ABSTRACT THEORY OF INVERSION
OF FINITE SERIES*

BY
LOUIS WEISNER

1. Introduction. The summation of a number-theoretic function f(x) over
the divisors of 7, and the inversion of a series of this type by means of Dede-
kind’s inversion formula, occupy a prominent place in the elementary theory
of numbers.t A similar inversion formula is valid in any system whose ele-
ments are commutative with respect to a multiplication operation with re-
spect to which a unique factorization law holds, if every element has only a
finite number of divisors: for example, primary polynomials in a field, and
ideals of an algebraic field.

There are, however, systems for which a divisor relation may be properly
defined, but for which no unique factorization law holds, and, indeed, in which
no rule of multiplication may be defined, as the concept of a divisor is ab-
stractly independent of that of multiplication. For a system of this char-
acter the extension of Dedekind’s inversion formula is not obvious.

An important example is the class of all subgroups of a finite group, with
“divisor” defined to mean “subgroup.” The problem suggested by Dede-
kind’s inversion formula may be stated as follows: Suppose we are given two
group-theoretic functions «(G) and B(G), such that

BG) = 2 a(D),

where D ranges over the subgroups of G. Can a(G) be expressed in terms of
B(G) by means of a generalized Dedekind inversion formula with the aid of a
generalized M&bius function? One of the objects of this paper is to answer
this question.

Instead of confining my attention to this particular question I have
treated the subject abstractly, showing that an inversion formula exists in
any hierarchy (a system satisfying the axioms of §2). A hierarchy is some-
what similar to what has been called a dual group,i an A-Menge,§ a

* Presented to the Society, February 23, 1935; received by the editors December 5, 1934.

t Dickson, History of the Theory of Numbers, vol. 1, chapter XIX.

1 R. Dedekind, Uber Zerlegungen von Zahlen durch ihre grissten gemeinsamen Teiler, Werke,
vol. 2, p. 112; Uber die von drei Moduln erzeugte Dualgruppe, Werke, vol. 2, p. 236.

§ Fritz Klein, Zur Theorie der abstrakten Verkniipfungen, Mathematische Annalen, vol. 105
(1931), p. 310.
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lattice* and a structure.t These are systems which are closed with respect to
two operations defined abstractly so as to have the essential properties of a
greatest common divisor and a least common multiple respectively, or of a
logical product and a logical sum respectively. I mention them because many
examples of hierarchies will be found among those of dual groups, etc. How-
ever, inversion formulas of the type referred to do not exist in the most gen-
eral type of dual groups.

2. Hierarchy axioms. A class H, consisting of at least one element, is a
hierarchy with respect to a relation / if the following axioms (in which a,
b, - - - denote elements of H) are satisfied:

1. Therelation / is reflexive: a/a.

2. Therelation / is asymmetric: if a/b and b/a, then a =b.

3. The relation / is transitive: if a/b and b/c, then a/c.

4. For every pair of elements ¢ and b of H an element d of H exists such

/ that d/a and d/b; and such that if ¢ is an element of H satisfying ¢/a and

l

¢/b, then¢/d.
5. For every pair of elements ¢ and b of H an element / of H exists such

\ that ¢/l and b/l; and such that if ¢ is an element of H satisfying a/c and

“b/c, thenl/c.

6. For every pair of elements ¢ and b of H only a finite number of ele-
ments x of H exist such that a/x/b.

A simple example of a hierarchy is the class of all positive integers with
respect to the divisor relation, so that ¢/b means “a is a divisor of 5.”§ In
view of this example and the previously described purpose of this paper, the
notation a/b may be read “a is a divisor of 5” for any abstract hierarchy,
divisor being regarded as an undefined term subject to the hierarchy axioms.

The converse of the relation / will be denoted by \. Thus ¢/b and b\a
are equivalent. The notation b\a may be read “b is a multiple of a.”

To every term defined in terms of the relation / there corresponds a dual,
obtained by replacing / by \ in the definition. For example, divisor and
multiple are duals.

We shall call the elements d and / of Axioms 4 and 5 a greatest common
divisor and a least common multiple respectively of @ and b. (After proving
their uniqueness, we shall call them the g.c.d. and the l.c.m. respectively.)
These terms are duals.

