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Introduction

1. The Gauss-Green lemma for the plane connects the double integral of

a partial derivative of a function over a region R with the line integral of the

function around the curve C bounding R. This connection is given by the

formula

where s is the arc length of C and ß is the angle made by the external normal

to C at a variable point of C, with the positive y-axis. Thus for the line in-

tegral to have a meaning it is necessary that C have length and consequently

be defined by two functions x=4>(t), y =^(t) of bounded variation in /.

2. The applications of this lemma, through Green's theorem, are numer-

ous. Consequently many investigations have been concerned with the types

of regions and boundaries for which the lemma is valid. In most cases it has

been deemed inherent in such a relation that the boundary be a curve, i.e.,

that an order relation be known among the points of the boundary. However,

attacking the problem by radically different methods, J. P. SchauderJ ob-

tained results for a class of boundaries with no order relation prescribed.True,

the only boundaries shown by Schauder to be admissible are those repre-

sented by two functions each satisfying the Lipschitz conditions, thus indi-

rectly again introducing order and also a condition more restricting than that

of bounded variation.

Also Schauder assumed that all points of the boundary of the second

class§ project on the #-axis in a set of Lebesgue measure zero. Thus so simple

a region as all points of the unit circle except the points 0 ;£ x < 1 of the x-axis

does not satisfy his conditions.

t Presented to the Society, October 27, 1934; received by the editors January 8, 1935.

J Fundamenta Mathematicae, vol. 8 (1926), p. 1. Schauder states his results in terms of an

integral over a volume and an integral over the boundary of the volume, but, as he points out,

analogous results hold connecting n- and (« —l)-dimensional integrals, n = 2, 3, • • • . We discuss his

results for re=2.

§ This subset of the boundary is defined in §16 below.

dxdy = I f(x, y) cos ßds
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3. The present paper contains a proof of the Gauss-Green lemma under

what seems extreme simplification of the conditions on the boundary. For

a simply connected region there is no restriction except that the boundary

have Caratheodory linear measure finite. Then by methods which have the

effect of the usual crosscut scheme, applicable regions are extended to a wide

class not simply connected. Furthermore, simplicity of restrictions on bound-

aries is gained by more careful analysis of properties of boundaries, and

not by specialization of the function f(x, y).

From the proofs given, analogous results are seen to hold connecting n-

and (» — 1) -dimensional integrals.

I. Caratheodory measure of a set and its closed subsets

4. Caratheodoryf developed on five axioms a general theory of measure

in which most of the theorems of the usual Lebesgue theory have analogues.

The theorem that the inner measure of a set is the upper limit of the measures

of closed subsets of the set, which plays such a central role in the Lebesgue

theory, has not, however, been shown to follow from Caratheodory's five

axioms. This closed subset theorem does follow, as proved by Hahn,t if in

place of Caratheodory's fifth axiom the following modification is used:

Axiom V. To each point set A there is a sequence of open sets whose inter-

section contains A and has the same measure as the outer measure of A.

After developing his general theory of measure, by merely postulating the

existence of a number associated with each set, Caratheodory gave the follow-

ing specific method of attaching a number to a set.

Let A be an arbitrary set in a euclidean space Rq of q dimensions. With

p a positive number let Ui, U2, • • • be a sequence of convex sets open in

the space ics,§ each with diameter less than p, whose union contains A. With

dk the diameter of Uk, consider the sums

di + d» +' - ■

for all such sequences of point sets. Designate the least upper bound, which

may be 4-00, of such sums by LPA. Then L„A does not decrease as p decreases.

Thus as p—>0, LPA approaches a limit, finite or infinite, which in either case

is'called the exterior linear measure of A and is represented by L*A.

The exterior two-dimensional measure of A is also defined by means of

sets Ui, U2, ■ ■ ■ , each with diameter less than p, except that dk is replaced

t Göttinger Nachrichten, 1914, p. 404.

% Hahn, Theorie der reellen Funktionen, vol. 1, 1921, Theorem iii, p. 445.

§ Caratheodory did not assume the sets Uk to be open, but proved that the same number would

be obtained if open convex sets were used.
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by the two-dimensional diameter of Uk. The two-dimensional diameter of an

open convex set is the least upper bound of the Lebesgue plane measures of

the projections of the set on planes of all possible orientations.

Exterior linear measure is shown by Caratheodory to satisfy his five meas-

ure axioms. In proving that exterior linear measure satisfies his fifth axiom,

Caratheodory did not use the fact that each Uk is open, but merely that it is

linearly measurable. Upon following this proof, but using in addition the

openness of Uk, one will see that Hahn's axiom V is also satisfied. It thus

follows from the above reference to Hahn, that if a set A has inner linear

measure L*A finite, there is a sequence of closed subsets of A whose union has

the same linear measure as the inner linear measure of A. This closed subset

theorem plays a fundamental role in the work that follows.

