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1. In the treatment of differential geometry from the modern invariantive

standpoint it is usually unnecessary that the coordinates and the functions

which define the structure of the space under consideration be real quantities.

Adopting the more general hypothesis of complex coordinates and structure

functions we arrive at the concept of generalized spaces of complex character.

This procedure has the advantage that it serves to distinguish the purely

formal aspects of the theory which are identical under the real or complex

hypothesis from non-trivial questions of reality arising in the transition from

the complex to the corresponding real space.

Let S be a complex generalized space and denote by Fx and F2 systems

of polynomials in the structure functions of 5 and their derivatives to a cer-

tain order, the coefficients of these polynomials being definitely specified con-

stants. We shall say that the conditions

(1.1) Fx = 0, F29^0

constitute an algebraic characterization of a property P of the space S pro-

vided that necessary and sufficient conditions for the existence of the property

P are furnished by (1.1). Since the property P is independent of the coordi-

nate system adopted, the conditions (1.1) must be invariant under coordinate

transformations.

In particular the equations Fi = 0 alone may suffice for the algebraic char-

acterization. This type of characterization may be described precisely as an

algebraic characterization in terms of equations. We shall here be concerned ex-

clusively with such characterizations, which for the sake of brevity will be

referred to as simple algebraic characterizations. The results obtained will be

seen to yield as immediate consequences certain algebraic characterizations

which are not simple.

In the following discussion the above polynomials F will be found directly

as polynomials in the components of a complete set of tensor differential in-

variants of the space S. It will therefore be convenient to consider these

components rather than the structure functions and their derivatives as the

independent variables in the polynomials F.

j Presented to the Society, September 13, 1935; received by the editors November 20, 1934.
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Thus if 5 is an affinely connected space, a projective space of paths, a

metric space, or a conformal space, the vanishing of the corresponding curva-

ture tensor gives a simple algebraic characterization of the flat space S. As

is well known, the equations

in which the B's are the components of the curvature tensor and the g's the

components of the fundamental metric tensor, express the conditions for a

metric space to be of constant curvature K. The above equations do not con-

stitute a strict algebraic characterization of the space of constant curvature

since the constant K is arbitrary. However, an algebraic characterization is

obtained by elimination of K which gives

(1.3) (gadgbc — gaegbd)BaßyS — (gaigßy ~ gaygß»)Babcd = 0.

Since the determinant | gaß | does not vanish by hypothesis, not all of the ex-

pressions in parentheses in (1.3) will vanish as these are the second-order

minors of \gaß\ • Hence we can pass from (1.3) to (1.2) in which the quantity

K is at most a function of position. It then follows by Schur's theorem that K

is a constant and hence the equations (1.3) give an algebraic characteriza-

tion of the metric spaces of constant curvature.

In a recent paper by J. Levine and myself a proof of the existence of alge-

braic characterizations was given for a certain class of problems in differen-

tial geometry, f It was shown in particular that a simple algebraic charac-

terization exists for the metric representations of an affinely connected space

provided that the dimensionality of the representations is unspecified. We

now give a more exhaustive treatment of this problem on the basis of the

theory of algebraic manifolds and the Kronecker theory of algebraic elimina-

tion. Our methods are quite general and permit a wide range of application

beyond the particular problem treated in this paper. We have shown that

there exist n irreducible algebraic manifolds which are of significance for our

characterization problem. One of these irreducible manifolds furnishes a sim-

ple algebraic characterization of the 1-dimensional metric representations.

The others give necessary conditions for the existence of representations of

dimensionality r>\ but fail to meet the sufficiency requirement, with the

result that none of these latter representations admit a simple algebraic char-

acterization.

2. Consider the system of equations

(1.2) BaßyS — K(gaSgßy — gaygßt) ,

(2.1)

t T. Y. Thomas and J. Levine, On a class of existence theorems in differential geometry, Bulletin

of the American Mathematical Society, vol. 40 (1934), p. 721.
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in the set of symmetric unknowns gaß and the given components Tpy(x) de-

fining the (symmetric) connection of a complex space 5 of n{ Si 2) dimensions.

