
EXISTENCE THEOREMS FOR DOUBLE INTEGRAL
PROBLEMS OF THE CALCULUS OF VARIATIONS, t

BY

E. J. McSHANE

For single-integral problems of the calculus of variations there are in the

literature a number of existence theorems of considerable generality. Re-

cently Tonelli has established several existence theorems for double integral

problems of the form fff(x, y, z, zx, zy)dxdy = mm. But to the best of my

knowledge, except for the several discussions of the problem of Plateau the

literature contains no proof of any existence theorem for double-integral

problems in parametric form, that is, for problems of the form F(S)

= fff(x,y,z, X, Y,Z)dudv = min, where the equations x = x{u, v), y = y(u, v),

z = z(u, v) represent a surface and X, F, Z are the three jacobians of {x, y, z)

with respect to (u, v).

The present paper gives the proof of two such theorems, in each of which

the integrand function is permitted to be a function of (X, Y, Z) of quite

general type, but is required to be independent of the coordinates (x, y, z).

The theorems are based on a semi-continuity proof and a convergence theo-

rem. The semi-continuity of quasi-regular functionals F(S) I have already

established under conditions of adequate generality. Here I develop the con-

vergence theorem needed. The methods are extensions of those previously

used in connection with the problem of Plateau.|

1. Preliminary remarks. The word surface will always be used to mean a

continuous surface of the type of the circle, represented by three equations

x = x(u, v), y = y(u, v), z = z(u, v), where (u, v) ranges over the interior and

boundary of a Jordan region B (i.e., a region bounded by a simple closed

curve). In case the six partial derivatives xu, xv, etc., all exist and are finite,

we denote the three jacobians of x, y, z with respect to u, v by the symbols

X, Y, Z :

X =
y«

Zu

Zv

Y =
St? %v

z =
yv

Let us suppose that f(X, F, Z) is a function positively homogeneous of

degree 1 in (X, Y, Z) and continuous together with its first partial derivatives

for all (X, Y, Z) ̂  (0,0,0). For all arguments (X, F, Z) such that X2 + Y2+Z2

t Presented to the Society, October 28, 1933; received by the editors July 28, 1934.

t E. J. McShane, Parametrizations of saddle surfaces, etc., these Transactions, vol. 35 (1933),

pp. 716-733. This paper will henceforth be cited as S.S.
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= 1 the function/ is bounded, say |/| ^M; hence by homogeneity the in-

equality

holds for all X, Y, Z. Consequently, if x = x(u, v), y = y(u, v), z = z(u, v), (u, v)

on B, is a representation of a surface such that the six partial derivatives xu,

etc., are defined almost everywhere in B, and the jacobians X, Y, Z are sum-

mable over the set on which they are defined, it follows that the integral

As in the case of single integrals, the mere existence of this integral is

inadequate for our purposes.! In the study of the parametric problem (single

integrals) we restrict ourselves to representations x = x(t), etc., in which the

functions x(t), • ■ ■ are absolutely continuous. Lacking an adequate gen-

eralization of the notion of absolute continuity to the pairs of functions of

two variables, we say that a surface S with finite Lebesgue area L(S) is an

admissible surface (for the integrand /(A, Y, Z)) if S has representation

x = x(u, v), y = y(u, v), z = z(u, v), (u, v) on B, for which the jacobians A, Y, Z

are defined almost everywhere in B and for which the following approxima-

tion property holds: there exists a sequence {7r„} of polyhedra 7r„: x = xn(u, v),

y = yn(u, v), z = zn(u, v), (u, v) on B„, such that lim wn = S, lim L (trn)<°o,

and lim //s„/(A„, Yn, Zn)dudv=JJBf(X, Y, Z)dudv. The representation

x = x(u, v), etc., is then called an admissible representation of the surface S.

