is impossible, so that (6.1) has no solutions if M is even.

If M is odd, the last term on the right of (6.2) is D{M-1)nbM. Hence every

term is divisible by b, so that b = ± 1, and a must be a root of the equation

xM~x + I    j Dx*1- _)_...  + £)(M-l)/2 +1=0.

For fixed 77 and M meeting our restrictions, the solution of (6.1) reduces

then to finding all the integral roots of (6.2).

Under the same restrictions on 77 and M, we can obtain information about

the diophantine equation

(6.3) \-DYi=ZM.

We have in place of (6.2) the condition

(M\
(6.4) ± 1 = aM + (    J aM~*b2 + ■ ■ ■ .

If M is even, we obtain no direct information. But if M is odd, the right

side of (6.4) is divisible by a, so that a = ± 1, and b must be an integral root

of the equation*

/   M  \ /   M \

\ÄZ-1/ \M - 3/
(6.41)

+

* The conceivable case when a— +1 and the left side of (6.4) is +1 is easily shown to be im-

possible.
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To give a numerical example, consider the equation X2+42 =Z6 to which

the method is applicable since the class-number of $(421/2i) is 4. If M is a

prime,

while (^), • • • , (MM_2) are all divisible by M. We must therefore choose

the ambiguous sign in (6.21) equal to — (M), or +1 in this case. On dividing

outM = 5, (6.21) becomes

x* - 84x2 + 353 = 0.

Since 842 — 4-353 = 5644 is not a square, the initial diophantine equation

has no solutions.

7. Consider now the diophantine equation

(7.1) X2 - \6DY™ = Z4.

We assume as before that 77 is square-free, negative, incongruent to 1 (8),

and in addition, that the class-number of the quadratic field $t(D1/2) is odd*

Let A, 73, C be a primitive solution of (7.1). Then A, ABN, C is a primitive

solution of

(7.2) X2-7?F2=Z4.

Hence by case I of our fundamental theorem, there exist rational integers

a and b such that (a, Db) = \, a+b odd, and

A = a4 + 6a2o27? + D2b*, 47?* = Aab{a2 + Db2), C = a2 - Db2.

From the expression for 473^, we deduce that a, b, a2+Db2 are perfect Ath

powers :a = EN,b = FN,a2+Db2 = GN so that X = E, F = 7?,Z = C7isa primitive

solution of

(7.3) X2N + DY2N = ZN.

Conversely, a primitive solution of (7.3) gives us a primitive solution of

(7.1). But it is easy to see that if (7.3) has any solutions whatever, it has

primitive solutions. Therefore: A necessary and sufficient condition that the

diophantine equation (7.3) be solvable is that the diophantine equation (7.1)

have a primitive solution.

Assume next that 77 is negative, and congruent to 2 or 3 (4), and that the

class-number of St(771/2) is prime to 3, while 77 is divisible by three. Consider

* This always occurs for example if D is a prime, =5 (8). See Dirichlet's Works, vol. I, 1889,

pp. 357-370, or Crelle's Journal, vol. 18 (1838), pp. 259-274.
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(7.4) X2 - 9DY2N = Z3.

A similar procedure to that given for (7.1) connects (7.4) with the diophan-

tine equation

DYN
(7.5) XN -\-— = ZN,

and we have the theorem that a necessary and sufficient condition that the

diophantine equation (7.5) be solvable is that the diophantine equation (7.4)

have a primitive solution.

For example take 77= —21. The class number of $(211/2i) is four, and for

A = 7,

X7 - 7Y7 = Z7

is known to have no solutions.* Hence

A2 + 189F14 = Z3

has no primitive solutions.

This result generalizes an interesting correspondence recently obtained

by Kapfererf between the solutions of Fermat's equation and the primitive

solutions of an equation of the form (7.4).

* Maillet, Comptes Rendus, vol. 129 (1899), pp. 189-199.
t Sitzungsberichte, Heidelberg Akademie, 1933, part 2, pp. 32-37.
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Pasadena, Calif.


