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1. Introduction. Let G„ be a set of n distinct points chosen on the rectifia-

ble Jordan curve Cf in the complex z-plane, and let {G„} denote a sequence

of such sets. This sequence may be written out in the following triangular

array:

G: fi<«

G2: 2l<2>,z2<2>

G„:   z/n>, z2<">, • • • , z„(n) •

Furthermore, let /(z) be a function definedj and integrable in the sense of

Riemann on the curve C; we shall say that such a function is integrable (R)

on C. By Z,„(z) we shall denote the unique polynomial of degree at most « — 1

which coincides with the function /(z) in the points of the set G„; we shall call

it the Lagrange polynomial interpolating to /(z) in the points Gn. We shall

say that the sequence {Gn} yields effective interpolation to the function /(z)

if the sequence {Ln(z)} converges to the function fi(z) at every point of B,

the region interior to the curve C,§ and uniformly for z on any closed point

set of B, where

/»(«) -      I 7^*-
liri J c t — z

About half a century ago, Meray pointed out that if /(z) = 1/z and if the

set G„ consists of the nth roots of unity, then since L„(z) =zn_1, the sequence

{L„(z)} approaches zero for |z| <1.|| (It will be noted that zero is the value

of the function /i(z) in this case.) The following theorem, of comparatively

recent origin, discloses the theory underlying this example:

* Presented to the Society, September 4, 1934; received by the editors, in revised form, April 3,

1935.
f We define a Jordan curve as a one-to-one continuous transform of a circumference.

X Infinity will not be admitted as a functional value in connection with the definition of functions

other than the mapping function <t>{w) introduced in §2.

§ By the interior of C we mean the region bounded by C which does not contain the point at

infinity.

II M6ray, Annales de l'ficole Normale Superieure, (3), vol. 1 (1884), pp. 165-176.
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Theorem A.* Let f(z) be a function defined and integrable (R) on the unit

circle, and let the set Gn be the nth roots of unity. Then the sequence {Gn} yields

effective interpolation to the function /(z). But for a properly chosen function /(z)

a sub-sequence of the sequence {Ln(z)} will diverge to infinity at points on the unit

circle itself.

The main results of the present paper arose from the suggestion made by

Walsh that it would be of interest to extend the theorem to the consideration

of curves other than the unit circle.f The extension will be derived first under

the hypothesis that the function/(z) is analytic on the curve C (as in Meray's

example), and then under the hypothesis that the function is merely bounded

in modulus and integrable (R) on C.J The theorems thus obtained will be

supplemented by a study of the degree of convergence of the sequence

{Ln(z)}. This study will result in equalities for z on the curve C as well as

for z in the region B, and so will have an additional significance in that it will

elucidate the statement in Theorem A concerning the possibility of diver-

gence on C.

The paper concludes with a discussion of the results which arise from

interpolation to more than one function defined on one or more Jordan curves.

2. The choice of the points of interpolation. An arbitrarily chosen se-

quence {Gn} will not in general lead to effective interpolation, even if the

function /(z) is analytic in the closed region B+C and if the points of the rath

set G„ become everywhere dense on the curve C as ra approaches infinity.§

Thus the proper choice of the set Gn is of fundamental importance in a gen-

eralization of Theorem A. We shall base our selection of the set Gn upon a

notable precedent; namely, that of Fejer, who established an extension of

Theorem A for functions analytic in the closed region B+C by using a set

Gn which he called a set of "regularly distributed" ("regelmässig verteilt")

points on the curve C.[| Fejer's set Gn may be defined in the following man-

* This theorem is due to Fejer and Walsh. Fej6r, in a brilliant paper entitled Interpolation und

konforme Abbildung which appeared in the Göttinger Nachrichten, 1918, pp. 319-331, proved the

theorem for the case in which the function/(z) is continuous on and within the unit circle and analytic

within the circle, and he also gave an example of such a function for which the corresponding Lagrange

polynomials diverge at a point of the circle. Walsh showed that the theorem is true for functions more

general than those considered by Fejer; Bulletin of the American Mathematical Society, vol. 38

(1932), pp. 290-291.
t Walsh, loc. cit., p. 294.

