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1. Introduction. The summation of a number-theoretic function/(w) over

the divisors of n, and the inversion of a series of this type by means of Dede-

kind's inversion formula, occupy a prominent place in the elementary theory

of numbers.f A similar inversion formula is valid in any system whose ele-

ments are commutative with respect to a multiplication operation with re-

spect to which a unique factorization law holds, if every element has only a

finite number of divisors: for example, primary polynomials in a field, and

ideals of an algebraic field.

There are, however, systems for which a divisor relation may be properly

defined, but for which no unique factorization law holds, and, indeed, in which

no rule of multiplication may be defined, as the concept of a divisor is ab-

stractly independent of that of multiplication. For a system of this char-

acter the extension of Dedekind's inversion formula is not obvious.

An important example is the class of all subgroups of a finite group, with

"divisor" defined to mean "subgroup." The problem suggested by Dede-

kind's inversion formula may be stated as follows: Suppose we are given two

group-theoretic functions a(G) and ß(G), such that

ß(G) = F>(77),

where D ranges over the subgroups of G. Can a{G) be expressed in terms of

ß{G) by means of a generalized Dedekind inversion formula with the aid of a

generalized Möbius function? One of the objects of this paper is to answer

this question.

Instead of confining my attention to this particular question I have

treated the subject abstractly, showing that an inversion formula exists in

any hierarchy (a system satisfying the axioms of §2). A hierarchy is some-

what similar to what has been called a dual group, % an A-Menge, § a

* Presented to the Society, February 23, 1935; received by the editors December 5, 1934.

t Dickson, History of the Theory of Numbers, vol. 1, chapter XIX.

X R. Dedekind, Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Teiler, Werke,

vol. 2, p. 112; Über die von drei Moduln erzeugte Dualgruppe, Werke, vol. 2, p. 236.

§ Fritz Klein, Zur Theorie der abstrakten Verknüpfungen, Mathematische Annalen, vol. 105

(1931), p. 310.
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lattice* and a structure.f These are systems which are closed with respect to

two operations defined abstractly so as to have the essential properties of a

greatest common divisor and a least common multiple respectively, or of a

logical product and a logical sum respectively. I mention them because many

examples of hierarchies will be found among those of dual groups, etc. How-

ever, inversion formulas of the type referred to do not exist in the most gen-

eral type of dual groups.

2. Hierarchy axioms. A class 77, consisting of at least one element, is a

hierarchy with respect to a relation / if the following axioms (in which a,

b, ■ ■ • denote elements of 77) are satisfied:

1. The relation / is reflexive: a/a.%

2. The relation / is asymmetric: if a/b and b/a, then a = b.

3. The relation / is transitive: if a/b and b/c, then a/c.

4. For every pair of elements a and b of H an element d of H exists such

that d/a and d/b; and such that if c is an element of 77 satisfying c/a and

c/b, then c/d.

5. For every pair of elements a and b of 77 an element I of 77 exists such

that a/1 and b/l; and such that if c is an element of 77 satisfying a/c and

b/c, then Z/c.

6. For every pair of elements a and b of 77 only a finite number of ele-

ments x of 77 exist such that a/x/b.

A simple example of a hierarchy is the class of all positive integers with

respect to the divisor relation, so that a/b means "a is a divisor of &."§ In

view of this example and the previously described purpose of this paper, the

notation a/b may be read "a is a divisor of b" for any abstract hierarchy,

divisor being regarded as an undefined term subject to the hierarchy axioms.

The converse of the relation / will be denoted by \. Thus a/b and b\a

are equivalent. The notation b\a may be read ub is a multiple of a."

To every term defined in terms of the relation / there corresponds a dual,

obtained by replacing / by \ in the definition. For example, divisor and

multiple are duals.

We shall call the elements d and I of Axioms 4 and 5 a greatest common

divisor and a least common multiple respectively of a and b. (After proving

their uniqueness, we shall call them the g.c.d. and the l.c.m. respectively.)

These terms are duals.

* Garrett Birkhof!, On the combination of subalgebras, Proceedings of the Cambridge Philosophical

Society, vol. 29 (1933), p. 441; On the lattice theory of ideals, Bulletin of the American Mathematical

Society, vol. 40 (1934), p. 613.
t 0. Ore, On the foundations of abstract algebra, I, Annals of Mathematics, vol. 36 (1935), p. 408.