5. One easily sees the following projection relation:

If A is a plane set and I a line of the plane, the projection At of A on I

has Lebesgue exterior measure m*A i less than or equal to L*A.

With this projection relation established, Grossf proved that if each

point of A i is the image of at least N points of A then m*A 1L*A /A. Spe-

cifically, if L*A is finite and each point of Ai is the image of an infinite number

of points of A then m*A i = 0.

It follows also from the above projection relation and the closed subset

theorem that, if A is linearly measurable with LA finite, then A t is Lebesgue

measurable.

II. Measurable subsets of the union of a sequence of closed sets

6. A line perpendicular to the x-axis through a point of a plane set B

may or may not contain a lowest point of B on it. We designate the set of all

such lowest points, when they exist, by B1. In general we designate by Bm

the set of all points p of B such that exactly m — \ points of B lie below p

on the same perpendicular to the x-axis.

Again a line perpendicular to the x-axis through a point of B may contain

a finite or an infinite number of points of B. We designate by lBm (or <B°°) the

collection of all points of B on all lines perpendicular to the x-axis that con-

tain exactly m (or an infinite number of) points of B.

Arguments similar to those of Schauder show that if B is a Souslin set,

each subset of B defined above is Caratheodory linearly measurable. Corre-

sponding theorems of course hold if B is the union of a sequence of closed

t Monatshefte für Mathematik und Physik, vol. 29 (1918), pp. 174-176.
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sets. However, simpler proofs can be made for the more restricted sets and at

the same time furnish all that is necessary for our purpose.f

7. Suppose then B is the union of a sequence of closed sets K\, K2, • • • .

Toward establishing the measurability of the subsets of B mentioned

above we notice that the set P(B), of all points on all lines perpendicular

to the x-axis through points of 73, is linearly measurable. For P(B) = P(Ki)

+P(K2) + ■ ■ ■ and each P(K{) is linearly measurable, since the part of it

in or on any square is closed.

With k a positive integer let Wkh be the collection of all points of the plane

whose y-coordinates satisfy the relation h/2k^y<(h+l)/2k, h = l, 2, • • • .

Since each set Wk, as well as B, is the union of a sequence of closed sets, the

same is true of their intersection. Consequently, from the above proof, the

set P(BWk) is linearly measurable.

Let hi < hi < • • • <hmbem integers. We define

as all points of all lines perpendicular to the x-axis that contain points of B

in each of the strips

(2) Wk\ Wl\ • • • , IF*",

but no point of B in any strip below y = (hm+l)/2k, other than these.

The point set (1) is linearly measurable. For the set of lines perpendicular

to the x-axis with points of B in all the strips (2) may be written as

a i
Gi = l\P{BWk).

»—1

Then to obtain the set (1) we must remove from Gi any line perpendicular

to the x-axis that contains a point of B outside the strips (2), but still below

y = (hm+\)/2k,i.e.,

h\— 1 . fi2—1 . hm—l

G2 = E P(BWl) + E P(BWl) + ■■■ + E P{BWl).
i— oo jWil+l I—n„_l+l

Since each point set P(73TF/) is linearly measurable, the point sets Gx and G2

f Schauder used a general measure * satisfying Caratheodory's axioms I-IV and a modifica-

tion (different from Hahn's) of axiom V. He did not however prove the closed subset theorem for his

general measure. To obtain this theorem he introduced a specific measure #o, a modification of one

defined by Gross (loc. cit.), which satisfies his modified axioms. In his proof he used some measure

properties of Bm which in turn he obtained from measure properties of Souslin sets. For Caratheodory

linear measure, indeed for the general measure satisfying Hahn's modification of the five axioms,

the closed subset theorem followed without the use of Souslin sets and we now establish the requisite

measure properties of Bm.
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are linearly measurable. Consequently, Phlh2"km = Gi—GiG2 is also linearly

measurable.

We now define the set

as all points p of B in the strip Wkm such that a line through p perpendicular

to the x-axis contains points of B in all of the strips (2), but no point of B

in any strip below y = (hm+l)/2k other than these. The formulation for this

set, Bkhl---hm = (BWkhm)Phl"-hm, shows it to be linearly measurable, a fact

we use in proving

Theorem 1. The subset Bm of B is linearly measurable.

First consider the set

Et = £2^"**++ • • • + &*7** + ■■■,

where each summation sign means the union of the sets indicated as the m

distinct integers Ai<A2< • ■ • <hm take on all possible values. The set Ek

is then the union of a countable number of linearly measurable sets, so is

itself linearly measurable.

We next assert that Bm c Ek. For if p is a point of Bm there are exactly

m — 1 other points of B below p on the same perpendicular to the x-axis.

Then with k fixed, there is a number/ so large that the distance between any

two of these m points is greater than 1/2*+'. These m points then belong to

some set of m strips Wkl+j, ■ • • , W^+j, and there are no points of B on their

common line in any strip below y = (hm+l)/2k+i other than these. Thus p

belongs to some set Bk+jhm and so to Ek.