If for the corresponding single-integral problem we write the analo-

gous definition of admissible curves, we find that for every integral

ff(x, y, z, x', y', z')dt the class of admissible curves is the same as the class

of rectifiable curves; and if in addition the integral is positive definite (i.e.,

/>0 whenever (x', y', z') ^ (0,0,0)) and positive quasi-regular, the admissible

representations are the same as the absolutely continuous representations.

For double integrals no such simple characterization is at present known.

But it can be stated that for every integrand/(A, F, Z) with the continuity

and homogeneity properties above described the class of admissible surfaces

f The integrand may be undefined on a set of measure 0. Here and henceforth we agree that if a

function d>(u) is defined at all points of a set E except those of a set N of measure 0 and is summable

on E—N, the symbol /B<P(u)du shall mean the integral JE-N<t>{u)du.

% As has been shown by M. Lavrentieff, Sur quelques probUmes du calcul des variations, Annali

di Matematica, (4), vol. 4 (1927), p. 7.

f{X, Y,Z)\g M[X2+ Yt + Z*]1'2 ^Af(|x|+|F|+|z|)

exists.!
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includes the class of surfaces of "typet C," which in turn includes the class

of all continuous surfaces having representations x = x(u, v), y = y(u, v),

z = z(u, v), (u, v) on B, which satisfy the conditions

(1.1a) for almost all numbers K, the functions x(u, v), y(u, v), z{u, v) are ab-

solutely continuous functions of u on every segment of the line v = K lying

interior to B, and are absolutely continuous functions of v on every segment

of the line u = K lying interior to B;

(1.1b) the six partial derivatives zv (which by (1.1a) exist

almost everywhere in 73) are summable together with their squares over the

region B.

For surfaces of type C typically represented (in particular, for representa-

tions satisfying conditions (1.1)) we already know| that the value of the in-

tegral is independent of the particular representation and is thus a func-

tional of the surface alone. We then have the right to denote the integral by

the symbol F(S),

But for admissible surfaces not of type C it is not known that this invariance

property holds; hence for general admissible surfaces we shall always write

the integral in full, avoiding the (possibly multiple-valued) symbol F(S).

We define the Weierstrass £-function as usual:

£(X, F, Z, X, 7, Z) = f(X, 7, Z) - Xfx{X, Y, Z)

- 7fY(X, Y, Z) - Zfz(X, Y, Z);

and as usual we call F(S) positive quasi-regular if £(X, F, Z, X, 7, Z) ^0

for all (X, 7, Z) and all (X, Y, Z) ^ (0, 0, 0), and we call it positive definite

if f(X, Y, Z) >0 for all (X, Y, Z)^(0, 0, 0).
We shall say that a surface 5 is of type L2 if it possesses a representation

(1.4) x = x{u, v), y = y(u, v), z = z(u, v), u2 + v2 i£ 1,

in which the functions x(u, v), etc., satisfy conditions (1); the representation

(1.4) we shall correspondingly call a typical representation. It is known§ that

if a surface 5 has a representation

f Defined and studied in Integrals over surfaces in parametric form, Annals of Mathematics, vol.

34 (1933), p. 815; cf. also C B. Morrey, A class of representations of manifolds, American Journal of

Mathematics, vol. 55 (1933), p. 701.

% E. J. McShane, loc. cit. in the preceding footnote.

§ E. J. McShane, On the minimizing property of the harmonic function, Bulletin of the American

Mathematical Society, vol. 40 (1934), p. 593.

Ü. 2)
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x = x(u, v), y = y(u, v), z = z(u, v), (u, v) on B,

which satisfies conditions (1.1), it is necessarily of type L2; but we shall not

make use of this.

2. A transformation of the integrand. By change of coordinates we can

bring the integrands under consideration into a special form, useful for later

proofs.

