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1. Introduction. I have shown in a recent papert that inversion formulas,

analogous to Dedekind's inversion formula, exist in any hierarchy. As the

class of all subgroups of a finite group is a hierarchy, it is to be expected that

the inversion formulas will prove useful in the theory of groups. The num-

ber of applications is at present limited because of insufficient knowledge of

the generalized Möbius function, in terms of which the inversion formulas

are expressed. The obstacles which present themselves in the general case do

not arise in the case of prime-power groups. In the present paper I evaluate

the generalized Möbius function for the hierarchy consisting of the subgroups

of a prime-power group, and deduce some properties of these groups there-

from. The theorems derived, while of interest in themselves, serve to illus-

trate the usefulness of the inversion formulas, but by no means exhaust the

list of possible applications.

2. The inversion formulas. Except for some obvious changes, made to

conform to conventional notations of the theory of groups, I shall follow

the notations of my earlier paper. For convenience of reference, I shall re-

state the inversion theorems and pertinent definitions.

For every pair of subgroups Xi and X2 of a finite group G, such that Xx

is a subgroup of X2 (notation: Xi/X2), the function Qk(Xi/Xa) (& = 1) is de-

fined as the number of sets of k distinct maximal subgroups of X2, such that

the cross-cut of each set is X\. The function m(Xx/X2) is defined by

The series terminates naturally. It is not difficult to prove that if X2 is a

cyclic group, and the orders of Xi and X2 are xx and x2 respectively, then

ju(Xi/X2) = n{x2 ■*■ xi),

the function in the right member being Möbius' function.

The function n(Xi/X2) has the following properties:

* Presented to the Society, February 23, 1935; received by the editors February 3, 1935.

t In the present issue of these Transactions, 474-484.

(1) m(x2/x2) = l,   m(Xi/x2) = E (- iWtiXi/Xt) (Xr * Xt).
k

(2)
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(3) Z     (X /D) ~ j1 ^ Xl = Xi'
Xi/D/x2 '0 if Xi ^ X2.

(4) E   n(P/X,) = 0 (X1/X2/Xs; X2 * X3).

In (2) and (3) Z? ranges over all subgroups of X2 that contain Xi (including

Xi and X2). In (4) D ranges over all subgroups of X3 that satisfy (D, X2) = Xi,

where (D, X2) denotes the cross-cut of D and X2.

There are two inversion formulas:

I. If r is a subgroup of a group G and, for every subgroup X of G that

contains T,

A'(T/X) = T,A(T/D),
T/D/X

then

A(T/X) = Z KD/X)A'(T/D).
r/D/x

II. If r is a subgroup of a group G and, for every subgroup X of T,

B'{X/Y) = 2ZB{D/Y),
x/D/r

then

Wr) = T, n(X/D)B'(D/T).
x/D/r

In the first formula, A(T/X) and ^4'(r/X) are single-valued functions of T

and X, defined for every subgroup X of G that contains T. The functions

are not necessarily defined for every subgroup T of G. The symbols in the

second formula have similar connotations. Finally we remark that A (T/X)

and B(X/F) may be functions of X alone, in which case they may be denoted

by ^4(X) and B(X) respectively; but that the same need not necessarily be

the case of the corresponding functions ^l'(r/X) and B'(X/T).

While the groups considered in subsequent sections are prime-power

groups, we note at this point the following general theorem which we shall

find useful.

Theorem I. If Xi is an invariant subgroup of X2, then

M(X:/X2) = „(l/^j.

(Here and elsewhere 1 denotes the identity group.)

The theorem is an immediate consequence of the definition of the func-

tion ju(Xi/X2) and the fact that there is a one-one correspondence between
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the sets of maximal subgroups of A2 whose cross-cut is Xi and the sets of

maximal subgroups of X2h-Ai whose cross-cut is 1.

3. Value of /i(Xi/A2) for a prime-power group. We begin with the case in

which Xi = 1 and X2 = X is a group of order px (p prime). We shall write n(X)

for n(\/X). We shall prove that

(5) n(X) = (- l)^*c*-n/2  or 0>

according as X is or is not an abelian group of type (1,1, 1, • • • ).

If X is not an abelian group of type (1,1,1, • • •), the cross-cut of all its

maximal subgroups (the subgroups of index p) is not 1.* It follows from the

definition that n(X)=0.

We now suppose that X is an abelian group of type (1, 1, 1, • • • ). Be-

cause of the importance of the result, two proofs of (5) follow.

First proof. For the case in which x = 1, (5) is an immediate consequence of

(6) E »(D) = 0
D/X

(see (3)), as this equation then involves only two terms and ju(l) = 1. We pro-

ceed to prove (5) by induction. Suppose we have verified that if D is an abelian

group of order pd (d<x) and type (1, 1, 1, • • • ), then p(D) = {-\)dpd<-d-^i2.