X The methods of approach indicated for these two cases are entirely dissimilar; see §5.

§ For a simple illustration of this statement, see Walsh, loc. cit., p. 293.

|| Fejer, loc. cit., pp. 324-327. Theorem A becomes a classical result due to Runge when the func-

tion f(z) is assumed to be analytic in the closed region; see Runge, Theorie und Praxis der Reihen,

Berlin, 1904, p. 137. In this case, and also in Fejer's extension, the convergence of the sequence

j Ln(z) \ takes place in the closed region.
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ner: Let the Jordan curve C lie in the z-plane and let the function <p(w) map

the exterior of the unit circle in the w-plane onto the exterior of C in such a

way that the points at infinity in the two planes correspond to each other.*

The set Gn consists of those points on C into which the «th roots of unity are

transformed by the equation z=<p{w).

Henceforth in this paper the symbol Gn, wherever it appears in connection

with a curve C, will denote the nth set of Fejer's regularly distributed points

on C.

3. Restrictions on the curve. It is assumed that the function <b(w), which

we have j'ust introduced, gives a conformal, one-to-one map of the exterior

of the unit circle onto the exterior of the curve C, which means that with the

exception of the point at infinity, <b(w) is analytic for \ w\ > 1, Univalent and

continuous for \ w\ = 1. The function generates a Laurent series of the follow-

ing type:

4>{w) ~ cw + cQ -\-1-      + • ■ • , c ^ 0,

which may be considered as a representation of the function for all \w\ = 1.

In particular, we have

<t>'(<x>) = lim-        = c.
1D-.00 W

We shall denote the inverse of the function <p(w) by <p_1(z)-

We define a function 3>(z, w) by the following equations:

<t>(w) — z i ,.
$(z, w) = log-> z in B, \w \ > 1,

cw

*(z, oo) = 0;t

and in the event that the function <b{w) possesses a non-vanishing first tan-

gential derivative at every point of the circle \ w\ = 1, we define also a func-

tion ty(w, w) as follows:

4>(w) — 4>(w)
^r(w, w) = log

^{w, w) = log
c

oo) = 0. t

c(w — w)

4>'(w)
w I = 1, I w I 5; 1,

* Hilbert first indicated the significance of this type of mapping function in the study of inter-

polation, Göttinger Nachrichten, 1897, pp. 63-70.

t This equation identifies the particular branch of the logarithmic function under consideration.

X See the preceding footnote.
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(The variables z, w, and w are all supposed to be independent.) Both of these

functions are analytic functions of w for \ w\ ^ 1, provided that z is a point

of the region B.

We shall now introduce a pair of conditions on the curve C which will

be expressed in terms of these functions; the conditions play a central role

in our generalization of Theorem A.

The curve C will be said to satisfy condition (a) if given an arbitrary

closed point set S of the region B, there exist polynomials in l/w, f„(z, w),

of respective degrees w — 1, which satisfy the equation

uniformly for | w | = 1 and for z on S.

The curve C will be said to satisfy condition (b) if the corresponding map-

ping function tp(w) possesses a non-vanishing first tangential derivative at

every point of the circle \w\ =1, and if there exist polynomials in l/w,

Fn(w, w), of respective degrees n — l, which satisfy the equation

uniformly for \ w\ =1 and \ w\ =1.*

A Jordan curve will satisfy condition (a) if the first tangential derivative

of the corresponding mapping function <p(w) on the circle | w\ = 1 exists and

satisfies a Lipschitz condition with exponent a>0.t The curve C will also

satisfy condition (b) if the second tangential derivative of the function <f>(w)

on the circle | w | = 1 exists and satisfies a Lipschitz condition with exponent

a>0, and if the first tangential derivative does not vanish.