Lemma 2.1. Let the inequality

(2.1) /(A, Y,Z) + /(- X, - Y, -Z) > 0

hold for all (A, Y, Z) ?± (0, 0, 0). There exists a linear transformation

X = AiX' + BiY' + CiZ',

(2.2) Y = A 2X' + B2Y' + C2Z',

Z = A3X' + B3Y' + CzZ',

of determinant 1, such that the function

(2.3) 0(A', Y',Z') =/(A, Y,Z)

satisfies the conditions

<ML0, 0) = <j>Y,{- 1,0, 0),

<ML0, 0) = <m- lo, 0),

<M0, i,o) = <mo, - 1,0),

0x<(o, 1,0) =d>x,(0, - 1,0).

Let us define

(2.5) g(X)Y,Z)^f(X,Y,Z)+f(-X, -Y,-Z).

The function g obviously has the same differentiability and homogeneity

properties as/, and the surface 5 in AFZ-space defined by the equation

(2.6) g(X, F,Z) = 1

is symmetrical with respect to the origin. (By (2.1) the surface exists, and

in the direction of the unit vector Xu, Yu, Zu has the distance from the origin

r = [g(Xu, Yu, Zu) ]_1.) Moreover, from the homogeneity relation

Xgx + Ygy + Zgz = g = 1

we see that the three derivatives cannot vanish simultaneously, so that the

surface S is continuously differentiable.

On S there is a point at maximum distance from the origin. By a rotation

of axes we bring this point to the A-axis. Then for F = Z = 0 the tangent

plane to S is parallel to the FZ-plane. We now introduce polar coordinates,
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r, 0, <p so that X = r sin 0, Y = r cos 0 cos 6, Z = r cos 0 sin 6. The surface 5

can then be represented in the form

r = f(ß, 0),

where r(ir+6, —0) =r(6, </>). Since this implies

and this derivative is continuous, there exists a point, with arguments (0O, 0),

at which dr/d<j> vanishes. By rotation about the X-axis we bring this point

to the F-axis, so that dr/dcp vanishes for 9 =0 = 0 (that is, for X = Z = 0). The

tangent plane at 6=0 = 0 is then parallel to the X-axis, but not necessarily

to the Z-axis. Let h be the line through the origin parallel to the intersection

of that tangent plane with the FZ-plane. By an affine transformation T of

the form X = X, Y =Y+KZ, Z = Z, we bring h to the Z-axis, leaving the X

and F axes unchanged. After this transformation the tangent plane at

X = Z = 0 is parallel to the XZ-plane; the tangent plane at F = Z = 0 and the

FZ-plane are unchanged, hence remain parallel.

The two rotations and the affine transformation T can be combined into

a single linear transformation of the form (2.2). In terms of the new coordi-

nates, the surface 5 has the equation

where 0 is defined by equation (2.3). The normal to S has the direction num-

bers (dropping primes)

But for F = Z = 0 the normal has direction cosines ( + 3, 0, 0), so that the last

two of the numbers (2.7) are 0 for F = Z = 0 whether the positive or negative

value of X be chosen. Recalling that 0y and 0z are positively homogeneous

of degree 0, this yields the first pair of equations (2.4). For X = Z = 0 the nor-

mal has direction cosines (0, +1,0); this likewise yields the second pair of

equations (2.4).

Let us suppose that we are given an integrand/(X, F, Z) satisfying in-

equality (2.1), and let the matrix

0(X', Y',Z') + 0(- A', - Y', -Z') = \

(2.7)

0x(X, Y,Z) -M- X, — F, — Z),

0r(A, F,Z) - 0r(- X, — Y, — Z),

d>z(X, Y,Z) - 4>z{- X, — Y, — Z).
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be the reciprocal of the matrix of the transformation (2.2). We find readily

that for every surface

5: x = x(u, v), y = y(u, v), z = z(u, v), (u, v) on B,

for which/(X, Y, Z) is summable the transformation

x = a\x' + biy' + Ciz',

(2.8) y = a2x' + b2y' + c2z',

z = a3x' + b3y' + c3z'

induces transformation (2.7) on the jacobians X, Y, Z, and

(2.9) Jj 4>(X', Y',Z')dudv = jj f(X,Y,Z)dudv.