% The notation a/b means "a has the relation / to b." The notation a/x/b means "a/x and x/b."

§ Other examples will be found among those given in the papers cited in §1.
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If, in the hierarchy axioms, the symbol / is replaced by \, six theorems

are obtained which are immediate consequences of the axioms. Hence: A

class which is a hierarchy with respect to a certain relation is also a hierarchy

with respect to the converse relation. It follows that a true proposition is obtained

on replacing each term by its dual in any theorem which is a consequence of the

hierarchy axioms. This is the principle of duality for hierarchies. For example,

Axioms 4 and 5 are duals, while each of the other axioms is self-dual.

3. The g.c.d. and l.c.m. of a set of elements.* Let a\, ■ ■ ■ , an(n^l) be

a set of elements of a hierarchy 77. If an element d of 77 exists such that

d/ai (» = 1, • • • , n),

and such that if c is an element of 77 satisfying

c/ai (* = 1, • ■ • , «),

then c/d, we shall call d a g.c.d. of ai, ■ ■ ■ , an. If an element / of 77 exists

such that

Oi/l {i = 1, • • • , «),

and such that if c is an element of 77 satisfying

ai/c (i = 1, ■ ■ • , »),

then l/c, we shall call I a l.c.m. of ax, ■ ■ ■ ,an.

Theorem 1. A g.c.d. and a l.c.m. of any finite set of elements of a hierarchy

exist and are unique elements of the hierarchy.

In view of the principle of duality it is sufficient to prove the existence

and uniqueness of a g.c.d.

The existence of a g.c.d. of a set consisting of only one element follows

from Axiom 1: the element itself is a g.c.d. (as well as a l.c.m.). The existence

of a g.c.d. of a set consisting of two elements is asserted by Axiom 4. We

shall prove the theorem by complete induction, assuming that every set of

n — 1 (n = 3) elements of 77 has at least one g.c.d., and proving that the same

is true of a given set of n elements a\, ■ ■ ■ , an.

By assumption, au ■ ■ ■ , fln-i have a g.c.d., b. Let d be a g.c.d. of 5 and an.

As d/a„ and d/d,

d/ai (i = 1, • • • , n),

by Axiom 3. Suppose that

_ c/ai (i = 1, ■ ■ • , «).

* No use is made of Axiom 6 in this section.
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Writing these n statements in two parts

v c/an,   c/a-i (i = 1, •••.«— 1),

we infer that c/an and c/8. Hence c/d. It follows from the definition that d

is ag.c.d. of ai, ■ ■ ■ , an.

If d' is also a g.c.d. of ah ■ ■ ■ , a„, then d/d' and d'/d by the definition

of g.c.d. Hence d = d' by Axiom 2. The proof of the theorem is complete.

The notation ■ • ■ , a„) and a\ A • • • Aan will be employed for the

g.c.d. and l.c.m. respectively of ah ■ ■ ■ , an. The uniqueness part of Theorem

1 implis that the g.c.d. and l.c.m. of a set of elements are independent of the

order in which these elements are taken. The following relations are readily

established:

(1) (a, a) = a A a = a.

(2) (ai, a2) = (a2, a\), «iA«! = «2 A ax.

((«i, ' • • , an), (bi, ■ ■ ■ , bm)) = (aj, • • • , a„, bu ■ ■ ■ , bm),

(ai A • • • A an) A (öi A ■ • • A bm) = a-i A ■ ■ • A a„ A bi A • • • A bm.

(4) a A (a, b) = a, (a, «Ai) = «.

(5) If c/a, then (b, c)/(b, a) and (b A c)/(b A a).

4. Finite subhierarchies. Let t(xi, %i) be the number of divisors of x2 that

are multiplies of x\. By Axiom 6, this number is finite. If xxjx2, we shall write

t(xi/x2) for t(xi, x2). Evidently r(xi, x2) =0 if x\ is not a divisor of x2; rix/x)

= 1; while t (xi/x2) = 2 if xi ?^ x2.

A finite hierarchy is one which contains only a finite number elements.

This number is the order of the hierarchy.

Theorem 2. If xi/x2, the class of all elements x of 77 which satisfy xi/x/x2

is a finite hierarchy, of order t(xi/x2), with respect to the relation /.

The proof is immediate, consisting principally in showing that the ele-

ments of 77 which satisfy Xi/x/x2 verify the hierarchy axioms. We shall de-

note this subhierarchy of 77 by 77(xi/x2).