As integrability conditions of (2.1) we derive the following sequence:

a c

goaBßyh + gßffBayi = 0,

a a

gaaBßyS.t + gß,Bayi,i = 0,

(2.2)
g<raBßyt,,,[ + gßvBay&.tj = 0,

where the B"ßyS, BaSy6it, ■ ■ • are the components of the curvature tensor and

its successive covariant derivatives. It can be provedf that there exists an

integer N such that the vanishing of the resultant system R(B) of the first 2V

sets of equations of the sequence (2.2) is necessary and sufficient for the exist-

ence of a solution of (2.1). If a solution gaß(x) of (2.1) exists such that the

rank of the matrix \\gaß\\ is n, then the Tßy are Christoffel symbols with re-

spect to the gaß and the space 5 is said to reduce to a metric space or to

admit an w-dimensional metric representation. If the rank of the solution

matrix ||^|| is r, where 1 ̂ r^n — 1, and if a metric is defined in the space

S by the degenerate quadratic differential form gaßdx"dxß, the space will be

multiply isomorphic to an r-dimensional metric space S*, the metric of S*

being defined by a form which is not degenerate; we then say that the space

5 admits an r-dimensional metric representation. The equations R(B) =0

therefore give an algebraic characterization of the metric representations of

the space 5 under the hypothesis that the dimensionality of the representa-

tions is unspecified.

3. Now suppose that (2.1) admits a solution gaß(x) for which the matrix

\\gaß\\ is of rank n. We can then solve (2.1) for the Tßy so as to express these

quantities as Christoffel symbols

« ,   aa(dg,ß       dg,y dgßy\
(3.1) fyy = ig  I--h — - — )

\dxT    dxe bxf)

in terms of the solution gaß(x). Substituting (3.1) into the expression defining

any component B as a function of the T's and their derivatives it is seen that

the component B is given by an expression of the form

D    p(g°f>> dgaß/dxy, • • • )
(3.2) JS =-:-:-,

\g«ß\m

where P denotes a definitely determined polynomial, with rational coeffi-

cients, in the gaß and a finite number of their derivatives, and where m is a

t See T. Y. Thomas and J. Levine, loc. cit, p. 721.
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suitable positive integer. If the B's occurring in the resultant system R(B)

have numerical values given by the parametric equations

(3.3) B~P{a^'"'\

where the q's are arbitrary subject to the symmetry conditions on the corre-

sponding quantities in the right members of (3.2) and such that the determi-

nant I qaß\ does not vanish, then R(B) =0, and the first N sets of equations

(2.2) admit a numerical solution; in fact gaß = qaß is a solution of these equa-

tions. This follows from the fact that we can define a set of polynomial func-

tions

g«ß(x) = qaß + qaßyXy + iqaßysxyxs + • • •

having the above quantities q in (3.3) as coefficients and these functions can

be used to determine the Ts" by means of (3.1). At x" = 0 the resulting com-

ponents B will have values given by (3.3) and since (2.1) is merely another

form of (3.1) for the case under consideration the first N sets of equations

(2.2), as integrability conditions of (2.1), will admit the above mentioned

solution. Hence the number Ni of algebraically independent components B

in R(B) which correspond to a space S admitting an w-dimensional metric

representation is exactly determined by the parametric representation (3.3).

Let A denote a set of algebraically independent components B appear-

ing in the resultant system R(B) without the restriction that the space 5

admits an w-dimensional metric representation, the complete sets of identi-

ties of the B's in S being used for the determination of these independent

components.! If there are iV2 independent components B in the set A, we

can interpret these as the coordinates of a space E of N2 dimensions. The in-

equality Ni>Ni evidently holds.

Let M„ denote the least algebraic manifold in E defined by the parametric

equations (3.3). By recourse to the theory of polynomial ideals it can be

shown that Mn is irreducible.J The algebraic equations Fn(B) =0 which de-

fine M„ are necessarily satisfied by the components B of a space S admitting

an w-dimensional metric representation. Under such conditions we shall say

as a matter of terminology that a space 5 which admits an w-dimensional

metric representation belongs to the manifold M„. Since M„ is the least alge-

braic manifold satisfying the required conditions given by (3.3) the equations

Fn(B) =0 must give a simple algebraic characterization of the w-dimensional

metric representations of 5 if such a characterization exists.

f See T. Y. Thomas, The Differential Invariants of Generalized Spaces, Cambridge University

Press, 1934, p. 134.
% B. L. van der Waerden, Moderne Algebra, II, Berlin, Springer, 1931, p. 58.
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4. We shall now extend the above discussion to the case of the r-dimen-

sional metric representations of S where it is assumed that r < n. For this

purpose we suppose that (2.1) admits a solution gaß(x) with matrix \\gaß\\ of

rank r. It is then possible to make a non-singular coordinate transformation

x—>y such that \\gaß\\ assumes the form

kit • ■ ■ hi,  0 • • ■ 0

hn ■ ■ ■ h„    0 • ■ • 0

0     ■ • • 0       0-0 '