The surfaces admissible for / transform into surfaces admissible for <p; like-

wise the class of surfaces of type C transforms into itself and the class of

surfaces of type L2 also transforms into itself. Hence if we are given a Jordan

curve T, transformed by (2.8) into a curve r' of x'y'z'-space, the problem of

finding a minimizing surface for fff(X, Y, Z)dudv in the class of all surfaces

bounded by Y and belonging to any one of the three analytic classes just

mentioned is equivalent to the problem of finding a minimizing surface for

//4>(X', Y', Z')dudv in the class of all surfaces bounded by Y' and belonging

to the corresponding analytic class. In other words, there is no loss of gen-

erality in assuming to begin with that/(X, F, Z) satisfies the equations

7V(i,o, 0) =yy(- 1,0, o),

/*(1,0,0) =/z(- 1,0,0),

fz(0, 1,0) =/z(0, - 1,0),

fx(0, 1,0) =/x(0, -1,0).

3. First existence theorem for positive definite integrals. In this section

we shall consider integrands/(X, F, Z) which satisfy the condition

(3.1) f(X, F, Z) > 0 for (X, Y, Z) j* (0, 0, 0).

Given a Jordan curve Y, it is clear that the greatest lower bound i of

fff(X, Y, Z)dudv for all admissible surfaces bounded by T is non-negative.

Another lower bound associated with Y we define in the following way:

Let Sn: x = xn(u, v), etc., » = 1, 2, • • • , be a sequence of admissible sur-

faces whose boundaries tend to T, and let m({Sn}) be the lower limit of

///(Xn, F„, Zn)dudv. We define m to be the greatest lower bound of the num-

bers m ({Sn}) for all such sequences {Sn} ■ Clearly
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(3.2) m ^ i,

for we can construct a sequence {Sn} of admissible surfaces bounded by T

for which the integrals tend to i, and m is not greater than the limit of the in-

tegrals over the surfaces S„.

We now proceed to the proof of

Theorem 3.1. Let the integral

(3.3) jj f(X, Y,Z)dudv

be positive definite and positive quasi-regular, and let the curve

T: x = x(t), y = y(t), z = z(t)

be a Jordan curve in xyz-space, bounding at least one admissible surface.] Then

there exists a triple of functions x(u, v), y(u, v), z(u, v), defined for u2+v2f*l,

with the following properties:

(1) the surface

(3.4) S:   x = x(u, v), y = y{u, v), z — z{u, v), u2 + v2 ^ 1,

is bounded by the curve V; that is, the equations x = x(cos 9, sin 9), y = y(cos 9,

sin 9), z = z(cos 9, sin 9), 0^9^2w, form a representation% of the curve T;

(2) the functions x(u, v), y(u, v), z(u, v) satisfy conditions (1.1);

(3) the surface (3.4) minimizes the integral (3.3) in the class of all admissible

surfaces bounded by T, and in fact

(3.5) F(S) = i = m.

In accordance with the remark at the end of §2, there is no loss of general-

ity in assuming that equations (2.10) are satisfied. By the homogeneity of/

we have

(3.6) MO, 0, 1) = f(0, 0, 1), /z(0, 0, - 1) = - /(0, 0,-1).

By hypothesis inequality (3.1) is valid; and from (3.6) and (3.1) we see that

there exist numbers a, b such that

afz(0, 0, 1) + MO, 0, 1) = afz{0, 0, - 1) + fx(0, 0, - 1),

bfz(0, 0, 1) + M0, 0, 1) = bfz(0, 0, - 1) + MO, 0,-1).

t From the results of S.S. (Lemma 3 and Theorem I) this is equivalent to requiring that r

bound at least one surface of finite area.

t But in this representation it is possible that two distinct points (cos $i, sin $,) and (cos 02,

sin 62) might yield the same point (x, y, z).
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We define the number k by the relation

(3.8) * = 2(1 + a2 + b2).