If Xi/x2, but xi;^x2, Xi is a proper divisor of x2, and x2 is a proper multiple

of Xi. If Xi is a proper divisor of x2 and the order of the finite hierarchy 77(xi/x2)

is 2, xi is a maximal divisor of x2, and x2 is a minimal multiple of Xi.

Theorem 3. If xi is a proper divisor of x2, 77 contains at least one divisor

of x2 that is a minimal multiple of X\\ and 77 contains at least one multiple of xx

that is a maximal divisor of x2.

If r(xi/x2) =2, x2 is a minimal multiple of Xi. In the contrary case 77(xi/x2)
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contains at least one element x3 different from xi and x2. Evidently t(xi/x2)

>t(xi/x3) =2. If t(xi/x3) >2, the preceding argument is repeated for H{x\/x3);

etc. Finally an xn is obtained such that t(xi/x„) =2. This element x„ is a di-

visor of x2 and a minimal multiple of Xi.

The second part of the theorem is the dual of the first.

5. Functions of the elements of a hierarchy. The symbol f(xi/x2) (and

similarly g(xi/x2), • • • ) denotes a single-valued function of two independent

variables, defined for every pair of elements Xi and x2 of a hierarchy, subject

to X\/x2, the values which the function assumes being elements of some

module. Similarly f(a/x) denotes a function of a single variable x, defined for

every x which is a multiple of a fixed element a. Dually, we have fix/a). The

functions f(a/x) a,ndf(x/a) are not necessarily defined for every a. However,

for every f(xi/x2) we have an/(a/x) and an/(x/a), where a is any element

of the hierarchy.

The symbol

z
x,/x2/- ■ ■/ xn-l/ Xn

pertains to a summation extended over all elements x2, • ■ ■ , #n_i of a hier-

archy 77 satisfying x\/x%/ ■ ■ ■ /xn-i/xn, where x\ and *„ are fixed elements of

77. Hence n = 3. In particular,

E
a/d/b

pertains to a summation extended over all elements d of 77 that are divisors

of b and multiples of a; that is, over the elements of the finite hierarchy

H(a/b).

Theorem 4. If, for every multiple x of a,

zZfia/d) = zZsWd),
a/ d/ x aj d/x

then f(a/x) =g{a/x).

We shall prove the theorem by complete induction. For x = a we have

f(a/a) =g(a/a). Now let b be a proper multiple of a. Suppose that we have

verified that, for every multiple d of a that is a proper divisor of b, f(a/d)

= g(a/d). Then

E/(<*/<*) = YgWd).
a/d/b a/d/b

By hypothesis,

E/(*/<*) = Zg(a/d).
a/d/b a/d/b

Subtracting, we have f(a/b) =g(a/b).
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The dual of this theorem is

Theorem 5. If, for every divisor xof a,

Z/W«) = Hg(d/b),
x/d/a x/d/a

thenf{x/a) =g(x/a).

6. The function p{xi/xt) and related functions. A I'-divisor of an element

x2 of a hierarchy 77 is a divisor of x2 that has the property P or the relation

P to x2. If xi is a P-divisor of x2, x2 is a P'-multiple of Xi. Examples: P = P'

= proper; P = maximal ,P' = minimal.

Let P{xx/x2) be the number of multiples of X\ that are P-divisors of x2;

let P'(xi/x2) be the number of divisors of x2 that are P'-multiples of x%. These

functions are duals. For each integer k^l, let Qk(xi/x2) be the number of

sets of k distinct elements of 77 that are P-divisors of x2 and such that the

g.c.d. of the elements of each set is Xi; let Qk(xi/x2) be the number of sets

of k distinct elements of 77 that are P'-multiples of Xi and such that the

l.c.m. of the elements of each set is x2.

There are

/P(Xl/x2)^

sets of k distinct elements of 77 that are multiples of X\ and P-divisors of x2.

Form the g.c.d. of the elements of each set. The number of times that a par-

ticular element d of 77, satisfying xi/d/x2, occurs among these g.c.d.'s is, by

definition, Qk(d/x2). Hence

(6) E Qk{d/x2) = (F(xi/X2) \ (* - 1,2, • • • )•
Xi/d/Xt \ k /

Dualizing, we have

(7) £Q*'(*i/<*) -(   V     ) (*- 1,2, •••)•
x,/d/xi \        K /

For the further development of the theory we find it necessary to re-

strict P so that

(8) P(x/x) = P'(x/x) = 0,

(9) ^(*i/^)PW«i) ^0 (% .** x2).