To prove that a curve of the first type satisfies condition (a), we observe

that the first tangential partial derivative with respect to w of the function

4>(z, w) on the circle | w\ =1 satisfies a Lipschitz condition with exponent a

and with a constant which is a uniformly bounded function of z for z on

any closed point set of the region B. A similar assertion may also be made

in connection with a curve of the second type concerning its function Sf (w, w)

* It is to be observed that no assumption is made as to the continuity of the functions/„(z, w)

and F„(w, w) in the variables z and w respectively.

f A function/(z) is said to satisfy a Lipschitz condition on a curve C with exponent a and con-

stant X if \f(x\)—f(x2) \ gx| xi—xt\a for all x\ and xi on C.
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for I w\ = 1, I w\ = 1, although the proof is not as simple as in the first case.*

The existence of the required polynomials in \/w is now established by a

theorem due to Sewell, which, for future reference, we shall call Theorem B.f

4. Products associated with the Lagrange polynomial. The Lagrange

polynomial interpolating to the function /(z) in the arbitrary set of distinct

points zk, k = \,2, ■ ■ ■ , n, may be written in this form:

... A  /(*») «.(«)
(1) Ln{z) = 2^

k=l Z — Zk  w.' (z*)

where co„(z) is the following product:

n

«n(z) = IT (2 — Zk) .

If the set of points happens to be the rath roots of unity, e2rikln, k = 1,2, • • • ,«,

then

co„(z) = z" - 1,

and (1) becomes

Ln{z) = 2Zf(e2*ik!n) —.-—-■
t-i «(z - e2"*/»)

In particular,

(2) nLM -£/(«*•"'»);

hence if there exists an upper bound for the function/(z) on the unit circle,

and if this bound be denoted by/, then

(3) I £.(0) I = /.

This fact leads at once to the proof of the first of three lemmas upon which

our generalization of Theorem A will rest.

Lemma I.J Let the function f(z) be defined for \z\ gl, let pn(z) be a poly-

nomial of degree ra — 1, and let e„ be a positive number such that

I /(Z) - pn(Z) I  g €n

for I z I =1 andforz = 0.

* a proof can be given by taking the real and imaginary parts of the derivative $w(w, w) and

then applying the integral form of the law of the mean.

t W. E. Sewell. Bulletin of the American Mathematical Society, vol. 41 (1935), p. 117.

} This lemma is a special case of Theorem Ilia.
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Let the polynomial L„(z) interpolate to the function f(z) in the set e2rik,n,

k = 1, 2, • • ■ , n. Then

|/(0) -£„(0)| = 2e„.

For let An(z) be the Lagrange polynomial interpolating to the function

Pn(z)-f(z) in the set e2*ik'n. Then/=e„, so |X„(0)| ge„, by (3). Therefore

1/(0) - pn(0) +X.(0)| = 2en.

But

pn{e2rik'n) - \n(e2*ik'n) = f(e2rik'n) (k = 1, 2, • • • , n),

so pn(z) —X„(z) must be the unique polynomial of degree at most n — 1 inter-

polating to the function/(z) in the set e2"*/n, which is none other than L„(z)

itself.

Lemma II. Let C be a curve which satisfies condition (a) and let the product

wn(z) be formed for the corresponding set Gn. Then

Un(z)
-> 1
- c

uniformly for z on any closed point set S of the region B.