0   • ■ • 0     0 • • • 0

where the quantities haß depend on the variables y1, ■ • • , yr alone. If C%y

denote the components of the connection with respect to the y coordinate sys-

tem, then these components must vanish for a = 1, • • • , r; ß = r+\,

7 = 1, • • • , n. The components C%7 for a>r and ß, 7 = 1, • • • , n are arbi-

trary analytic functions of the coordinates y1, • • ■ , y". The remaining com-

ponents Cßy where a, ß, y = 1, • • ■ , r are Christoffel symbols with respect

to the h's in the rth-order minor in the upper left hand corner of the above

matrix,t i.e.,

(4.1) CflT = i*   ( —+-7-(indices = 1, r).
\ dyy      dyt       df /

If we denote by D the components B when taken with respect to the y co-

ordinates, we obtain a parametric representation of the D's corresponding to

(3.3) on the basis of the conditions (4.1) and the fact that certain of the C's

vanish while others are completely arbitrary; in this representation the non-

vanishing determinant | qaß\ of the rth order will occur in place of the corre-

sponding wth-order determinant in the denominators of (3.3). To obtain the

parametric representation with respect to the arbitrary x coordinate system

we have merely to transform the above expressions for the D's into the B's

by the tensor transformations, i.e.,

o ft     v   a   r a

(4.2) BßyS = DyjrUßUyUiVp, • • • ,

t In particular if r — 1, these equations assume the form

i ^ 1   1 afa
11 ~ 2 'hndy1 '

See T. Y. Thomas and J. Levine, loc. cit., p. 721.
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where the uaß are arbitrary parameters such that the determinant | % | is not

equal to zero and the v"e are their normalized cofactors.

If we denote by Mr the least algebraic manifold in E defined by (4.2) this

manifold is irreducible as was the case for the manifold Mn, and the algebraic

equations Fr(B) = 0 which define M, constitute necessary conditions on the

space 5 for this space to admit an r-dimensional metric representation. If a

simple algebraic characterization exists it must evidently be given by these

equations.

Theorem. There exist n irreducible algebraic manifolds Mi, • ■ ■ , Mn such

that any space S which admits an r-dimensional metric representation belongs

to the manifold Mt.

5. We shall now prove a lemma which will have application in the follow-

ing section.

Lemma. If r is any integer of the set 1, • • • , w — 1 and if the solution matrix

\\gaß || of (2.1) is of rank rata point xf^p" of its domain of definition, then there

exists a neighborhood of p" in which \\gaß\\ is of rank r.

Take first the case r = n — 1. For the derivative of the determinant \gaß\

of the matrix \\gaß\\ we have

(5.1) ^! = ^,
dxf Bxi

where Aaß denotes the cofactor of the corresponding element gaß of the matrix

\\gaß\\. Substituting from (2.1), equations (5.1) become

(5.2) = (g,ßTay + g„Tfiy)A    = 2 I glir I rrT.
ox"1

Since | g„,\ =0 at x" =p" the left member of (5.2) vanishes at xa = pa and con-

sequently successive derivatives of the determinant | g^ \ will likewise vanish

at xa = pa. By hypothesis the rank of \\gaß\\ is r = n — 1 at xa = pa and hence

the rank of this matrix is n — 1 in a certain neighborhood of p".

If r<n — 1 we consider the determinant |gMF| in the left member of (5.1)

to be any determinant of order r+l selected from the matrix \\gaß\\, the Aaß

being the cof actors of corresponding elements of the determinant | g^ \. Then

(5.1) is satisfied, and making the substitution (2.1) we obtain the first set of

equations (5.2), in which the indices a, ß are now restricted by the particular

selection of the (r+l)st-order determinant \g^\. The right members of these

latter equations now expand into a linear and homogeneous expression in

determinants of order r+l of the matrix \\gaß\\- Hence the rank of ||ga<s|| is r

in a neighborhood of x" = pa and the above lemma is proved.
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6. Suppose that 5 belongs to Mr. We shall then show that S admits a

metric representation of dimensionality m £ r. To prove this result we make

use of the theorem on resultant systems of homogeneous algebraic equations, f

Denote by Ln-i(B) =0 the resultant system of the first N sets of equations

(2.2) combined with the determinant equation

(6.1)

gn gin

gnl

More generally denote by Lr{B) = 0for/- = l, • • • ,« — 1 the resultant system

of the first N sets of equations (2.2) and the set of equations obtained by

equating to zero all determinants of order r+1 in the left member of (6.1).