Thus the set E = Ei-E2- • • ■ is linearly measurable and also Bm cE.

We assert, conversely, that Bm^> E. For if p were a point of E and there

were less than m — 1 points of B below p on the same perpendicular to the

x-axis, p and these points would not lie in any m distinct strips, so p would

not belong to any set Bkv"hm, so not to E. However, if there were more than

m — 1 points of B below p, for every k large enough, say k>K, there would

be more than m strips including p and the points of B below p. Thus p would

not belong to any set Bkhl"'hm, k>K,so not toEk, k>K, and finally not toE.

Thus B m is the linearly measurable set E.

8. Toward proving <Bm linearly measurable we designate by

hihz- - .hm

the totality of all points p of B such that the line through p perpendicular
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to the x-axis contains points of B in each of the strips Wkhl, ■ ■ ■ , Wkm,

but no others. This set is then the part of B on those lines Phl' •'hm that do

not contain points of B above y = (Am-f-l)/2*; that is,

P '""*- - P v-'nm £ P(BWl)

i-hm+l

This formulation shows the set to be linearly measurable.

We now state

Theorem 2. The subset <J3m (and H™) of B is linearly measurable.

One will see that the linear measurability of cBm follows from that of

<Bkhl" •'*• in the same way the linear measurability of Bm followed from that

of ZV11 • • • *»>. Then <B°° = B— Em=i^m 15 als° linearly measurable.

III. Normal sets and simply connected regions

9. Following Schauder, a family FA of circles will be said to cover a plane

set A if every point of A is the center of a sequence of circles of Fa with radii

approaching zero. The set A is said to be normal with respect to a measure if

in every FA covering A there exists a mutually exclusive sequence of circles

whose union contains almost all of A. Here a circle includes its circumference.

From the Vitali covering theoremf it follows that every bounded set A

is normal with respect to Lebesgue plane measure. It is not known whether

under any of the definitions of linear measure, the set A is normal with re-

spect to linear measure even if A is linearly measurable with linear measure

finite or, in fact, even if A is closed. The peculiar adaptability of Caratheodory

linear measure to our problem is shown by the fact that the boundary B of

of every simply connected region is normal with respect to Caratheodory

linear measure if LB is finite. It is necessary, however, before proving this

fact to obtain several auxiliary results.

10. With c(p, r) a circle with center p and radius r, we shall call the limit

superior and limit inferior as r approaches zero of the ratio

L*Ac(p, r)

2r

the upper and lower exterior density of A at p and represent them by

D*(A, p) and D*(A, p) respectively. If A is linearly measurable the asterisk

is not used and the word "exterior" is dropped.

W. Sierpinskif has shown that in every FA covering A there exists a se-

t Caratheodory, Vorlesungen über Reelle Funktionen, p. 229.

% Fundamenta Mathematicae, vol. 9, p. 172.
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quence of mutually exclusive circles Ci, c2, • ■ • such that if C„ is a circle (not

necessarily belonging to FA) with the same center, but diameter three times

that of cn, then the union S = Ci+C2+ ■ ■ • contains A. He also shows that

if L*A is finite, D*(A, p)^l at almost all points of A. We use these two facts

in proving

Lemma 1. If L*A is finite and the lower exterior density of A is bounded

from zero by a positive constant k for almost all of A, then A is normal.^

From the conditions of the lemma and Sierpihski's density theorem, men-

tioned above, the subset^' of A where simultaneously k^D*(A, p) and

D*(A,p)^l has L*A' = L*A.
Let FA be a family of circles covering A. Then the collection of all circles

c(p, r) of FA such that, with p a point of A',

k     L*Ac(p, r)
(1) — <-^-i,

2 2r

while the concentric circle c(p, 3r), which may not belong to Fa, is such that

L*Ac(p, 3r)
(2) -f?r4 < 2,

6r

is a family F'A> of circles covering A' in the sense defined above.

Then from Sierpinski's covering theorem, there exists in FA> a sequence

of mutually exclusive circles c(pi, n), c(p2, r2), ■ ■ ■ such that the union of

the larger circles c(pi, 3r\), c(p2, 3r2), ■ ■ • contains A'. Since (1) is true for

each small circle and these circles are mutually exclusive,

kit U < E L*Ac(pt, n) = L* [a E c(Pi, r()l ^ L* [a E c(pif r,)] ^ L*A.

Thus the series of radii converge and

(3) iZr,gi*

But the union of the larger circles contains A', almost all of A, and (2) is

true for each of these circles, so

(4) L*A g 2ZL*Ac(Pi, 3r.) < 12 E U.
i l

From (3) and (4),

t Henceforth we use "normal" for "normal with respect to Caratheodory linear measure."
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kL*A < 12L*[^4 !>(/>,■, r,)j.