These conditions are satisfied if P=proper, or P = maximal (Theorem 3).

It follows from (8) that
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(10) Qk(x/x) = Qk'(x/x) = 0

The function m(*i/#ü) is defined by

(11) ß(x/x) = l,
00

(12) Kxi/xi) = E (-

[November

(A = 1, 2, • • • ).

{xi ^ x2).

The series involves only a finite number of terms, as

(13) e»(*i/*0 = 0

The dual function p'fa/xs) is defined by

(14) „'(*/*) = 1,

(* > PiXx/Xi)).

(15) (*1 5* x2) .

It is noteworthy that ß(xi/x2) and n'(xi/x2) are independent of P if (8)

ana" (9) are satisfied, and that p(xi/x2) =ß'(x1/x2).* We proceed to prove these

statements.

Theorem 6.
'1 if x\ — x2,

if Xi?*- x2.

The theorem being obvious if Xi — x2, we suppose X\^-x2. By (12),

E m(^/x2) = |
x1/d/x2 w

E *(<*/*i) = /*(*»/*«) 4- E E (- i )*&(<*/*«)
xi/d/ Xj xj/d/ X2 &=1

(is* x2

00

= 1 + E E(- D*ö*w*s)
x\l dj xo &=1

/P(Xl/X2) \

= (1 - = 0

(by (11) and (10))

(by (6)),

(by (9)).

Dualizing, we have

(16)
-r- (1 if
E A*i/d)=\n

1 if xi =* x2,

Xi ^ x2.

* Consider, for example, the hierarchy, with respect to the subgroup relation, formed by the sub-

groups of a finite group G. If i> = maximal, the equation /u(l/G)=;u'(l/G), in which 1 stands for the

identity group, embodies a relation between the maximal and the minimal subgroups of G, the mini-

mal subgroups being those of prime order if the order of G is not a prime. This relation would be too

cumbersome to be expressed in words.
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It follows from Theorems 4 and 5 that the functions p{xi/x2) and p'{xi/x2)

are independent of P if P satisfies (8) and (9).

Let
f(xi/x2) = £ v(xi/8).

Then

£ f(d/x2) = £ n(d/&) = £     £ /.(<*/*)■
xi/d/xt it/rf/S/12 xi/S/xt xi/d/S

Hence, by Theorem 6,

(17) £ /(<//*!) = 1.
x\l d/ Ij

Let g(xi/x2) = 1 or 0 according as Xi = x2 or xi^x2. Then

£ g(d/x2) = 1.

Comparing with (17), we have/(xi/x2) = g(xi/x2) by Theorem 5. Hence, from

the definitions of these functions, we have

Theorem 7.

_ 11 if xi = x2,
£ Md) = \ !

xrfd/x, 10 if Xi9^ X2.

Comparing with (16), we have

Theorem 8. ß(xi/x2) =ß'(xi/x2).

Theorem 9. If xi/x2/x3, and x27+x3, then

£   nid/x,) = 0,

where d ranges over all divisors of x3 that satisfy (d, x2) =Xi.

Separate the elements of the finite hierarchy H(xi/x2) into classes, placing

in the same class those elements which have the same g.c.d. with x2. Each

of these g.c.d.'s is an element of H(xi/x2), and every element of H(xi/x3) oc-

curs in one and in only one of the classes. Hence, if

f(xi/x2/x3) =   £ n(d/x3),
<d,x1)=xl

then

£ f(s/x2/x3) = £     £ n(d/xt) = £ v{d/x3).
il/S/»2 xi/S/x2   (d,x2)=S xild/xt

Hence, by Theorem 6, as X\^x3,
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E /(*/*!/*•) = o.

From this equation it follows by induction, as in the proof of Theorem 4,

that f(xi/x2/x3) =0 if x29^x3. The theorem follows from the definition of

f(xi/xt/x%).
The dual of this theorem is

Theorem 10. If' xx/x2/x3, and x2^xh then

E  Md) = 0,
dA i2=« x g

where d ranges over all multiples of Xi that satisfy d A x2 = x3.

7. Inversion formulas. We proceed to answer in the affirmative the ques-

tion raised in §1.

Theorem 11. 7/

gifl/x) = E f(a/d),
a/d/ x

then

f(a/x) = Z n(d/x)g(a/d).