Then Lr{B) = 0 will define an algebraic manifold Gr in the space E. The mani-

fold defined in E by the resultant system R(B) =0 of the first N sets of equa-

tions (2.2) will be denoted by G„. It is evident from the equations of definition

of the manifolds Gr for r = 1, • • • , n that

(6.2) Gn ^Gn 3d.

Now Mn c Gn- Since the coordinates B of any point P of M„_i having a para-

metric representation of the form (4.2) permit a solution of the first N sets

of equations (2.2) such that (6.1) is satisfied it follows that P lies in G„_i.

If the point P of Mn-i does not have the parametric representation (4.2) used

in the determination of Mn-i it follows from a theorem in the theory of alge-

braic manifolds that P is the limit of a sequence of points Pi, P2, • • • of

Mn-i having this representation^ and hence must likewise belong to Gn-i, i.e.,

Mn-i c G„-i. Continuing we obtain the set of relations

(6.3) MncGn, Af„_icGn_i, • • • , MiCGu

Suppose that S belongs to the manifold Gr where r is an integer of the set

1, • • • , n. The equations (2.1) will therefore admit a solution and hence there

exists an integer N* such that the first N* sets of equations (2.2), which we

shall call the equations H for brevity, are algebraically consistent and all their

solutions satisfy the (2V*+l)st set of these equations. Let xa = pa denote a

t B. L. van der Waerden, loc. cit., p. 14.

t See J. F. Ritt, Differential Equations from the Algebraic Standpoint, Colloquium Publications

of the American Mathematical Society, vol. 14, New York, 1932, p. 91. Also B. L. van der Waerden,

Zur algebraischen Geometrie, III, Mathematische Annalen, vol. 108 (1933), p. 694.
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point of S where the rank of the matrix of H has its greatest value. Denote

by (-B)p the values of the corresponding B's in H. These equations, in which

the coefficients B have the values (B)p, will possess a solution ga$ = (gaß)P such

that the rank of the matrix ||(g«(j)p|| is ro^r since the resultant system

Lr(B)=0 is satisfied by the values (B)p. Since the rank of the matrix of

the equations H for B's in a certain neighborhood A* of xa = p" is the same

as when the B's have the values (B)p, it follows that the general solution

gaß, valid in A*, will yield the values (gaß)P for xa = pa and for the selection

(gaß)P of the values of those gaß which enter as arbitrary quantities in the gen-

eral solution. Now in accordance with the theory of equations of the type

(2.1),f these arbitrary quantities gaß are to be determined as the solutions of

a completely integrable system of differential equations, the general solution

of (2.1) then being obtainable as the algebraic solution of H. Hence there

exists a solution gaß of (2.1) such that gaß = (gttß)P at xa = p". By the lemma of

§5 the matrix ||g0|s|| of this solution will be of rank mSr in the neighborhood

A* of xa=p". Hence if S belongs to Gr the space S will admit a metric representa-

tion of dimensionality m^r. Since Mr c Gr by (6.3) we have the following re-

sult :

Theorem. // the space S belongs to the irreducible manifold Mr when r is

any integer of the set 1, • • • , n, it will admit a metric representation of

dimensionality m^r.

This theorem when combined with the theorem of §4 gives the following

Corollary. A necessary and sufficient condition for the space S to admit a

l-dimensional metric representation is that it belong to the irreducible manifold

It is evident from the above that the manifold Mi can be replaced by the

manifold Gi in the statement of this corollary. Hence the resultant system

Li(B)=0 gives an algebraic characterization of the l-dimensional metric

representations of S.

7. It will now be shown that the equations Fr(B) =0 which define the

manifold MT where r has any value of the set 2, • • • , n are not sufficient to

insure the existence of an r-dimensional metric representation of S, and hence

in accordance with the observation of §4 that the r-dimensional metric repre-

sentations of 5 do not admit a simple algebraic characterization.