Let us now select a sequence of admissible surfaces

Sn: x = xn*(u, v), y = y*{u, v), z = zn*(u, v), (u, v) on B„,

bounded by curves T* such that r„*—>r and such that

(3.9) lim   ff f(X*,Y*,Z*)dudv = m.

Since the 5„ are admissible surfaces, we can for each S„ find a polyhedron 7r„,

which we assume to have non-degenerate triangles for faces, such that

(3.10) dist (i„ Sn) < 1/2"

and

(3.11)
1

< —
2"

F(jn) - f f f(X*, Y*, Z*)dudv

From (3.10) and the relation rn*—>r we see that the boundary curves Yn of

the polyhedra tt„ satisfy

(3.12) rB-+r;

and from (3.11) and (3.9) we see that

(3.13) F(Tn)-*m.

It is knownf that every polyhedron it with non-degenerate faces admits

of a parametric representation of the following kind.

(a) The functions representing it are defined in the unit circle; that is, ir is

represented by equations

(3.14) x = x{u, v), y = y(u, v), z = z(u, v), u2 + v2 ^ 1.

(b) The unit circle is subdivided by arcs into a finite number of curvilinear

triangles 5i, • • • , 8k and equations (3.14) carry each triangle into a recti-

linear triangle in xyz-space.

(c) The triangles 5,- are bounded by arcs which are analytic, including end

points.

(d) Interior to each triangle 5,- the functions x(u, v), y(u, v), z(u, v) are

analytic and satisfy the relations

t See, e.g., Carath6odory, Conformal Representation (No. 28 of the Cambridge Tracts in Mathe-

matics and Physics), chapter VII.
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(3.15) E = G,     F = 0.

(e) Three arbitrarily given distinct points Au At, A3 on the boundary

curve of ir correspond to three arbitrarily given distinct points A*, A*, At

on the unit circle u2+v2 = 1.

Accordingly, we choose on the curve T three distinct points A1} A2, A3,

and on each Tn we choose three distinct points Ai<-n), A2<-n), A3<-n) such that

lim A^ = Ai (< = 1, 2, 3).
n oo

On the circumference of the unit circle u2+v2 j£ 1 (which circle we shall hence-

forth denote by K) we choose three distinct points A*, A*, A*, and we repre-

sent each polyhedron irn by equations

(3.16) tt„:   x = xn(u, v), y = y»(«, v), z = zju, v), u2 + v2 ^ 1,

such that conditions (a), (b), (c), (d) are satisfied and the points Ai(n), A2W,

A3W correspond to A*, A*, A* respectively.

Let fi>0 be the lower bound of /(A, F, Z) on the bounded closed set

A2+F2+Z2 = 1; then for all A, F, Z we have

(3.17) /(A, F, Z) ^ m[A2 + F!+ Z2]1'2.

We may assume without loss of generality that F(7r„) <m+l for all w; whence

+ 1 > ff /(A„, F„, Z»)d«Ä ̂ JJM[A„2 + F„2 + Z„2 ]l'2dudv

= nj j [EnGn - F2Y'2dudv = ~-J j (En+Gn)dudv,

so that

(3.18) Jj(En+ Gn)dudv ^ H,      H = 2(m + l)//x.

On the functions (3.16) we now operate to reduce their mono tonic defi-

ciency.! We choose a cube d^x^d-\-h, d^y^d+h, d^z^d + h large enough

to include the whole curve T and all the curves Tn in its interior (as is possi-

ble, since r„—>r). The set of points (u, v) such that zn(u, v) >d is an open set,

except that it may contain limit points on the circumference of the unit circle

K, and it consists of a finite number of maximal connected subsets. We reject

those subsets which have points in common with the circumference of K, and

name the rest 7?i, • ■ • , Rp. We proceed similarly with the set z„(u, v) <d;

t S.S., p. 717.

m
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the maximal connected portions of this set which have no point in common

with the circumference of the unit circle we call Rp+i, RP+2, ■   ■ , Rq.

