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Introduction. In the quantum mechanics, an important role is played by

elements p and q, either infinite matrices or differential operators, which

satisfy a commutation rule of the form

(1) pq- qp = c,

where c is a scalar and is therefore commutative with both p and q. The im-

portance of this relation has inspired the development of a considerable num-

ber of commutation formulas for polynomials in p and q, with coefficients

in the complex number field.| However, for the most part, these formulas

make no use of the fact that c is a scalar, but merely that it is commutative

with both p and q. And although relation (1), with c a scalar, is impossible

for elements of a finite algebra, it was pointed out in a recent paperf that

there do exist pairs of finite matrices A, B such that AB—BA is not zero,

but is commutative with both A and B. Thus the various commutation

formulas for polynomials in p and q go over at once into corresponding ones

for polynomials in A and B. This suggests the problem of characterizing all

algebras, and more generally all rings, whose elements are polynomials in two

given elements £, r\ with coefficients in a suitable domain, it being assumed

that £?? —rç£ is commutative with both £ and -n. Such rings are of some mathe-

matical interest in that while they are not in general commutative, they are

quite closely related to commutative rings and are perhaps in certain respects

the most simple non-commutative rings. It is the primary purpose of the

present paper to consider rings of this type.

Let K denote a commutative ring with unit element e.§ We now adjoin to

K (ring adjunction) two elements £, 17 which are assumed to be commutative

with elements of K, and are such that the element f = £77 — rç£ is commutative

with both £ and 77. This ring will be denoted by 7C[£, r¡], and may be called a

quasi-commutative ring over K. Different quasi-commutative rings may be ob-

* Presented to the Society under the title On certain rings and differential ideals, September 5,

1934; received by the editors January 27, 1935.

t See, e.g., a previous paper, On commutation formulas in the algebra of quantum mechanics,

these Transactions, vol. 31 (1929), pp. 793-806.

X N. H. McCoy, On quasi-commutative matrices, these Transactions, vol. 36 (1934), pp. 327-340.

§ Unless otherwise stated, the notation and terminology will follow as closely as possible that of

van derWaerden, Moderne Algebra, Berlin, 1930 and 1931.
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tained by imposing additional conditions on £ and 77. But it is not obvious

what new conditions are self-consistent, as well as consistent with those al-

ready imposed. Our first problem is therefore the characterization of all quasi-

commutative rings over K.

In §1, we shall define a quasi-commutative ring R = K[a, ß], which has

the property that any quasi-commutative ring K [£, 77 ] is homeomorphic to R.

It follows that K[%, 77] is isomorphic to the quotient ring R/M, where M

is the two-sided ideal in R consisting of those elements of R which correspond

to the zero element of K[%, 77].* The problem of characterizing the different

rings K [£, 77] is thus reduced to that of characterizing in some simple way

the two-sided ideals in R. In order to do this, we introduce in §2 a commuta-

tive polynomial ring R' = K [x, y, z] whose elements can be put in a one-to-one

correspondence with the elements of R. The significance of the correspond-

ence between these rings is found to depend upon the notions of differential

ring and differential ideal.] Accordingly, we discuss these concepts in some

detail in §3, which is independent of the rest of the paper. In particular, we

show that one of E. Noether's decomposition theorems remains valid if all

ideals are required to be differential ideals.

The characterization of the two-sided ideals in R is obtained in §4. It is

found that a set M of elements of R is a two-sided ideal in R, if and only if

the corresponding set M' of elements of R' is a differential ideal of a certain

kind in R'. If follows that there is a very close connection between the quo-

tient rings R/M and R'/M'. Thus a number of properties of the quasi-com-

mutative ring R/M can be determined from a knowledge of the corresponding

properties of the commutative ring R'/M'.

In §5, we discuss briefly the special case in which K is a non-modular

field and K [£, 77 ] is a finite algebra over K.

It may be remarked that the relations

fc - i?i = r,     8- - « = 0,     it - ¡-v = 0

are precisely those which are satisfied by the infinitesimal transformations of

a three-parameter continuous group with structure constants 0, 0, 1; 0, 0, 0;

0, 0, 0. The problem discussed in this paper may therefore be considered as

that of determining the realizations of such three-parameter groups.

1. The ring R = K[a, ß]. Let K be a commutative ring with unit element

e, and if[£, 77] any quasi-commutative ring over K. If we set $ = & — v£, it

* See van der Waerden, op. cit., I, pp. 56-58, for a detailed proof for the case of commutative

rings. The necessary modification for the non-commutative case can be made without difficulty . The

term "quotient ring" is used throughout this paper for van der Waerden's "Restklassenring."

t See H. W. Raudenbush, Jr., Differential fields and ideals of differential forms, Annals of Mathe-

matics, vol. 34 (1933), pp. 509-517.
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follows as a direct consequence of the fact that f is commutative with both

£ and rj that

(2) ri"= £(- 1)'s!(*)(7)£B"

where m and w are any positive integers, the sum being extended to the

smaller of « and m. We shall not give a proof of this formula as it follows

readily by induction on m and «.* We remark that if h is any element of

7£ [£, v], it will be understood that A0 = e.