We have
a/d/x

E nWx)g(a/8)
a/S/x

E ß(8/x)f(a/d)
a/d/S/x

= E ( E /«(«/*)
a/d/x\ d/S/x /

= /(«/*) (by Theorem 6).

The dual of this theorem is

Theorem 12. 7/

g(x/a) = E
x/ d/a

f(x/a) = E Kx/d)g(d/a).
x/d/a

It is noteworthy that these inversion formulas are valid in any system S

satisfying Axioms 1, 2, 3, and 6. In other words, there exists for such a sys-

tem S a function n(xi/x2) such that Theorems 11 and 12 are valid. The values

assumed by this function may be calculated by induction with the aid of

Theorems 6 and 7. This is clearly unsatisfactory if 5 is an infinite set. What

is desired is a definition of the function n(xi/x2) in terms of the internal struc-
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ture of the system. I have been unable to provide a definition of this char-

acter without assuming Axioms 4 and 5. These axioms are verified in a suffi-

ciently large number of important cases to warrant their inclusion in the pres-

ent paper.

8. Hierarchies containing a unit element. A unit element of a hierarchy

is an element which is a divisor of every element of the hierarchy. A hier-

archy need not contain a unit element. For example, the class of all rational

integers is a hierarchy with respect to the relation ^. The g.c.d. and l.c.m.

of two elements Xi and x2 of this hierarchy are min(xlf x2) and max(xi, x2) re-

spectively. The hierarchy clearly contains no unit element.

If a hierarchy contains a unit element, the number of divisors of each ele-

ment of the hierarchy is finite by Axiom 6. Summations extended over all

the divisors of an element are particularly important in a hierarchy having

this property. Letf(x) be defined for every element a; of a hierarchy H con-

taining a unit element u. Contrary to the notation of §5, we denote by

£/(<*)
d/x

the sum of/(rfi), • • • ,f(dn), where di, • ■ ■ , d„ are the divisors of x. Define

f(u/x) by f(u/x) =f(x). We have, by Theorem 11,

Theorem 13. If

g(x) = D/(<*),
d/x

then

fix) = 2ZnWx)g{d).
d/x

This theorem can be dualized only if H contains a predominant element:

an element which is a multiple of every element of H and which is therefore

the dual of the unit element. A hierarchy which contains a predominant ele-

ment as well as a unit element is finite by Axiom 4.

For the hierarchy consisting of the positive integers, in which a/b has its

usual meaning, Theorem 13 reduces to Dedekind's inversion formula; for it

is readily proved from the definitions of §6 that, in this hierarchy,

the function in the right member being Möbius' function.

9. An elementary application to the theory of groups.The subgroups of a

finite group G form a hierarchy with respect to the subgroup relation. In this
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hierarchy D/G means that D is a subgroup of G. The g.c.d. and l.c.m. of two

elements are their cross-cut and the group which they generate, respectively.

Let /3(r) be the number of subgroups of order n of the group T, where n

is a fixed positive integer; and let a{Y) be the number of pairs of distinct

subgroups of order n of T that generate T. G contains exactly %ß(G) (/3(G) — 1)

pairs of distinct subgroups of order n, and each pair generates some subgroup

of G. Hence

Z«(l>) = mcmc) -1).
D/G

By Theorem 13,

(18) a{G) = — £ n(D/G)ß(D)(ß(D) - 1).
2 D/G

Now let n=ps be a, prime-power integer. If p" is not a divisor of the order of

D, ß(D) = 0; while if p' is a divisor of the order of D, ß(D) = l (mod p).* In

either case,

hß{D)(ß{D) - 1) = 0 (mod p) (P>2).

Hence a(G) =0 (mod p), by (18).

Theorem 14. If ps (p 9^ 2) is a prime-power integer, the number of pairs of

distinct subgroups of order p' of a group G, that generate G, is either zero or a

multiple of p.

To obtain more important results, a detailed investigation must be made

of the numerical properties of the function n(D/G). I have completed this

investigation for the case in which G is a prime-power group, obtaining the

precise value of n{D/G), and have deduced new and interesting properties

of prime-power groups therefrom. These results will be communicated in a

subsequent paper.

* G. Frobenius, Verallgemeinerung des Sylowschen Salzes, Berliner Sitzungsberichte, 1895, p. 989;

Miller, Blichfeldt and Dickson, Finite Groups, 1916, p. 125.
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