An abelian group of order px and type (1,1,1, ■ • • ) contains exactly

(** - 1) • • • (p*-<>+1 - 1)
(7)- (1 ig d < x)(P ~ 1) • ■ • (Pd ~ 1)

subgroups of order pd, and each of them is an abelian group of type (1,1,

!,•••). Hence, by (6),

x-l   (fix _  1) . . .  (flx-d+l _ I)

(8) p(x) = - l - E —t—-—, ,   ^  (- i)y
d_i   (p - i) ■■ ■ (pd- i)

Substituting y = — 1 in Cauchy's identity^

(9) II (1 + Pry) = 1 + E —t-^r---~ Pd^'2yd,
T-o d-i    (P - 1) • • • (pd - 1)

we obtain
*  {p* -1) • • • (px-d+i - 1)

o = l + E —-'- (- iypd<-d-»i\
ti   (p-i)---(pd-1) ,v

Comparing with (8), we have (5).

* Michael Bauer, Note sur les groupes d'order p", Nouvelles Annales de Mathematiques, vol. 19

(1900), p. 510. See also Miller, Blichfeldt and Dickson, Finite Groups, 1916, pp. 123, 127.
t A. L. Cauchy, Oeuvres, (1), vol. 8, p. 50. The identity is valid if p is an indeterminate.
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Second proof. As already noted, (5) is verified for x = 1. We shall suppose

that x S: 2. Let Y be any subgroup of order px~x of X. Taking Ai = 1, X2 = Y,

X3 = X in (4), we have

(10) E KD/X) = 0.
(D,Y)=1

Aside from £> = 1, the only subgroups of X that satisfy (D, Y) = 1 are those

subgroups of order p of A that are not contained in Y. This follows from the

theorem that the order of the group generated by two permutable groups

equals the product of their orders divided by the order of their cross-cut.

Now the number of subgroups of order p of A that are not contained in Y is

px _ px-1

--— = p*-1.

p-l

Applying Theorem 1, we have by (10),

M(A) = -

where Ax-\ is an abelian group of order px_1 and type (1, 1, 1, ■ ■ • ). Again,

p(A x_i) = - p^niA *_2), fi(A x_2) = - px~2n(A z_3), • • • ,

where A k is an abelian group of order pk and type (1, 1, 1, ■ ■ •). Hence,

as n(Ai) = — 1)

ß(X) - (- P*-2) • • ■ (- PK- i) = (- i)xpx^'2.

Theorem 2. Let Xi be a subgroup of order p11 of a group X2 of order p12

(0 ^Xi <x2; p prime). If Xx is not an invariant subgroup of A2, ix(XJX2) =0.

If Ai is an invariant subgroup of X2,

n(Xi/X2) = (- l)«»-*»^(**-»t)(*«-«-i>/s   or o,

according as A2-r-Ai is or is not an abelian group of type (1, 1, 1, •••).

The maximal subgroups of A2 are those of index p. They are all invariant

in A2. Hence, if Xx is not invariant in A2, Ai cannot be the cross-cut of a set of

maximal subgroups of A2. It follows from the definition that ju(Ai/A2) =0.

If Ai is an invariant subgroup of A2, /u(Xi/X2) =^(A2-^- Ai) by Theorem 1.

The value of ju(A2-h Ai) is given by (5), with x replaced by x2 — xx.

4. Explicit forms of the inversion formulas. The inversion formulas of

§2 may now be stated as follows:

I. If T is a subgroup of a group G of order p° and, for every subgroup A

of G that contains Y,
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a'(r/x) = ZMr/d),
T/D/X

then

a(r/x) = E (- iyp^-1U22ZA'(r/x^r),

where px is the order of X and, in 2~lA'{T/Xh, X, ranges over all invariant

subgroups of order pi of X such that X-nXi is an abelian group of type

(1, 1, 1, • • • ), the identity group being regarded as a limiting case of a group

of this type.

II. If T is a subgroup of order py of a group G of order p" and, for every

subgroup X of T,

b'(x/t) = 2ZB{d/y),
X/D/T

then

b(x/t) = E (- iyp^-»i*2ZB'(xx+r/r),

where px is the order of X and, in 2~2B'(Xi/T), X,- ranges over all subgroups

of order pl of Y of which X is an invariant subgroup such that Xj-=-X is an

abelian group of type (1, 1, 1, • ■ - )•

5. Number of subgroups having certain properties. We proceed to give

a few applications of the inversion formulas.

Theorem 3. The number of subgroups of order p" of a group of order p" that

contain a particular subgroup of order phis =1 (mod p) (0 = h = s = g) .*

Let B{X) = 1 or 0 according as X is or is not of order p\ Then

B'(x/G) = E b(d)
X/D/G

is the number of subgroups of order ps of G that contain X. By the second

inversion formula,

B(x) = B'(x/G) - E B'(xX+1/G) (mod p).