On each 7?,- we define the functions £(1,(w, v), v(-1)(u> v)> ta)(u> v) by the

relations

(3.19) f« = *» +       - d), vw = y» + 6(a» - d), f<» = *J

on the remainder K —^R* of the unit circle we set

(3.20) {<« - *W"m y%f .

The functions clearly retain properties (a), (b), (c), (e), and the

surface

(3.21) 2«:   x = |<«(#, v), y = f«*(fc, p), z = f«>(«, »)

is bounded by Tn. Moreover, if we denote the jacobians of f(1) by

E(1>, H«1', Z« we find

(3.22) S(1) = 0, H<» = 0, Z<» = Z„ - aZ„ - iFBJ («, v) on X) 7?»,

so that

(3.23)

[f(Xn, Yn,Zn) - /£»«>, H<» Z<»)]d«<fo

f f   [6(0, 0, Z<« Zn, 7m, Zn) - F„/y(0, 0, Z<«)

- (aZn + 2>F„)/z(0, 0, Z<»)]d«d»7

^ - Uff {X.r/z(0,0JZ«)) + a/,(0,0,Z(»)]

+ F„[/V(0, 0, Z<») + 6/z(0, 0, Z<l>)]}<*«<fo.

Since the derivatives /x, etc., are positively homogeneous of degree 0 in

(X, F, Z), it follows from (3.7) that for all Z"V0 the equations

(3 24) M°' °' ZU>) + a/z(°' °' Z(1>) = M°' °' ^ = a/z(°' °' 1} = Ch

fr(0, 0, Z<*>) 4- Ä/z(0, 0, Z<») = /x(0, 0, 1) 4- a/z(0, 0, 1) = c2

hold. If Z(1) = 0 we assign fx the value/x(0, 0, 1), and likewise for/V and/z;

(3.23) continues to hold, and also the equations (3.24). But for each of the

regions 7c t- we have

(3.25) J J Xndudv = J ynzjds,
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the single integral being taken around the boundary of 7?,-. On the boundary

of Ri we have zn = d, by the definition of 7c\; hence z„' =0, and

(3.26) ff X*ßudv = 0.
Ri

From this and (3.23) follows

(3.27) F(S<») ^F(ttb).

To the surface 2(1),in its representation (3.21), we apply a similar proc-

ess, the number d being replaced by d+h/n in defining the sets 7?,- and in

equations (3.19). We thus obtain a surface

(3.28) 2<2>:   x = £<2)(m, v), y = !»<«(«, »), z = f(2)(M, *)•

As before, the functions £(2), ?7(2>, <T(2) continue to satisfy conditions (a), (b),

(c), (e), and also

(3.29) F(2<2>) ^ F(2<1>) ^ F(tt„),

where 2<2) is the surface x = £(2)(«, i0, • • •, (u, v) on A. We repeat the process

with d+2h/n in place of d+l/n, obtaining the functions £<3), t;<3), f(3), and

continue «+l times, using the numbers d+ih/n (i = 3, 4, • • • , w) succes-

sively to obtain functions £(n+1), i;(n+1), f(n+1). We re-name these functions,

calling them £„, ij„, z„ respectively. They satisfy conditions (a), (b), (c), (e),

and also

(3.30) F(2n)^F(xn),

where 2„ is the surface x = \n{u, v), etc.

The set X-^< is an open set, and its boundary, which consists of a finite

number of analytic arcs, is of measure zero. Hence, neglecting a set of meas-

ure 0, we have for (w, v) in K —2~^Ri the equality

En    Enj Gn    Gji .

At each point of 2~2R* the functions £„, etc., are defined by equations (3.19)

or their analogues, so that by the use of elementary inequalities we find that

En ^  kEn,  Gn ^ kGn,

where k is defined in (3.8). Hence, recalling inequality (3.18),

//.*
(3.31) (£„ + Gn)dudv g kH

We readily see that the function z„ has a monotonic deficiency not greater

than h/n.
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To the functions j?„ of equations (3.3) we now apply a similar process.