To prove the assertion, we first write

~z — <t>(e2Tikln)~]       " r<f>(e2rikln)a'

■M._n Tl -A- pHe2"*'") ~ zl

J ~ ML    ce2"*'» J'

We shall compute the limit by studying that branch of the function

log [co„(z)/ — c] which is identified by the following equation:

(4) log = X) *(z> e2xa/") = E *(«, ß-2'"'").
- c- M

By hypothesis, there exist polynomials in the variable W = l/w, /„(z, w), of

respective degrees w — 1, which satisfy the equation

Hz, w) — /n(z, w)

uniformly for 11F| = 1 and for z on S. Therefore if we denote by A„(z, w) the

Lagrange polynomial in W interpolating to the function <3?(z, w) in the points

of the set W = e2xikln, k = 1, 2, we may write, by Lemma I,

$(z, oo) - An(z, oo)
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or
ra$(zi, oo) — «A„(z, oo) = o(l)

uniformly for z on S. But by (2) and (4),

«A„(z, oo) = log->
— c"

and since <t>(z, oo) = 0, the proof is complete.

Lemma III. Let C be a curve which satisfies condition (b) and let the product

co„(z) be formed for the corresponding set G„. Let

un[<t>(w)]
*n(w) = —7=.-IT-

cn(wn — 1)

Then irn(w) —*1 uniformly for \w\ =1.

The proof is the same as that of the preceding lemma except for obvious

changes in notation.

It is worth while noticing that the existence of this limit can also be proved

for w on any closed point set lying exterior to the circle \w\ = 1 by modifying

condition (b) accordingly. The modification would have the effect of lighten-

ing the restriction on the curve C, for the function ^r(w, w) is an analytic

function of the two variables w and w for \w\ > 1, \ w\ >1. Thus, in particu-

lar, the new condition would be satisfied if the first tangential derivative of

the function <j>(w) existed on the circle | w\ = 1 and satisfied a Lipschitz con-

dition with positive exponent.*

5. The convergence of sequences of Lagrange polynomials. We now ap-

ply the foregoing results to the theory of interpolation. Let/(z) be a function

known to be analytic on the curve C, but not necessarily analytic at all

points of the region B. Furthermore, let the curve C satisfy condition (a)

and let the product con(z) be formed for the corresponding set Gn. We de-

termine two contours G and G with the following properties: (1) G con-

tains C in its interior and C contains G in its interior; (2) the function/(z)

is analytic in the closed annular region bounded by G and G- Then we may

write the following formula for the Lagrange polynomial which interpolates

to the function/(z) in the points G„:

fit)
Ln(z) = f

Zirl J d+C2 t — Z

_ con(z)"

««G*)J
dt.

* A number of writers have employed the limit, lim„_«,|^„(ä))!1'", |a>j >1; see for example

Fej£r, loc. cit., pp. 322-324, and Kalmär, Mathematikai 6s Physikai Lapok, vol. 33 (1926), pp. 120-

140.
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(The integration over C2 is taken in a sense which is positive with respect to

the region exterior to C2.) This is a slight extension of the Cauchy-Hermite

form of the Lagrange polynomial; its validity may easily be checked by not-

ing that both integrals represent polynomials in z of degree n — 1, and that

when z = z[n), we have

Ln(zk^ ) - — I dt = /(at<«>).
2iriJCl+c, t - zt<">

(5)

We may write

I Ln(z) - Mz) I

2ir J n.

Wn(z)

«»(0
-(
2w J c,

dt\ + —
27T ̂  c2

/(*)

/ - z
1 -

.(*)

«»(<)

where

1 c /w *    i f /(0 ./iW = ^    1-* = T~-    1-dt'
ZTlJc  t — Z 1-KlJ Ci t — z

z being interior to the curve C. Fejer has shown that with the present choice

of Gn and w„(z),

(6) "n(z) l/n .

for all z exterior to C and uniformly for z on any closed point set exterior

to C* On the other hand if z lies interior to C, Lemma II indicates that

(7)

and that

«n(z) ,

w„(z)

l/n .

1 -
».(0

o.

Let z be any point on a Jordan curve C lying between C and C2 and con-

taining C2 in its interior. Then combining (6) and (7), we obtain

Wn(z)
->0

uniformly for z on C", / on Ci\ so that inequality (5) implies that Ln(z)~>/i(z)

uniformly for z on C. The principle of the maximum then tells us that the

sequence {Ln(z)} approaches the same limit for z interior to C. We have

proved the following theorem:

* Fejer, loc. cit., pp. 322-324. See also the remark following Lemma III and the accompanying

footnote.
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Theorem I. Let C be a Jordan curve which satisfies condition (a) and let

/(z) be a function analytic on C. The sequence {Gn} corresponding to C yields

effective interpolation to the function f(z).