Consider a one-parameter family of w-dimensional metric spaces Sa the

components of the fundamental metric tensors of which are given by the

matrix

t See, for example, T. Y. Thomas, Differential Invariants of Generalized Spaces, p. 202.
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(7.1)

sin ad>

0

0

0

ga4>

0

• 0

• 0

0 e°*

where a denotes the (real) parameter and <j> is an analytic function of the co-

ordinates x1, ■ ■ ■ , xn in the neighborhood of the values xa = Q at which the

function $ is assumed to be different from zero; all other components of the

tensors except those appearing in the diagonal of the matrix vanish iden-

tically. The spaces Sa are thus defined for values of the parameter a different

from zero. Calculation of the resulting Christoffel symbols give

a d<j>

(7.2)

q-

j 1 \ a / £°* \ d<j>

(II) 2 xsincup/dx1

{:,} -

2 dx*

d<j>

a / cos a<A dd>

2\ e°* )dxJ'

a /   a   \ d#

2 \tan a4>) d

dx1

deb

dx1

l 1 ) _ 1 / a \d<t>

111/      2 \tan acp)dx1

a d<j>

2 dx1'

where I, J = 2, ■ ■ ■ , n and the remaining symbols vanish identically. Now

let a—>0 and denote the limiting values of the Christoffel symbols {ßay} by

the corresponding symbols Tßy. Then those symbols in (7.2) which do not

approach zero become

(7.3)
Tn = - ¥x

where 0 — log <t>, Ba
36

Denote by 5* the affmely connected space for which the components of con-

nection T)j and r}„ are given by (7.3), the remaining components being zero

identically.

Now observe that the Christoffel symbols for the spaces Sa can be repre-

sented by expansions of the form

+ t\a + fca2 + • • • ,

where the i^'s are analytic functions of the coordinates x" in the neighborhood

of xa = 0. The functions represented by xpo in these expansions are the com-

ponents of the connection of the space S*. Hence the components B of the

curvature tensor and its successive covariant derivatives for the spaces Sa
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approach, as a—»0, the corresponding components B for the space 5*. Since

the spaces Sa are such that the equations Fn{B) =0 which define the mani-

fold Mn are satisfied, it follows that these equations are likewise satisfied for

the space S*, i.e. the space S* belongs to the algebraic manifold Mn.

Now consider the equations (2.1) in which the T's are the components of

connection of the space S*. The first set of integrability conditions (2.2) then

reduces to

(7.4)

Take a=ß=y—I where 1 = 2,

galBßyt + gßlBayl = 0.

, w and 5 = 1. Then (7.4) becomes

i /dOr     Mi     1 1 \
s,An = o, or ^\- + - + -e^ + Je^ = o,

where it is of course understood that no summation is involved in these equa-

tions. Hence if we choose the function <f> so that

(7.5)
ddi     dOi 1-1-1-i
dx'    dx1 2 2

(7 = 2, •••,»),

it follows that gn = 0. Now take a = 5 = l, and ß=y=I in (7.4); then these

equations become

/ddi     B6i     1 1 \

\dxr     dx1     2 2 }

and hence the above condition (7.5) likewise gives gu = 0. It now follows from

the equations (2.1) that dgu/dx" = 0 for a = l, • • • , n and I, J = 2,

so that the most general possible solution of these equations under the con-

dition (7.5) is that given by the matrix

622

en2

C2n

where the e's are arbitrary constants. Conversely it is seen immediately that

this matrix represents a solution of (2.1) for the case under consideration.

Hence the space S* does not admit an w-dimensional metric representation

although it belongs to the manifold Mn. It follows that the n-dimensional
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metric representations of an affinely connected space S do not admit a simple

algebraic characterization.^

8. To extend this result to the case of the r-dimensional metric representa-

tions for r = 2, • ■ • , n — 1 we can consider a set of symmetric quantities haß,

where a, ß = l, • ■ • , r, defined by a matrix of the form (7.1) in which the

function 4> depends on the coordinates y1, ■ ■ • , yr alone. We then use the

equations (4.1) to define the components C^y for a, ß, y = 1, • • ■ , r and take

the remaining Cs subject to the restrictions stated in §4. Allowing the pa-

rameter a to approach zero we obtain a set of functions F defining the con-

nection of a space S** which must belong to the manifold Mr, although a

consideration of the equations (2.1) for S** shows that this space , subject to

restrictions corresponding to (7.4), can admit at most an (r — 1)-dimensional

metric representation. While this process is thus analogous to that carried

out in §7 it is desirable nevertheless to give the details of the process since

certain formal difficulties present themselves. J

For definiteness in our discussion we shall employ only the following let-

ters as indices with the ranges indicated:

I, J, K = 2, • • • , r,

h, i, j, k, I = r + 1, • • ■ , n,

a, ß, y, <r = 1, ' • • , r,

A, 0, $,     ß = 1, • • • , n.