* Garrett Birkhoff, On the combination of subalgebras, Proceedings of the Cambridge Philosophical
Society, vol. 29 (1933), p. 441; On the lattice theory of ideals, Bulletin of the American Mathematical
Society, vol. 40 (1934), p. 613.

t O. Ore, On the foundations of absiract algebra, I, Annals of Mathematics, vol. 36 (1935), p. 408.

1 The notation a/b means “g has the relation / to b.” The notation a/x/b means “a/x and x/5.”

§ Other examples will be found among those given in the papers cited in §1.
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If, in the hierarchy axioms, the symbol / is replaced by \, six theorems
are obtained which are immediate consequences of the axioms. Hence: 4
class which is a hierarchy with respect to a certain relation is also a hierarchy
with respect to the converse relation. It follows that a true proposition is obtained
on replacing each term by its dual in any theorem which is a consequence of the
hierarchy axioms. This is the principle of duality for hierarchies. For example,
Axioms 4 and 5 are duals, while each of the other axioms is self-dual.

3. The g.c.d. and l.c.m. of a set of elements.* Let a;, - - -, a.(n=1) be

a set of elements of a hierarchy H. If an element d of H exists such that

d/a; (¢2=1,.---,m),
and such that if ¢ is an element of H satisfying

c/a; (i=1,---,n),
then ¢/d, we shall call d a g.c.d. of @y, - - -, @,. If an element / of H exists
such that

a:/l G=1,---,n),
and such that if cis an element of H satisfying

aifc (i=1,---,n),
thenl/c, weshallcalllal.cm.of ay, - - -, G,.

THEOREM 1. A4 g.c.d. and a l.c.m. of any finite set of elements of a hierarchy
exist and are unique elements of the hierarchy.

In view of the principle of duality it is sufficient to prove the existence
and uniqueness of a g.c.d.

The existence of a g.c.d. of a set consisting of only one element follows
from Axiom 1: the element itself is a g.c.d. (as well as a l.c.m.). The existence
of a g.c.d. of a set consisting of two elements is asserted by Axiom 4. We
shall prove the theorem by complete induction, assuming that every set of
n—1 (n=3) elements of H has at least one g.c.d., and proving that the same

is true of a given set of # elements a4, - - - , @x.
By assumption, a;, - - -, @._1 have a g.c.d., 8. Let d be a g.c.d. of § and g..
Asd/a,and d/3,
d/a; (i=17""”)’

by Axiom 3. Suppose that
c/a; (t=1,---,m).

* No use is made of Axiom 6 in this section.
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Writing these # statements in two parts
. ¢/Cn, c/a; (t=1,--+-.n—1),

we infer that ¢/a, and ¢/5. Hence ¢/d. It follows from the definition that d
isag.cd.ofay, - -, @an. .

If d’ is also a g.c.d. of ai, - - -, @, then d/d’ and d’/d by the definition
of g.c.d. Hence d =d’ by Axiom 2. The proof of the theorem is complete.

The notation (ai, - - -, @) and a1 A - - - Aa. will be employed for the
g.c.d. and l.c.m. respectively of a;, - - - , @,.. The uniqueness part of Theorem
1 implis that the g.c.d. and l.c.m. of a set of elements are independent of the
order in which these elements are taken. The following relations are readily
established:

1) (a,a) =aANa=a.
(2) (a1, a2) = (az, 1), a1\ a2 = a2 A\ a1.
((a1, -+, an), (b, + -, 0m)) = (a1, *, Gn, b1, -+, bu),
(@A ANG)AGIA - Abn) = @A NG AN Abn.
4) aA(abd) =a, (a,a\D) = a.
5 If ¢/a, then (b, ¢)/(b, a) and (b A c)/(b A a).

(3)

4. Finite subhierarchies. Let 7(x,, x2) be the number of divisors of x, that
are multiplies of x;. By Axiom 6, this number is finite. If x,/x., we shall write
7(x1/%) for 7(x1, x2). Evidently 7(x1, x2) =0 if x, is not a divisor of x,; 7(x/x)
=1; while 7(x1/x5) = 2 if 2, # x5.

A finite hierarchy is one which contains only a finite number elements.
This number is the order of the hierarchy.

THEOREM 2. If x1/x,, the class of all elements x of H which satisfy x1/x/%,
is a finite hierarchy, of order (x:1/x2), with respect to the relation /.

The proof is immediate, consisting principally in showing that the ele-
ments of H which satisfy x1/x/x, verify the hierarchy axioms. We shall de-
note this subkierarchy of H by H(x,/xz).