If we interpolate to a function /(z) which is only known to be bounded

in modulus and integrable (R) on the curve C, we can no longer use the con-

venient Cauchy-Hermite formula. To study the convergence in this case, we

assume that the curve C satisfies both conditions (a) and (b) and that the

tangential derivative of the corresponding mapping function on the circle

I w I = 1 is bounded in modulus and integrable (R).

Let S be an arbitrary closed point set of the region B, let t=<p(eie) and let

z{n)=<p(e2rikl"). Since

cn{elnB — 1)

we have

,     con(t) - con(zt<">)       con(t) einB - 1 eie - e2"k'n
(g\ _. = _ = c« - - 7r„(el8).

t — zk(n) t — zkM ei9 — e2rikln 4>(eie) — <b(e2,rikl")

Therefore,

1 1 dcb{e2Tikln)

(9)
co'(z^">) incnT„(e2Tikln) dd

We may now write

»    /(**<»>) co„(z)
Ln(z) = 2^

k=1 z - z*e» con' (z*<">)

1   »     f[<b(e2*ikln)} co„(z) d<j>(e2xiki") 2tt

lirilT] [<t>{e2*ikln) - z]  - c"Tn(e2rikln)       dB n

Lemmas II and III state that

to„(z)

cnTrn(eia)
1

uniformly for z on S and for all real a. Therefore since both f[fp{ei9) ] and

cUp(eie)/dd are integrable (R) and of bounded modulus, we have

1   r2* f[<b(e«)]  d4(e») ^      1   r f(t)
Ln{z) —* —— I-do = -        I -dt

2iriJ0    cb(eie) — z     dd 2wiJc t — z

uniformly for z on S. We have established the following theorem:
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Theorem II. Let C be a Jordan curve which satisfies conditions (a) and (b)

and for which the mapping function possesses a tangential derivative bounded

in modulus and integrable (7?) on the circle \w\ =1. Let f(z) be a function

bounded in modulus and integrable (7?) on C. The sequence {Gn} corresponding

to C yields effective interpolation to the function f(z).

6. Degree of convergence; convergence on the boundary. We shall now

study the degree of convergence of the sequence {Ln(z)} in comparison with

that of any other given sequence of approximating polynomials. At the same

time, we shall be able to obtain a result which casts some light on the ques-

tion of convergence on the boundary C of the Jordan region under considera-

tion.

Theorem Ilia. Let C be a Jordan curve which satisfies conditions (a) and

(b) and for which the mapping function possesses a first tangential derivative

bounded in modulus on the circle \w\ = 1. Let S be any point set interior to C.

Let f(z) be a function defined on C and S and let the polynomials Ln(z) inter-

polate to f(z) in the set Gn corresponding to C. If there exist positive numbers e„

and polynomials pn(z) of respective degrees n — 1 such that

I /(z) - pn(z) I ^ e„

for z on C and S, then

I f(z) - Ln(z) I g Aie„

for z on S, where Ki depends only on C and S.

Theorem Illb. Let C be a Jordan curve which satisfies condition (b) and

for which the mapping function possesses the following property:

d<t>{eie)      eie — eia

<t>{eie) - <p(eia)
= M, all d and all a.

Letf(z) be a function defined on C, and let the polynomials Ln(z) interpolate to

f(z) in the set Gn corresponding to C. If there exist positive numbers en and poly-

nomials pn(z) of respective degrees n — l such that

I f{z) - pn{z) I ̂  e„

for z on C, then

I f(z) - Ln{z) I = A2e„ log n, n > 1,

for z on C, where A2 depends only on C.