The points (u, v) such that rjn(u, v)>d fall into a finite number of maximal

connected sets; we reject those which have points in common with the cir-

cumference of K, and name the others Ri, R2, • • ■ , RP. We treat the points

(w, v) for which rjn(u, v) <d similarly, obtaining sets RP+i, • • • , Rq. We now

define

va) = d, (u, v) on X/v,-,

vw = Vn, {u, v) on if — X -K<-

The surface

(3.32) 2<l>:   x = £„(«, v), y = vw(u, v), z = z„(w, d), (w, j;) on K,

is easily seen to satisfy the inequality

(3.33) J j (E^ + G^)dudv ^ f J (En + Gn)dudv,

where the functions       C7(1) correspond to 2(1) and £„, G„ to 2„; for

En - 2<»

has the value 0 on X— ]>^< and the value (dfjn/du)2 on X-^«- Moreover, an

argument similar to the above proves that

FfS<») |f(S.) gP(7r„);

we need only to permute X, Y, Z cyclically and set a = b = 0 in (3.23), recalling

equations (2.10).

Applying the same process to the sets A,- on which rjw >d+h/n or

rjm <d+h/n gives jjc2); and continuing the process we obtain successively

ij(3), • • • , t?("+1). The function ^"-i-1' we re-name yn. Each alteration reduces

(or leaves unchanged) the value of fffdudv and of ff(E+G)dudv, and leaves

z„(«, v) and £„(«, f) unaltered.

Finally, we apply to the function £„(«, v) the same process as we have

just applied to rjn(u, v), arriving at a function xn(u, v). We define the surface

S„ by the equations

(3.34) S„:   x = *„(«, d), y = yn(u, v), z = z„(m, d), (m, ») on A.

The following relations then hold:

(3.35) F(Sn) ^ F(*n),

(3.36) (£„ + Gn)dudv ^ k2H.
K
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Moreover, the functions xn(u, v), etc., have mono tonic deficiency not greater

than h/n, and they satisfy conditions (a), (b), (c), and hence satisfy condi-

tions (1.1). Since the functional values on the boundary have been left un-

altered, it remains true that the points A(M of TB correspond under (3.34)

to the points A * of the circumference of K.

The hypotheses of Lemma 2 of S.S. are satisfied by the surfaces (3.34).

Hence there exists a representation

x = x(d), y = y(0), z = z(0), 0 ^ 0 ^ 2ir,

of the curve T and a subsequence {Sa} of the {Sn}, the subscript a ranging

over a subset of the positive integers, such thatf

(3.37) lim xtt(6) = x(0), lim y„(0) = y(0), lim s„(0) = z(0)

uniformly in 0.

Now by Lemma 1 of S.S. we can select a subsequence {S$} of the se-

quence {Sa} such that the functions x$ converge uniformly over the whole

circle K to a limit function x(u, v). From the sequence {S$} we can select a

subsequence {Sy} such that yy(u, v) converges uniformly on K to a limit func-

tion yiu, v). Finally, we can select a subsequence {Ss} of the sequence {Sy}

such that zs converges uniformly on K to a limit function z(u, v). Moreover,

by Lemma 1 of S.S. these limit functions are monotonic and the surface

(3.38) S:   x = x(u, v), y = yiu, v), z = z{u, v), u2 -f- v2 ^ 1,

satisfies conditions (1.1). From (3.37) we see that S is bounded by T; hence

(3.39) F(S) ^ i.

By hypothesis the integral 7^(5) is positive quasi-regular and positive defi-

nite; and we have just seen that the surfaces 5„, 51 all satisfy conditions (1.1),

and by (3.36) their areas are uniformly bounded. Under these conditions it

is knownj that 7^(5) is lower semi-continuous, so that

(3.40) F(S) $ lim inf F(S„).

This, in conjunction with inequality (3.35) and equation (3.13), implies

(3.41) F(S) SmS i.