There is then a number n such that, for S\=2~^\c(pi, kL*A <l2L*Asu

Thus (12 — k)L*A >\2{L*A — L*As\), so, since Si is linearly measurable

(closed),

(5) L*(A - Asi) <
/12 - k\

Next let Fa' denote the collection of all circles of F'A> that have no point

in common with Si. Since Si is closed this family covers A'—A'si. We now

proceed as above, but use the set A'—A'si instead of A' and the family of

circles F"A, instead of FA>, and obtain a set Sz (the union of a finite number

of mutually exclusive circles of F'A>) and a relation similar to (5), namely,

L*[(A - ASl) - (A - Asi)s»] < (1212 k^L*(A - Ast).

But s2 has no point in common with Si, so, with the aid of (5),

.   /i2 - k\ /i2 - ky
L*[A - A(Sl + Si)] < ( )L*(A - Asi) < I J L*A .

We thus see the existence of a sequence of mutually exclusive sets

*i, Si, ■ • • each consisting of a finite number of mutually exclusive circles of

FA, such that for each n,

/12 — k\n
L*[A - A(Sl + Si +•••)] ^ L*[A - A(Sl + • • • + sn)] < f j L*A.

But ^ is positive and L*A is finite so A is normal.

11. By a region R we shall mean a connected portion of the plane, and by

the boundary B of R, all points b such that every circle c(b, r) contains both

points of R and points of the complement of R. The boundary is a closed point

set and is hence linearly measurable. A region is simply connected if every

simple closed curve of the region contains on its interior only points of the

region.

We now prove the proposition mentioned earlier.

Theorem 3. The boundary B of a simply connected region R (not the whole

plane) is normal if LB is finite.

This theorem follows from the above lemma upon showing that

D(B, b) ^ 1/2 at each point b of B. First let c(b, r) be a circle with center b
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which does not contain all of R. The circumference of c(b, r) then contains

points of R, since R is connected, and points of the complement of R, since R

is simply connected. Consequently there are points of B on this circumference

and, moreover, on the circumference of every concentric circle c(b, r') with

r'<r.

Let Ui, Z72, ■ • • be a sequence of open convex sets whose union contains

Bc(b, r). If Uk contains b let Ik be the radius of the smallest circle with center

6 containing Uk. If Uk does not contain b let Ik be the difference of the radii

of the two circles with centers b, one the smallest containing Uh, the other

the largest containing no point of U*. Since Ik is not greater than the diameter

dk of Uk and there is a point of B at every distance i£ r from b, r ^X^* ^X0-*-

Thus r^LBc(b,r),t so

LBc(b, r) 1
D(B, b) = lim inf-—— —

r->» 2r 2

12. We shall also use the following property of normal sets.

Theorem 4. If a set B is normal and A is a linearly measurable subset of B

with LA finite, then A is also normal. %

First, any closed subset K of B is normal. Let FK be a family of circles

covering K, and, since K is closed, FB-k a family of circles none with a point

in common with K, covering B—K. Then FK together with FB-k constitutes

a family FB of circles covering B. But B is normal, so there exists in FB a se-

quence of mutually exclusive circles Ci, c2, ■ • • whose union s contains al-

most all of B. However, those circles c{, c{, ■ • • of this sequence having

points in common with K are circles of FK and their union s' is such that

K-Ks' <zB-Bs. Thus L(K - Ks') ^ L(B-Bs) = 0, so K is normal.

Next A is normal. For let FA be a family of circles covering A and e„

a sequence of decreasing numbers approaching zero. Since A is linearly meas-

urable with LA finite, there exists a closed subset K\ of A such that LA < LK\

+ ei/2. But Ki, a closed subset of B, is normal, so there exists a finite number

of mutually exclusive circles of FA whose union Si is such that LKi<LK\Si

+ 6i/2. Thus LA <LR~iSi + ei^LAsi+ei. But Si is closed, so the circles of FA

f The inequality r£ $oBc(b, r), plausible as it seems, has not been established. That caution is

necessary with *0 measure is indicated by the example of a set A in the ring c(p, r')—c(p, r), r'>r,

with a point on every radius, but with <fvl =0 (and of course LA ä 2jit), given by Saks, Fundamenta

Mathematicae, vol. 9, p. 16. If, however, the inequality were established, our results would hold for

*o, as well as for Caratheodory, linear measure.

t Results similar to those of this theorem and its corollary were indicated by Schauder. However,

his theorem VIII does not follow from his previous work since he has not proved the closed subset

theorem for the general measure #. A theorem that does follow would be obtained if $ were replaced

by *o throughout.
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with no point in common with si constitute a family FA-asi covering

A—As-i. Hence in FA-Asi there exists a finite number of circles whose union

Si is such that L(A — Asi) <jL4s2 + e2, or, since Si and s2 have no point in com-

mon, L [A — A (si+s2) ] <62- Consequently, there exists a sequence of mutually

exclusive sets Si, s2, • • • , each the union of a finite number of mutually

exclusive circles of FA, such that for each n, L[A — A(si+s2+ ■•■•)]

£L[A-A(si+ ■ ■ ■ +sn)] <e„, so A is normal.