Corresponding to (7.2) the limiting values are now given by

(8.1)

Tu = - §0i, r}a = §<?« )   . de9« 1 dd
> where 6 = log <j>, da =-:

Other Tßy = 0 ) dy"

' rs,- = o,
r4,*= arbitrary analytic function of the variables y1, ■ • ■ , yn.

Using these values of the T's we find that

(8.2) Bid = Baßy = Baßi = Bißy — Bißj = Bijfc — 0,

i       dTjk      dTji       i   h        i h
(8.3) Bjti = ——-—— + ThiTjic — TakTji.

ayl dy

t The method employed to deduce this result shows that necessary and sufficient conditions for

the existence of an n-dimensional metric representation of the space 5 can not be expressed by any

system of equations of the form F(B) = 0 the left members of which are continuous functions of the

components B. As the algebraic characterization is however of primary interest we have limited the

above statement to such characterizations.

11 am indebted to Dr. J. Levine for the details of the treatment given in this section.
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Now consider the first set of integrability conditions (2.2) of the equations

(2.1) determined by (8.1), namely

(8.4)

Taking <£, SF, A, ®=i,j, k, I respectively and making use of (8.2), these equa-

tions become

(8.5) gihBjki + gjhBiki = 0.

In these latter equations put i =j so as to obtain

(8.6) gihBikl = 0 (i not summed).

Put W = n—r. Then in (8.6) for each value of i we have W(W —1)/2 equa-

tions in the W unknowns gin.

Case I. W^3. Since W^W(W —1)/2 we can form from the matrix of

the coefficients ga in (8.6) the following determinant of order W:

B, m

Rr+l

t>i r+1 r+2

Rr+2
-ß< r+1 r+2

Rr+1 Rr+2

-°» r+1 r+3     J->i r+1 r+3

Bi r+i r+2

-Bj r+1 r+3

Rr+1

■Di r+1 n

Rr+1

■öt r+2 r+3

Rr+2

-£>< r-t-l n

Rr+2

-Dt r+2 r+3

Bi r+1 n

Bi r+2 r+3

None of the determinants Bi is identically zero since the elements B in any

determinant Bi are algebraically independent quantities; this follows by re-

course to the complete set of identities satisfied by the B's as defined by (8.3)

in terms of the arbitrary functions T)k in (8.1). Hence we can choose the

T)k so that Bi^O for i = r+l, ■ ■ ■ ,n. Hence ga = 0 in consequence of (8.6).

From (8.4) we now obtain

(8.7) gahBiH = 0,

use being made of the fact that the above quantities gih are equal to zero.

Hence gah = 0 since a determinant Bi is contained in the matrix of the coeffi-

cients of (8.7).

Case II. W = 2. From (8.4) select the following three equations:

m n

+ 5 mn   m mn       " j

m n

gnm-Bnmn ~\~ gnn-Bnmn        0 ,

mmn + B nmn) ~T~ £mm $nmn        0 ?
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where m is used to denote w —1. Hence if the arbitrary T'sin (8.1) are chosen

so that

(8.8)

B.

0

b:

Bv

V

B„ + Bn„

0

Bl
Bl

it will follow that gmm = gmn=gnn = 0. Now from (8.7) we obtain

m n

gctm&mmn ~i    gan&mmn        ^ j

m n

gam-Bnmn ~\~ ganBnrnn 0>

the determinant of which is a factor of the above determinant (8.8). Hence

gam=gan = 0.

Case III. W = \. From (8.4) we obtain

n

gnnBnaß = 0.

Choosing the arbitrary t's in (8.1) so that not all the coefficients b"aß are

equal to zero, we have g„„ = 0. Hence from (8.4) we have

ganB„ßn = 0,

from which gan — 0 can be obtained.

We have now shown that the arbitrary T's in (8.1) can be chosen so that

the solution matrix of (2.1) will have the form

gU  •   ■   • glT

grl     ■  ■ gr;

where r has any value in the set 2, • • • , n — 1. To make the rank of this

matrix be <r we now make gia = 0. By a suitable selection of the indices in

(8.4) these equations give

/99i     1      V (Mi     1 \
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Hence to have gia = 0 we have merely to choose <j> so that one of the coefficients

in each of these two sets of equations is different from zero. As in §7 the

most general solution of the equations (2.1) is thus seen to be represented by

the matrix

where the e's are arbitrary constants. This gives the following theorem which

includes the result of §7.

Theorem. The r-dimensional metric representations of an affinely connected

space S, where r is an integer of the set 2, ■ • • , n, do not admit a simple algebraic

characterization.

Princeton University,
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