If x1/2., but x5 xs, x1 is a proper divisor of x», and x» is a proper multiple
of x,. If x, is a proper divisor of x. and the order of the finite hierarchy H (x1/x2)
is 2, x, is a maximal divisor of x2, and . is a minimal multiple of x;.

THEOREM 3. If x, is a proper divisor of xs, H contains at least one divisor
of %3 that is a minimal multiple of x,; and H contains at least one multiple of x,
that is a maximal divisor of x..

If 7(x1/%2) =2, x2 is a minimal multiple of #,. In the contrary case H (/)
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contains at least one element x; different from x; and x.. Evidently 7(x,/x,)
>7(x1/%3) = 2. If 7(%1/%5) >2, the preceding argument is repeated for H (x1/x3) ;
etc. Finally an x, is obtained such that 7(x,/x,) =2. This element x, is a di-
visor of #; and a minimal multiple of x;.

The second part of the theorem is the dual of the first.

5. Functions of the elements of a hierarchy. The symbol f(x:i/x;) (and
similarly g(x1/.), - - - ) denotes a single-valued function of two independent
variables, defined for every pair of elements x; and . of a hierarchy, subject
to x1/xs, the values which the function assumes being elements of some
module. Similarly f(a/x) denotes a function of a single variable #, defined for
every « which is a multiple of a fixed element a. Dually, we have f(x/a). The
functions f(a/x) and f(x/a) are not necessarily defined for every a. However,
for every f(x:/x,) we have an f(a/x) and an f(x/a), where a is any element

of the hierarchy.
The symbol 5
zy/ zg/+ </ Zn-1/ zn
pertains to a summation extended over all elements xz, - - - , ,—; of a hier-
archy H satisfying 21/%2/ - - - /%._1/%., where x; and x, are fixed elements of

H. Hence n= 3. In particular,

>

a/d/b

pertains to a summation extended over all elements d of H that are divisors
of b and multiples of a; that is, over the elements of the finite hierarchy
H(a/b).

THEOREM 4. If, for every multiple x of a,

2 fle/d) = 3 g(a/d),

a/d/z a/d/z
then f(a/x) =g(a/x).

We shall prove the theorem by complete induction. For x=a we have
f(a/a) =g(a/a). Now let b be a proper multiple of a. Suppose that we have
verified that, for every multiple d of @ that is a proper divisor of b, f(a/d)
=g(a/d). Then

2 fa/d) = 3 g(a/d).

a/d/b a/d/b
dyéd da#b
By hypothesis,
2 f(a/d) = 3 g(a/d).
a/d/b a/d/b

Subtracting, we have f(a/b) =g(a/b).
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The dual of this theorem is

THEOREM 5. If, for every divisor x of a,

2 f@/a) = X g(a/b),
z/d/a z/d/a
then f(x/a) =g(x/a).

6. The function u(x1/%,) and related functions. A P-divisor of an element
%, of a hierarchy H is a divisor of x» that has the property P or the relation
P to x,. If x, is a P-divisor of xz, %, is a P’-multiple of x,. Examples: P =P’
=proper; P =maximal, P’ =minimal.

Let P(x1/x;) be the number of multiples of x; that are P-divisors of x,;
let P’(x1/x2) be the number of divisors of x, that are P’-multiples of x;. These
functions are duals. For each integer k=1, let Qi(x:1/x;) be the number of
sets of % distinct elements of H that are P-divisors of x, and such that the
g.c.d. of the elements of each set is x1; let Q¥ (x:1/x2) be the number of sets
of % distinct elements of H that are P’-multiples of x, and such that the
l.c.m. of the elements of each set is x.

There are
(P(xl/xg)
)

sets of £ distinct elements of H that are multiples of x, and P-divisors of xs.
Form the g.c.d. of the elements of each set. The number of times that a par-
ticular element d of H, satisfying x1/d/x., occurs among these g.c.d.’s is, by
definition, Qx(d/xz). Hence

P(xl/xz)
d 9) = k =1,2,---).
©) T 0/ (") (h=1,2,-)
Dualizing, we have

P'(x;
() > 04 (11/d) = ( (xk/ x’)) (B=1,2,--).

z)/d/ z3
For the further development of the theory we find it necessary to re-
strict P so that
(®) P(x/x) = P'(x/x) = 0,
9) P(x1/%2) P’ (x1/%2) # 0 (21 # x2).