Corollary. If LB is finite, FA a family of circles covering A, and e an

arbitrary positive number, there exists in FA a sequence of mutually exclusive

circles whose union s is such that simultaneously

LA = LAs and L(B — A)s < e.

Since the set B—A is linearly measurable with L(B — A) finite, it contains

a closed subset K such that L[(B—A) —K] <e. Then the circles of FA with-

out points in common with K again constitute a family FJ covering A. Thus

in FA' there exists a sequence of mutually exclusive circles whose union s is

such that LA =LAs. But the part of s in common with B—A is at most

(B-A)-K, so L(B-A)s<e.

IV. Projection of a set and further normality properties

13. Let Tibea linearly measurable set with LB finite. From §5, the pro-

jection Bx of B on the x-axis is linearly measurable.

We shall show that for a fixed point p the two functions LBc(p, r) and

m [Bc(p, r) ]x of r are continuous from the right. With rn a decreasing sequence

approaching r0>0, temporarily let B„ = Bc(p, r„) and B0 = Bc(p, r0). The in-

tersection of the sets Bn is B0, so limn^xLBn = LB0. Also (Bn)x = (B0)x

+ (Bn-B0)x, so m(Bn)x-m(Bo)x ^ m(Bn-B0)x^L(Bn-B0), and both func-

tions have right hand continuity in r.

Next for r fixed the set of points P\ where LBc(p, r) >0 is closed. For

suppose LBc(p0, r) <X where p0 is a limit point of P*. We first choose a 5 >0

such that LBc(p0, r+8) <X, then a point p of P* such that c(p, r) c c(pQ, r+8),

and thus obtain a contradiction. In the same way the set of points of the

plane where m[Bc(p, r)] x ^X >0 is seen to be closed. One then sees that the

set of points where these functions take on values between two constants is

linearly measurable. Hence, following the terminology of the Lebesgue

theory, we say for r fixed LBc(p, r) and m[Bc(p, r)] x are linearly measurable

functions of p.

14. We shall let B0 represent the set of all points p of B such that

LBc(p, r)=0 for some circle. By the Lindelöf-Young theoremf there is a

t Caratheodory, Vorlesungen über Reelle Funktionen, 1927, p. 46.
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sequence of such circles whose union contains B0. But the intersection of this

union with B has linear measure zero, so LB0 = 0.

Thus for every point ß of B — B0 the quotient

m\Bc(ß,

L5c(/3, r)

is defined. Moreover, for r fixed, <3(73, /3, r) is the quotient of two linearly

measurable functions, so is itself linearly measurable on B—B0. Also for ß

fixed, Q(B, ß, r) has right hand continuity in r.

If Q(B, ß, r) has a limit as r approaches zero, we designate this limit by

C(B, ß), otherwise by C(B, ß) and C(B, ß) its limit superior and limit in-

ferior, f We extend these functions to all points of the plane by arbitrarily

assigning the value zero at points not in B—B0.

The function C(B, ß) is linearly measurable on B—B0. For let rn be a de-

creasing sequence of numbers approaching zero and qi, q2, ■ ■ ■ the positive

rational numbers in some ordering. Then let

R(ß, rn) =least upper bound of Q(B, ß, qm) for 0<ffm<rn,

F(ß, fn) = least upper bound of Q(B, ß, r) for 0<r<rn.

Then R(ß, r„) ^F(ß, rn). But the right hand continuity in r of Q(B, ß, r) re-

veals that R(ß, rn) ^ F(ß, rn), so these two functions are equal. Both functions

are then linearly measurable on B—B0, since R(ß, r„) is the least upper bound

of a sequence of functions linearly measurable on B—B0. But it is seen that

C(B, ß) = lim sup Q(B, ß, r) = lim F(ß, rn).
r—*o n~*»

Thus C(B, ß) is the limit of a sequence of functions linearly measurable on

B—B0, so is itself linearly measurable on B—B0.

A similar procedure shows that C(B, ß) is also linearly measurable on

B—B0. Consequently C(B, p) and C(B, p) are linearly measurable on the

plane or on any linearly measurable subset E of the plane. But these func-

tions are bounded, so if LE is finite, the integrals fEC(B,p) dL and fEC(B,p) dL,

taken over E in the sense of Lebesgue with respect to Caratheodory linear

measure, exist.

15. We now let B be normal, in addition to being linearly measurable with

LB finite, and prove two lemmas and an important integral theorem.