As the theorem is trivial if s — h, we suppose s > h. Taking X = H (the particu-

lar subgroup of order ph) we have, as B{H) =0,

(11) B'{H/G) m E B'(Hh+1/G) (mod p),

where Hh+i ranges over all subgroups of order ph+1 of G that contain H. The

* When h=0, the theorem reduces to a well known theorem of Frobenius.
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number of these subgroups is known to be =1 (mod p); that is, the theorem

is verified for s = h+1.

We proceed to prove the theorem by induction on s — h, where s is fixed;

that is, we assume that B'(K/G) = 1 (mod p) if K is a subgroup of G whose

order p k satisfies p*>pk>ph,so that l^s-k<s-h; and infer that B' (H/G)

= 1 (mod p).

By assumption, each term of the right member of (11) is = 1 (mod p). We

have seen that the number of terms is =1 (mod p). We conclude that

B'(H/G) = \ (modp).

Theorem 4. The number of non-cyclic subgroups of order p" of a non-cyclic

group of order pa that contain a particular cyclic subgroup of order py is =1

(modp) (p>2,0^y<s,2^s^g).*

Let T be the subgroup of order p~>. Let ^4(r/X) = 1 if X is a non-cyclic

group of order p' that contains T, and 0 otherwise. Then

A'(T/X) = £ A(T/D)
r/d/x

is the number of non-cyclic subgroups of order P' that contain T. The theorem

being trivial if s — g, we suppose s<g. We shall prove the theorem by induc-

tion on g, assuming that A'(Y/K) =T (mod p) if K is a non-cyclic group of

order pk (s<k<g), and proving that A '(T/G) m 1 (mod p), where G is a group

of order p".

By the first inversion formula we have, with X = G,

A'(T/G) m 2^, A'(T/G„-i) (modp),

where G„_i ranges over the maximal subgroups of G that contain T. If Ga-i

is cyclic, A '(T/GB-i) =0. If G„_i is non-cyclic, A'(T/G0-i) m 1 (mod p), by as-

sumption. Hence, if exactly m maximal subgroups of G contain V, and of these

n are cyclic,

A'(T/G) = m - n (modp).

If « = 1, G contains an element of order p""1. Now there are only two types

of non-cyclic groups of order p« (p>2, g>2) containing an element of order

p"^1. For these groups the theorem may be verified directly. We therefore

suppose that w = 0. As ot = 1 (mod p) by Theorem 3, we conclude that

A'(T/G) = \ (mod p).

* The special case 7 = 0 was first treated by G. A. Miller. See Miller, Blichfeldt and Dickson,

Finite Groups, p. 128.
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6. Number of sets of generators. When T is the identity group, the first

inversion formula may be written*

(12) a{x) = E (- D^(r-1)/2Z^'(AV-r),
r-0

where Xi ranges over all invariant subgroups of order pi of X such that

X-i-Xi is an abelian group of type (1, 1, 1, • • • )• Let X' be the cross-cut of

all the maximal subgroups of X; and let pv<-X) be the order of X-i-X'. It is

known that X' is characterized by the fact that it is the smallest invariant

subgroup of X whose corresponding quotient is an abelian group of type

(1, 1, 1, • • • )• It is readily proved that X' is a subgroup of every invariant

subgroup of X whose corresponding quotient group is an abelian group of

type (1,1,1, • • • ). It follows from (7) that the number ofterms oj"XA'(Xx_r)

in (12) is

(p- - 1) ■ • ■ - 1)
(13) —f-'---t-(r^l,v = v{x)).

(p - 1) ■■•(#' - 1)

These facts are useful in applying (12).

Let X be a subgroup of order px of a group G of order p", and let/(A) be

the number of ordered sets of k (not necessarily distinct) elements of X that

generate X. As the number of ordered sets of k elements of A is pkx, and each

set generates some subgroup of A,

Zf(D).
D/X

Applying (12) and (13), observing that

a'(x^r) =

and taking X = G, we have

SI (p> - 1) ■ ■ ■ {p'-r+l - 1)
f(G) =pk°+2Z (- l)^r(^l)/2p*{e-r)^L- -)L-—-        (V = v(G)).

(P ~ 1) • • •  {pr ~ 1)

This series is easily summed with the aid of Cauchy's identity (9).

Theorem 5. The number of ordered sets of k (not necessarily distinct) ele-

ments of a group G of order pa that generate G is

r-l

P«,-,)kTT fpk _ pr) (V = v(G)).

* Compare with the enumeration principle of P. Hall, A contribution to the theory of groups of

prime-power order, Proceedings of the London Mathematical Society, vol. 36 (1933), p. 39.
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This number vanishes for k <v, confirming the known fact that G cannot

be generated by <v(G) of its elements.

The next theorem is proved in a similar manner.

Theorem 6. The number of sets of k distinct elements of a group G of order

p" that generate G is

r(r-D/2 (D
(p> - i) • ■ ■ (p>-r+i - i)

(p -1) • • • & - i)
(v = v(G)).
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