Comparing inequalities (3.39) and (3.41) we find

F(S) = i = m,

and the theorem is proved.

f We here use xa(d) to denote xa(cos 9, sin t?), etc.

I E. J. McShane, Integrals over surfaces in parametric form. Annals of Mathematics, vol. 34

(1933); in particular, Theorem III.
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4. Second existence theorem: non-definite integrals. If we restrict our at-

tention to rectifiable curves T and admit only comparison surfaces of type|

L2, the hypothesis that F(S) is positive definite can be omitted, and we have

Theorem 4.1. Let the integral

(4.1) F(S) - ff f(X,Y,Z)dudv

be positive quasi-regular, and let T be a rectifiable Jordan curve in xyz-space.

Then in the class of all surfaces of type L2 bounded% by Y there exists a surface

S which minimizes F(S).

We first show that for any constants a, b, c the integral

(4.2) jj (aX + bY + cZ)dudv

has the same value for all surfaces

x = x(u, v), y = y(u, v), z = z(u, v), (u, v) on K,

bounded by Y and such that the functions x(u, v), etc., satisfy conditions

(1.1). (As before, K is the unit circle.) Since the Dirichlet integrals of x, y

and z are finite over K, the same is true of the harmonic functions £, f

having the same boundary values as x, y, z respectively. Reflecting these

functions in the unit circumference yields harmonic functions £, r), f, defined

outside of K, having finite Dirichlet integrals over the region u2+v2^\.

Hence if we set x(u, v)=x(u, v) for u2+v2^l and x(u, v)=\(u, v) for

1<m2+d2^2, and define y, z analogously, the functions *, y, z satisfy con-

ditions (1.1) over the whole circle u2+v2^2 and coincide with x, y, z respec-

tively for u2+v2 ^ 1.

We can now apply the proof of Lemma 4 of the last-cited paper, with the

trivial change that the integrals fyz'dt, etc., are replaced by Lebesgue-

Stieltjes integrals fydz, etc.; we thus find that

J J Xdudv = Jydz, J ̂  Ydudv = Jzdx, JJ Zdudv = Jxdy.

The single integrals are taken around T and are independent of the particu-

lar representation of Y, and the invariance of the integral (4.2) follows at

once.

t Defined at end of §1.

t Cf. footnote to Theorem 3.1.
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We treat separately the cases in which the £-function £(X, Y, Z, X, Y, ~Z)

is identically zero and that in which it is not identically zero. If it is identi-

cally zero, the integrand has the form

f(X, Y, Z) = aX + bY + cZ;

for

0 = (0, 0, 1, X, Y,Z) = f(X, Y,Z) - /(0, 0, 1)

- Z/x(0, 0, 1) - F/V(0, 0, 1) - (Z - 1)M0, 0, 1)

= f{X, Y, Z) - Xfx(0, 0, 1) - F/V(0, 0, 1) - Z/z(0, 0, 1).

Hence the integral F(S) has the same value for all surfaces under considera-

tion, and if we choose any surface 5 of type Li bounded by Y (the existence

of such surfaces being obvious), it serves as a minimizing surface for F(S).

If the <S-function is not identically zero, it is possible to find three con-

stants a, b, c such thatf

(4.3) <p(X, Y, Z) m f(X, Y, Z) + aX + bY + cZ > 0

for all (X, Y, Z) ?± (0, 0, 0). For all surfaces of the type under consideration

which are bounded by Y, the integrals F(S) and

$(£) = jj 4>(X, Y, Z)dudv

differ by a constant, hence a minimizing surface for $(5) is simultaneously

a minimizing surface for F{S). But because of inequality (4.3), Theorem 3.1

guarantees the existence of a minimizing surface of type L2 for <I>(5), and our

theorem is established.

t E. J. McShane, Remark concerning Mr. Graves' paper, etc., Monatshefte für Mathematik und

Physik, vol. 39 (1932), p. 105. The proof applies without change to the present case.

Princeton University,
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