Lemma I. If A is a linearly measurable subset of B that projects on the x-axis

in a set of Lebesgue measure zero, then C(B, a) = 0 at almost all points a of A.

f While no notion of direction is involved here, yet if ß were a point of an ordinary curve, C(B, ß)

would be the absolute value of the cosine of the angle between the s-axis and the direction of B at ß.
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Since C(B, p) is a linearly measurable function, the subset A \ of A where

C(B, p) >X>0 is linearly measurable, and hence, being a subset of a normal

set B, is normal. Suppose the lemma is not true. There is then a X>0 such

that also Z^4x>0. Then the collection of all circles c(a, r), with centers at

points of A\, such that

X     m\Bc(a, r)\x
(1) — <   1 ,

2        LBc(a, r)

is a family FAx of circles covering A\.

Since A\ projects on the x-axis in a set of Lebesgue measure zero,

tn[Bc(a, r)]x = m[(B - Ax)c(a, r)]x $ L{B - Ax)c(a, r).

Also LA\c(a, r) ^LBc(a, r). Thus for each circle of FAx, from (1),

— LAxc(a, r) ^ L(B - Ax)c(a, r).

But, with e an arbitrary positive number, from the corollary of §12, there

exists a sequence of mutually exclusive circles of FAx such that for their

union s, LA\s = LA\ and L(B—A\)s<e. We thus have the contradiction,

(\/2)LA\<e, to our assumption.

Lemma 2. Let Abe a linearly measurable subset of B with at most one point

on each line perpendicular to the x-axis. If at each point a of A

X ^ C(B, a), then \LA ^ mAx,

or if

X > C{B, a), then \LA ^ mAx,

where C(B, a) means either C(B, a) or C(B, a).

We shall prove only the first part of this lemma.

Let 7] be an arbitrary positive number. For either interpretation of

C(B, a), the collection of all circles c(a, r) with centers at points of A for

which the inequality

m[Bc{a, r)]x
X — 7} < -

LBc(a, r)

holds, is a family FA of circles covering A. But A is a subset of B, so for each cir-

cle of FA, (X — r))LAc(a, r) <m [Bc(a, r) ]x gm [Ac(a, r) ]x +m [(B - A)c{a, r) }x

Sm[Ac{a,r)}x+L(B-A)c{a,r).

Since there is at most one point of A on any line perpendicular to the

x-axis, mutually exclusive subsets of A project into mutually exclusive sets.
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Thus if s is the union of any sequence of mutually exclusive circles of FA,

(\ — ri)LAs<m(As)x+L(B—A)s. But (corollary §12) with e>0 arbitrary

there is an 5 such that LAs = LA and L(B —A)s<e. For this 5 also

m{As)x = mAx, so we have (X — t\)LA <mAx + e. Thus\LA ^mAx.

Now let £ be a linearly measurable subset of B with at most one point

on each perpendicular to the x-axis. From Lemma 2 we see that

But C(B, p) ^C(B, p) so C(B, p) exists at almost all points of E.

Furthermore, C(B, p) exists at almost all points of B. For there is a se-

quence of closed subsets of B whose union B has LB = LB. But (Theorems 1

and 2) B is the union of a sequence of linearly measurable sets B1, B2, ■ ■ ■

(each with at most one point on any line perpendicular to the x-axis) and a

linearly measurable set (BK (every point of whose projection is the image of

an infinite number of points of B). From consideration of the above integrals,

C(B, p) exists at almost all points of each set Bm, and consequently at almost

all points of the union 2~l2=iBm. Also, from §5, m('B'o)x = 0, so, Lemma 1,

C(B, p) exists and is zero at almost all points of 43". Thus C(B, p) exists at

almost all points of B so finally at almost all points of B.

We later make direct use of

Theorem 5. Let E be a linearly measurable subset of B with at most one

point on any line x = x0, and let F(p) be a function summable on B with respect

to Caratheodory linear measure. Then the function of x defined for each value x0

First F(p)C(B, p) is linearly measurable on E, since it is the product of

two such functions. Then /(x) is Lebesgue measurable on Ex, since the part

of Ex where f(x) >kis the projection of the linearly measurable subset of E

where F(p)>k.

With M and A two non-negative numbers, define

(75

Fmn(P) = { -M if F{p) < -M, F(p) if -M^F(p) <N, A if F(p) ^ A}
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and in a like manner, /mn(x). Let — M = a0, a-i, • ■ • , an — N be a subdivision

of the interval ( — M, A). Call Ek the subset of E where ak-i^Fmn(p) <ak-

Then {Ek)x is the subset of Ex where ak-\^fmn{x) <ak.

Consequently, from Lemma 2,

m(Ek)x = f C(/3, />)<iZ,.

Then

ak-im{Ek)x g I   Fmn(P)C(B, p)dL S akm[Ek)x,

so

n /• n

X ö^xmCE^x =ä I FMn(P)C(B, p)dL ^ £ a*»(£*)x.

But this is true of every subdivision of ( — M, A), so

f fmn{x)dx = \ Fmn{p)C{B,p)dL.