The restrictions on the curve C in both theorems are satisfied by a curve



468 JOHN CURTISS INovcmLer

for which the mapping function possesses a non-vanishing first tangential

derivative on the circle \w\ = 1, and a second tangential derivative satisfying

a Lipschitz condition with a positive exponent.

For the proofs of these theorems we first consider the polynomial A„(z)

which interpolates in the set Gn to a function F(z) of bounded modulus on

the curve C. Let F be an upper bound to the modulus of this function. If

the curve C satisfies the conditions of Theorem Ilia, we may conclude at

once, by referring to (10) and the reasoning which accompanies that equa-

tion, that there exists a positive number Ki such that [ An(z) | g (R~i — l)F for

all n and for all z on S. The number K\ depends only on C and 5.

If the curve C satisfies the conditions of Theorem Hlb, we proceed as

follows. Using (8), (9), and (10), and setting z=cp(ew), we write

1   •   „ d<b(e2"ikln)      eie - e2Kikln      nJe'9)       ein" — 1

An(z) = — 2> *(««"*/-) —-—-.
m-tmi de       cb(ei9)-(b(e2Tikln) it-n(e2*ikln) eie-e2rik'n

Lemma III establishes the existence of a positive number M\ such that

lTn(eia)

for all n and for all real 6 and a. Also, it can be shown that for »>1,

2tt£>

n1

id _ g2irik/n

/ 2wk\
sin %nl 6-1

< Mi log n,

where M2 is independent of 6 and n* We may therefore write

I A„(z) I ^ FMMxMi log n = (K2 log n - 1)F

for all z on C and all n > 1, where A2 is independent of n.

The remaining steps in the proofs of the two theorems can now be given

simultaneously. If we let F(z) —pn{z) — /(z), then F = e„, and we have

(Ä-! — l)e„, z on 5, Theorem Ilia,
A„(z) I =

Therefore

I /(z) - pn(z) + A„(z) I ^

(K2 log w — l)en, z on C, Theorem Hlb, 11 > 1.

Aie„, z on 5, Theorem Ilia,

\K2en log «, z on C, Theorem Hlb, n > 1.

* For the proof of this inequality, see Jackson, The Theory of A pproximation, New York, 1930,

p. 120.
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But pn(z) —An(z) = Ln(z), so the proofs are complete.

If e„ log n—>0, then we obtain convergence of the sequence {Ln(z)} on

the curve C in Theorem IHb. There is no implication in either Theorem Ilia

or Theorem IHb, however, that the numbers e„ tend to zero; they may be

any positive numbers whatsoever.

The example given by Fejer to establish the possibility of divergence on

the unit circle in Theorem A employed a function /(z) which was analytic

throughout the interior of the unit circle and continuous in the correspond-

ing closed region. Theorem IHb permits us to make the general assertion in

connection with this example that if the function /(z) is continuous in the

closed region B+C and analytic in the region B (where C satisfies the condi-

tion of the theorem), then L„(z) =o (log n) for z on C; for by a theorem due to

Walsh there exist polynomials such that the corresponding numbers e„ tend

to zero.* Moreover, if the curve C is analytic, if the function/(z) is continuous

in the closed region B+C and analytic in the region B, and if the pth tangen-

tial derivative of /(z) on C satisfies a Lipschitz condition with exponent

a>0, then by Theorem Ilia,

i                 ,     Mi log n
/(*)-£,(«)   £-7——' zonS,

np+a

and by Theorem IHb,

.                .     Mt (log «)2
/(z) - Ln(z)   =-■,   z on C,

np+a

where M3 and Jf4 are both independent of n and z. This result follows di-

rectly from Theorem B. In particular, the value zero is admissible for p in

these inequalities, so a sufficient condition for the convergence of the se-

quence {Z„(z)| in the closed region B+C is that the function/(z) be con-

tinuous in the closed region, analytic in the region B, and satisfy a Lipschitz

condition with positive exponent on C.