These conditions are satisfied if P=proper, or P=maximal (Theorem 3).
It follows from (8) that
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(10) Qx(x/%) = Ok (x/x) = 0 (k=1,2,---).
The function u(x:/xz) is defined by
(11) u(x/x) =1,
(12) %1/ %2) = kE (= 1)%Qu(%1/%2) (%1 % %2).
=]

The series involves only a finite number of terms, as

(13) Qx(%1/%2) = 0 (k > P(x:1/%2)).
The dual function u’(x:/%,) is defined by

(14) ¥(x/x) =1,

(15) y'(xl/xg) = z (— l)ka' (xl/xg) (x1 #= xz).

It is noteworthy that u(xi/xs) and u’(x1/x2) are independent of P if (8)
and (9) are satisfied, and that p(x1/xs) =p'(x1/%,).* We proceed to prove these
statements.

THEOREM 6.

1 'if X1 = X2,
0 ’Lf X1 # X2.

> w(d/m) = {

z1/df zg

The theorem being obvious if x, = x,, we suppose x, #x.. By (12),

2 ,u.(d/xg) = #(xz/xz) + E Z (- l)ka(d/xz)
z1/df zg z;/z:, k=1

=14 2 2 (= 1D*Qu(d/x) (by (11) and (10))
z1/ d/ z9 k=1
P(z1/z2) P 1/ %o

-1+ % = ("/x)) (by (6)),

k=1 k
= (1 — 1)PGi/z2 =0 (by (9)).
Dualizing, we have
, _ 1 if X1 = X2,
(16) zl,zd;c," (=:/d) = {0 if @ # m.

* Consider, for example, the hierarchy, with respect to the subgroup relation, formed by the sub-
groups of a finite group G. If P=maximal, the equation u(1/G)=u'(1/G), in which 1 stands for the
identity group, embodies a relation between the maximal and the minimal subgroups of G, the mini-
mal subgroups being those of prime order if the order of G is not a prime. This relation would be too
cumbersome to be expressed in words.
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It follows from Theorems 4 and 5 that the functions u(x:/x2) and ! (x/l/xg)
are independent of P if P satisfies (8) and (9).

Let
f(x1/ %) = ; u(%1/8).
z1/8/ =3
Then
2 f@/x) = 20 w(@/®) = 3 X w(d/s).
21/ df z3 21/ d[8] 7 z)/8/ 23 21/ d[8

Hence, by Theorem 6,

a7 > fd/xs) = 1.

zy/df zg

Let g(x1/x5) =1 or 0 according as x; =%, or x;%,. Then

E g(d/x) = 1.

z1/d/zg

Comparing with (17), we have f(x./x2) =g(x1/x.) by Theorem 5. Hence, from
the definitions of these functions, we have

THEOREM 7.

Z u(x1/d) =

z1/df zg

1 if x1 = x,,
{0 if %1 7 %s.
Comparing with (16), we have
THEOREM 8. u(x1/%5) =u’(21/%2).

THEOREM 9. If 21/%s/%s, and x:5 xs, then

> u(d/xs) =0,

(d, z3)=1zy
where d ranges over all divisors of x5 that satisfy (d, xz) =1
Separate the elements of the finite hierarchy H (/%) into classes, placing
in the same class those elements which have the same g.c.d. with x.. Each

of these g.c.d.’s is an element of H(x:/x2), and every element of H(x:/x3) oc-
curs in one and in only one of the classes. Hence, if

[/ ma/5s) = 25 w(d/xs),

(d,z2)=1,

then
D SO/ xef/ws) = 2, D w(@d/xs) = X w(d/xs).

z1/8/ z3 z1/8/z3 (d,z2)=8 z1/d/ z3

Hence, by Theorem 6, as x; 7«3,
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Z f(&/xz/xs) = 0.
z1/8/ z9

From this equation it follows by induction, as in the proof of Theorem 4,
that f(x1/%2/25) =0 if x27%x;. The theorem follows from the definition of
f(xl/ xz/ xa) .

The dual of this theorem is
THEOREM 10. If x1/ %2/ %3, and x5 21, then

Z l"(xl/d) =0,

dAzg=zg

where d ranges over all multiples of x, that satisfy d N\ xs = xs.