However, fEF(p)C(B, p)dL exists since the integrand is the product of

two functions summable on E, one of which is bounded. Consequently,

the summability of f(x) and the equality

f f{x)dx = f F(p)C(B, p)dL
J Ex Je

follows.

v. a replacement for direction and generalization of the

Gauss-Green lemma

16. We divide the boundary B of a plane set G into three mutually exclu-

sive subsets Bi, Bn, Bm; with B\ consisting of two parts. Let 6 be a point of

B and F the line through b perpendicular to the x-axis. Then b shall belong to

Bi, if there is a segment a^y<b of Y below b of points of the comple-

ment of G and a segment b <y ^ c of F above ö of points of G.

Bit if there is a segment a^y<b of points of G and a segment b<y^c

of points of the complement of G.

Bn if there exist two segments a^y<b and b<y^c which either both

contain only points of G, or both contain only points of the complement of

G.
Bm if either half of every segment of F with mid point ö contains both

points of G and points of the complement of G.
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One sees that a line perpendicular to the x-axis through a point of Bm

contains an infinite number of points of 73, i.e., 5m c 43°°.

17. In the introduction we pointed out that Schauder made the material

restriction that m(73n)x = 0. We are able to avoid this restriction by showing

eventually that Bn, and also 43", contribute nothing to the boundary integral.

The result is then obtained by integrating over the remaining part of B,

i.e., over Bi—73i43". However, we find it convenient to integrate over 73i,

—731,43°° and 73^—5^43°° separately. It is thus necessary to know that these

two sets are linearly measurable. We give the demonstration only for the

first set.

First let 73Iin be all points 6 of B such that 6 —l/»^y<6 consists only of

points of the complement of G while 6<y :S 6+1/» consists only of points

of G. Let 6o be a limit point of 73I)n. Then 60 is a point of B, since B

is closed. If 60 is a point of Bi2, there is an interval a^y<b, of points of G,

each of which is a limit point of points of the complement of G, i.e., a^y^b

is an interval of boundary points, so b0 belongs to 43°°. In a like manner one

sees that each limit point of Biin which is a point of Bu is a point of 43°°.

Hence with Blin the closure of 73iin, Biin cB^+43"0 and zZn=iBiin^ Bil}

so XnX'=iCßi,»+43°°) =£1,4-43°°. Thus/3i,+43°° is linearly measurable because

each Bi,n is linearly measurable (closed) and 43" is linearly measurable (The-

orem 2). Consequently, the set 731,-/31,43" is linearly measurable since it is

the intersection (73 —43") (731,-1-43") of two linearly measurable sets.

Likewise, the set 73l2—73i243" is linearly measurable. Thus B\ — 73i43",

and then 73n— 73n43", is linearly measurable.

18. At all points b of B we now define the function

'-C(B, 6) if 6 is a point of 73^-73^43"

I   C(B, 6) if 6 is a point of 73i2-73i243"
cos(73, b)-\   0 if 6 is a point of 73„-73„43"

k   C(73, 6) if 6 is a point of 43".

If 6 is given by its coordinates {x, y) we designate

cos(73, 6) by cos[73, (x, y)].

Since, as we have seen, C(73, 6) exists at almost all points of 73 it would

have been as well, in the following integral theorems, to define cos (B, b)

in terms of C(73, 6). Also, since C(7i, 6) =0 at almost all points of 43", we

could have defined cos (73, 6) =0 at all points of 43".

In the ordinary Green's theorem, the points of a crosscut correspond es-

sentially to 73n—73n43". Since the integral around the complete boundary

traverses a crosscut twice, and its value when taken in one direction is

annulled by its value in the opposite direction, the same result would be ob-
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tained if at each point of a crosscut the direction cosine of the external nor-

mal were arbitrarily replaced by zero. In an analogous manner, even though

there is no notion of direction in our case, we have defined cos (B, b) to be

zero at all points of Bn—Bu'B"'.

19. We now prove the theorem connecting a double integral over a plane

set and a single integral over the boundary of the set.

Theorem 6. Let G be a bounded plane point set whose boundary B is nor-

mal with LB finite, and let (G+B)x0 be the intersection of G+B and the line

x = x0. If a function F(x, y) is summable on B with respect to linear measure

and is absolutely continuous in y on (G+B)x0 for almost all values of x0 in

Bx, and if dF(x, y)/dy is summable on G+B with respect to Lebesgue plane

measure, then F(x, y) cos [B, (x, y)] is summable on B with respect to linear

measure, and

r r dF(x, y) c
I I -dxdy = I F(x, y) cos [B, (x, y)\dL.

J J a     dy J b

The plane measure of B is zero since LB is finite, f hence

r r dF(x, y) r r    dF(x, y) r      r y)
I I -dxdy = I I -dxdy = I   dx i -dy.

JJq     dy J J o+b     dy J bz    J (o+bji dy

But the set 43" (of all points of B on all lines perpendicular to the x-axis

containing exactly m points of B) is linearly measurable, so

r       r        dF(x,y)         r           r        dF(x, y)
I   dx I -dy = I        dx I -dy

JBx    J (G+b)z     dy J J (o+b)z dy

dF(x, y)
+ LI       dx\ -^-dy.