7. Simultaneous interpolation to several functions. We now turn to cer-

tain immediate generalizations of the results of §5. First of all, it is natural

to inquire whether Theorem II admits of some form of extension when the

Lagrange polynomial is defined by the requirement of coinciding, not with

one function /(z) at points of C, but simultaneously with several distinct

functions in several distinct sets of points on C. This problem may readily

be attacked by the methods which we have previously developed, and the

following theorem indicates the type of result to be expected.

* Mathematische Annalen, vol. 96 (1926), pp. 430-436.
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Theorem IV. Let C be subject to the restrictions of Theorem II. Let fi{z),

/2(z)i ■ ■ ■ > fm(z) be m functions which are bounded in modulus and integrable

(7?) on C. Let Lmn(z) be the polynomial of degree at most mn — l which inter-

polates to the function f^z) in the points

z"!k= (b^^^+^i") (k = 1, 2, • • • , n; n = 1, 2, • • • , m).

Then

Lmn{z)
m M=i 2ti J c t

M>)dt

uniformly for z on an arbitrary closed point set S interior to C.

The proof of this theorem is based on the fact that the nth. polynomial

under consideration may be written in the following manner:

"A fJ.*Zl) Vn(z)
Lmn{z) - 2-, 2-,        00    , / („)N '

„_1 k-l z - z^ ^„(z^J

where
m n

o.(«)-nn(«-£i).
^-14-1

The rest of the proof follows the procedure used in that of Theorem II, with

certain minor modifications.

The remainder of this section will be devoted to the discussion of two

aspects of the problem of interpolation simultaneously to a finite number of

functions defined respectively on the same number of Jordan curves. The

first case is that in which the curves are all mutually exterior, and the

second is that in which the curves lie one within another.

It is possible to generalize the theorem of Fej'er mentioned in §2 to the

case of a finite number of functions analytic on and within the same number

of mutually exterior Jordan curves. The details have been carried through by

Walsh,* who made use of the function w = e0lx'v)+iH(x','\ where G(x, y) is the

Green's function with pole at infinity for the region 7? exterior to the curves

under consideration, and 77(x, y) is the harmonic conjugate of G(x, y). This

function maps 7? conformally, but not uniformly, onto the exterior of the

unit circle in the w-plane so that the points at infinity in the two planes

correspond.

But no similar extension of either Theorem I or Theorem II is possible

with the use of this mapping function. First it should be noted that now cer-

* Unpublished.
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tain of the points of the nth set Gn may coincide, because neither the function

nor its inverse is single-valued if the region R is multiply connected. Thus we

are no longer dealing with strictly the Lagrange type of polynomial, but

rather with the Hermite type, and the existence of derivatives of the function

to which we are interpolating must be postulated at the points of G„. This

fact alone precludes the possibility of generalizing Theorem II by the use of

this mapping function. The Cauchy-Hermite formula used to prove Theorem

I is applicable when some or all of the points of interpolation are coincident;

nevertheless we shall be able to show by an example that Theorem I cannot

be extended either.

The function
(Z2 _ iyn

W = -!        0 < a < 1,

gives a map, of the type under consideration, of the region exterior to the

lemniscate | z2 — 11 =m onto the exterior of the unit circle in the w-plane. This

lemniscate consists of the two ovals of Cassini, and if we denote the two

branches of the inverse function by

z = + (pw2 + l)1'2

and

z = - (pw2 + iy2,

the right hand oval may be considered as the transform of the unit circle

under the first branch, and the left hand oval, the transform under the second

branch. We form the Hermite interpolation formula for the function 1/(z — 1)t

using as the set G„ the following transforms of the roots of the equation

w2"-l=0:

Z<"'  =   + UuMkln _|_ 1)1/2 x

„i i (A = h 2, • ■ ■ , in).