7. Inversion formulas. We proceed to answer in the affirmative the ques-
tion raised in §1.

TreoREM 11. If

ga/x) = /% f(a/d),
then
f(a/%) = 2 u(d/=)g(a/d).

a/d/z

We have
2 w(3/%)g(a/8) = 25 u(d/x)f(a/d)

a/d/z a/d/8/z

- = (3 wora) oy

a/d/z a/él =z
= f(a/x) (by Theorem 6).
The dual of this theorem is

THEOREM 12. If
g(x/a) = 2. f(d/a),

z/d/a

f(x/a) = 22 w(x/d)g(d/a).

z{d/a

then

It is noteworthy that these inversion formulas are valid in any system S
satisfying Axioms 1, 2, 3, and 6. In other words, there exists for such a sys-
tem S a function u(x:/x2) such that Theorems 11 and 12 are valid. The values
assumed by this function may be calculated by induction with the aid of
Theorems 6 and 7. This is clearly unsatisfactory if S is an infinite set. What
is desired is a definition of the function u(x,/x,) in terms of the internal struc-
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ture of the system. I have been unable to provide a definition of this char-
acter without assuming Axioms 4 and 5. These axioms are verified in a suffi-
ciently large number of important cases to warrant their inclusion in the pres-
ent paper.

8. Hierarchies containing a unit element. 4 unit element of a hierarchy
is an element which is a divisor of every element of the hierarchy. A hier-
archy need not contain a unit element. For example, the class of all rational
integers is a hierarchy with respect to the relation <. The g.c.d. and l.c.m.
of two elements x; and #, of this hierarchy are min(x;, ;) and max(x,, x3) re-
spectively. The hierarchy clearly contains no unit element.

If a hierarchy contains a unit element, the number of divisors of each ele-
ment of the hierarchy is finite by Axiom 6. Summations extended over all
the divisors of an element are particularly important in a hierarchy having
this property. Let f(x) be defined for every element x of a hierarchy H con-
taining a unit element %. Contrary to the notation of §5, we denote by

2 f(d)

dfz
the sum of f(dy), - - -, f(ds), where dy, - - -, d, are the divisors of x. Define
f(u/x) by f(u/x) =f(x). We have, by Theorem 11,

TrEOREM 13. If
g(x) = X f(@),
dlz

then

f(x) = ; u(d/x)g(d).

This theorem can be dualized only if H contains a predominant element :
an element which is a multiple of every element of H and which is therefore
the dual of the unit element. A hierarchy which contains a predominant ele-
ment as well as a unit element is finite by Axiom 4.

For the hierarchy consisting of the positive integers, in which a/b has its
usual meaning, Theorem 13 reduces to Dedekind’s inversion formula; for it
is readily proved from the definitions of §6 that, in this hierarchy,

w(x1/%2) = p (%:),

the function in the right member being Mébius’ function.
9. An elementary application to the theory of groups.The subgroups of a
finite group G form a hierarchy with respect to the subgroup relation. In this
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hierarchy D/G means that D is a subgroup of G. The g.c.d. and l.c.m. of two
elements are their cross-cut and the group which they generate, respectively.

Let B(T') be the number of subgroups of order # of the group I', where »
is a fixed positive integer; and let a(I') be the number of pairs of distinct
subgroups of order # of I' that generate I'. G contains exactly 23(G) (B(G) —1)
pairs of distinct subgroups of order #, and each pair generates some subgroup
of G. Hence

2 a(D) = 3G BG) — 1).

D/@

By Theorem 13,

1
(18) aG) = — 2 u(D/G)BD)BD) — 1).

2 pje
Now let # = p* be a prime-power integer. If p* is not a divisor of the order of
D, B(D) =0; while if p* is a divisor of the order of D, 3(D)=1 (mod p).* In
either case,

3B(D)(BD) — 1) = 0 (mod p) (> 2).

Hence a(G) =0 (mod p), by (18).

THEOREM 14. If p* (p#=2) is a prime-power integer, the number of pairs of
distinct subgroups of order p* of a group G, that generate G, is either zero or a
multiple of p.

To obtain more important results, a detailed investigation must be made
of the numerical properties of the function u(D/G). I have completed this
investigation for the case in which G is a prime-power group, obtaining the
precise value of u(D/G), and have deduced new and interesting properties
of prime-power groups therefrom. These results will be communicated in a

subsequent paper.

* G. Frobenius, Verallgemeinerung des Sylowschen Saitzes, Berliner Sitzungsberichte, 1895, p. 989;
Miller, Blichfeldt and Dickson, Finite Groups, 1916, p. 125.
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