(o+b) x dy
tf dxf

However, since jm(43°°)x = 0 and C[B, (x, y)]=0 at almost all points of 43°%

f      dx f        dF^' ̂  dy = f F(x, y) cos [B, (x, y)]dL = 0.
JeB")x     J (g+b)x     dy J-B"

Thus the proof of the theorem will be complete upon showing that F(x, y)

■ cos [73, (x, y) ] is summable on 43m and

(A)    f      dxf        dF^X,y)dy= C  F(x, y) cos [B, (x, y)]dL.
J «7 (g+b)x     dy J "B™

Toward proving (A), let x0 be a point of (43m)x. Then each of the m

points of 73 on x = x0 belongs to either Bi or 73n. If there are points of 73i on

t Göttinger Nachrichten, 1914, p. 425.
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x = x0, there are an even number of such points; the lowest belonging to Blv

the highest to Bw With (x0, 61), (x0, 62), • • • , (x0) b2n) the points of Bi in

order of increasing ordinates, the set (G+B)x0 consists of the non-abutting

intervals b2i-i^y^b2i, i = 1, 2, • • • , n, and a finite number of points of Bu.

Thus

r        dF(x0,y)          "   Chi< dF(x0, y) ^
(1) -"-dy = X -"--dy = £ (- l)«F(x0, W,

J (G+B)x0       oy t-1 J bu-l        °y i-l

except perhaps for a set of measure zero made up of the values of x0 where

the integral on the left fails to exist and those values of xQ for which F(x0, y)

is not absolutely continuous. The second equality follows from the fact that

an absolutely continuous function is reproduced by the integral of its deriva-

tive.t

We recall that the set Br consists of all points p of B such that exactly

r — 1 points of B lie below p on the same perpendicular to the x-axis. With

(xo, y) the point of Br on the line x = x0, define

Mxo) (r = 1, 2, • • • , m)

as —F(xo, y), F(x0, y) or zero according as (x0, y) belongs to Bilt Bu, or Bu.

Then since (x0, o<) belongs to BXl if i is odd or to 2?i, if i is even,

m 2n

Z/r(xo) - Z(- im*o, h).
T—l 1

Consequently, from (1), zZ?=i fr(.x) is summable on {Bm)x and

/C dF(x, y) r *dx -—JLdy= Zfr(x)dx.
<.-Vm)x      J (Q+B)x      dy J fB»)x r=1

Since F(x, y) is summable on B and 73r has at most one point on any line

perpendicular to the x-axis, while all three sets 7^ — BifB™, 43°°, and Br are

linearly measurable, it follows from Theorem 5 and the definition of

cos [73, (x, y) ] at points of 73i, that

f fr(x)dx = f - F(x, y)C[B, (x, y)]dL

= f        F(x, y) cos [B, (x, y)]dL.
Je '

In like manner

f fr(x)dx = f        F(x, y) cos [75, (x, y)]<*£.
»/ {B\^BmBr)z J Bi{BmBr

f Hobson, i?eaZ Variables, p. 553.
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But/r(x) =0 at each point of (73n73r)x and cos [73, (x, y)] =0 at each point

of 511-7311«-», so

/fT{x)dx = I F(x, y) cos [B, (x, y)]dL = 0.

Consequently, from the last three equations, by addition,

fr(x)dx = I       F{x, y) cos [B, (x, y)]dL.
•7 CBm)x J'BmBr

Now, since fr(x) is summable on ißm)x, we have

Jim m /»
zZMx)dx= 2~2   I fr(x)dx.

CB-Jz    r=l r-1 •/ fB"")z

But from the last two equations and (2)

f      dx f        dF(X' y) dy = f) f     F{x, y) cos [73, (x, y)]dL
J nm)x J (Q+B)z        dy r-l^w

= I    F(x, y) cos [5, (x, y)]dL,

which is equation (A). The proof is thus complete.

In Theorem 6 the only condition on the boundary B of G is that it be

normal and have Z,73 finite, while there is no condition on G except that it

be bounded. The boundedness of G and the finiteness of L73 are inherent in

the problem, whereas the normality of 73 is a less natural restriction intro-

duced to fit the method of attack. That, however, the normality condition

is not a very drastic restriction is shown by the fact that the boundary of

every simply connected region is normal if this boundary has Caratheodory

linear measure finite. Furthermore, it follows that a much larger class of sets

G have normal boundaries. For let G be a set whose boundary B is contained

in the union B' of the boundaries 73i, 732, • • • , Bn of a finite number of simply

connected regions, where each B( has Caratheodory linear measure finite.

Then B' is normal (lemma §10) since 77(73', 6) ̂  1/2 at each point b of B'.

Consequently, B is normal (Theorem 4) since it is a linearly measurable sub-

set of 73'. The usual crosscut scheme is included in this extension.
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