Then

(z2 - l)"-lr      /z2 - l\n"l
£«,(*) = (z + 1) - {—^-) J,

as the reader may verify directly. When the point z lies interior to either oval,

then I z2 — 11 <p, so Z„(z)-*0 for all points z within the ovals. But in the left

oval Oi we are seeking convergence to the value
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the function l/(z — 1) being analytic on and within this oval. Thus Theorem I

fails to generalize under this type of map.*

If the curves upon which the functions are defined lie one within another,

we obtain a class of results of which the following theorems may be considered

typical. For the sake of simplicity we shall state the theorems for the case of

only two curves.

Theorem V. Let G and G be two Jordan curves subject to the restrictions

upon C in Theorem II, C2 lying interior to G. Let <pi(w) denote the function

which maps the exterior of the circle \ w \ = 1 onto the exterior of G so that the

points at infinity in the z-plane and the w-plane correspond, and let 02(k>) denote

the analogous function for G- Let F(n) be a monotonically increasing function

of n such that F(n)—><». Letf(z) be a function bounded in modulus and integra-

ble (R) on &. Let v%\ ■ ■ ■ , v% ), m= [F(«)],f denote a sequence of

sets of m numbers which is subject to the restriction that no number shall exceed a

given fixed number in modulus. Form the Lagrange polynomial Ln+m(z) of de-

gree at most n+m — l which takes on the values v[m) in the points ipi(e2Tihlm),

h = \, 2, ■ ■ • , m, and which coincides with f(z) in the points <p2(e2rikln),

k = \, 2, ■ ■ ■ , n. Then

For the proof of the theorem we employ a process similar to that used in

the proof of Theorem II. The details are left to the reader.

The parallel theorem for two functions respectively analytic on and within

the two curves G and G permits greater freedom in the choice of the curves

and the function F(n):

Theorem VI. Let G and G be two arbitrary Jordan curves, G lying interior

to G- Letf\{z) be a function analytic on and within G, and letf2{z) be a function

analytic on and within G- Let <f>i(w) and <p2(w) denote the mapping functions

corresponding to the curves G and G respectively. Consider as points of inter-

polation to F2(z) the points 02(e2iri*/") and as points of interpolation to fi(z) the

points 4>ie2Tihln; where m = [F(n) ],F(n) being either a positive constant or a posi-

* This is the mapping function which has been used most frequently in the generalization to

several regions of theorems concerning approximation in the complex domain. See for example

Walsh and Russell, these Transactions, vol. 36 (1934), pp. 13-28. The present writer has investigated

the use of other mapping functions in extensions of Theorems I and II in this direction, but so far

with only negative results.

t The symbol [x] means the greatest integer not greater than x.

uniformly for z on any closed point set interior to G-
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the monotonically increasing or decreasing function of n. Then the sequence

{Ln+m{z)\ of corresponding Lagrange polynomials converges to /2(z) geomet-

rically for z on and within C2.

This theorem may be proved by writing down the appropriate extension

of the Cauchy-Hermite formula and then applying (6) and Lemma III.

Divergence to infinity is possible in the annular region between G and C2

in both Theorems V and VI, as can be shown by example. The restriction to

only two curves is not important, as any finite number of curves may be con-

sidered; the result will always be convergence to the value to be expected

from interpolation only to the function defined on the innermost curve, for

the sequence of Lagrange polynomials will ignore interpolating values as-

signed to outer curves. The study of combinations of the two theorems yields

similar results.

It is worth pointing out that although m may remain constant with re-

spect to n in Theorem VI, it is necessary in Theorem V that m approach

infinity in some manner with n, as the following example indicates: Inter-

polate to the function 1/z in the points e2rikln, k = l, 2, • • • , n, and also in

the points Re2rihlm, h = \, 2, ■ ■ ■ , m. The corresponding Lagrange poly-

nomial is

and if m remains finite as n approaches infinity, it is apparent that the se-

quence {Ln+m(z)} will not approach the value

for z interior to the circle | z| = 1.
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