Each coefficient on the right of (2) is a positive or negative integer. Hence

if we multiply (2) by e, we see that each of the resulting coefficients belongs

to K. By a repeated use of formula (2), it is now clear that each element h

of K[£, rj] can be expressed in the form

(3) h = ]£ «MtfVr* (*,/, *-0, 1, •••),

where the coefficients ciik belong to K, and only a finite number are different

from zero. In general, the expression of h in this form need not be unique.

We now pass to a consideration of the most general quasi-commutative

ring over K, which may be defined in the following abstract way.f Let e¡¡k

ii, j, k = 0, I, • • ■ ) be undefined symbols, and denote by R the set of all

finite sums of the form

f = 2-1 aijkeijk,

where the ailk belong to K. If g =2~2°nkßiik, we snan write/=g if and only if

aijk = bijk ii,j, k = 0, I, • • ■). We now define:

/ + g = 2 (ank + biik)enk,

af = fa = 2~2 (aaiik)eijk,        am K.

It follows from the latter of these relations that e/=/e=/, for all elements

/of R. We now define a multiplication of the symbols eiik as follows:

(4) eijkeimn =  Z)«(— 1)'W       )(        Ki+ ¡— t,j+m— i,A-fn+¡.

This defines a multiplication of elements of R which, by a direct calculation,

can be shown to be associative. Hence R is a ring with unit element e = cooo-

If we set eioo = a, eoio = ß, e0oi = 7, it follows from (4) that aß — ßa =y, ay = ya,

(87 = 7/3, eijk=aiß'yk. Thus 7? is a quasi-commutative ring K[a, ß] over K,

* Born and Jordan, Zeitschrift für Physik, vol. 34 (1925), p. 873.

t This will be recognized as essentially the method used by Hamilton to define an algebra over

a given field. See L. E. Dickson, Algebras and their Arithmetics, Chicago, 1923, p. 22.
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and hence relation (2) holds with £, 77, £" replaced by a, ß, y respectively. It

is then easy to show also that relation (4) is a direct consequence of formula

(2). Thus by repeated use of (4) or (2) any element/of R can be expressed

uniquely as a finite sum

(5) / = E aiika'ß'yk,

with coefficients in K, and any such sum is an element of R.

If now K[i;, 77] is any given quasi-commutative ring over K, we shall de-

note by/* the element £oi/*£<ij*y*. Thus/* is a uniquely defined element of

K [£, 77 ] corresponding to the element f oí R given by (5). It is clear that

if±g)*=f*±g*. Let us consider (Jg)*. By repeated use of relation (2)

(with £, 77 replaced by a, ß respectively) fg may be expressed as an element

'52cijk<xiß'yk of R, and thus (Jg)*=YLC#*€Vi"*< But formula (2) as applied to

f*g* in precisely the same series of operations will also yield 2c<i*£Vf *.

Hence (Jg)* =f*g*, and thus the correspondence f—*f* is a homeomorphism

between R and K[£, 77]. We have therefore shown that any quasi-commuta-

tive ring over Ä" is homeomorphic to R, and the problem of determining the

various quasi-commutative rings over K is reduced to that of finding the rings

which are homeomorphic to R, and this in turn is equivalent to the determina-

tion of all two-sided ideals in R.

If /is the element (5) of R, we may define df/da to be the uniquely defined

element^2eiaijkai-iß'yk of R. It then follows by a simple application of rela-

tion (2) that

df

dß'

These are familiar formulas in the quantum mechanics.

Since the product of n consecutive integers is divisible by n\, we remark

that no matter what the characteristic of the ring K, il/nl) dnf/dan is an

clement of i? (« = 1, 2, • • ■ ).

2. The ring R' = K[x, y, z]. Let x, y, z denote ordinary commutative in-

determinates which are assumed to be also commutative with elements of K,

and denote by R' the ring K[x, y, z] consisting of all polynomials in x, y, z

with coefficients in K. Corresponding to the element (5) of R, we have the

element f =Zlaiikxiy'zk of R'. This clearly defines a one-to-one correspond-

ence between elements of R and those of R'. Henceforth we shall let/, /';

g, g'; • ■ • denote pairs of corresponding elements of R and R' respectively.

The following may now be verified:

fß-ßf-
(6)

af — fa —
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(f±g)'-f'±g',
iaf)' = af        (a in 70,

/<3"/Y      d"f

\da"/        dxn \dß"/       dy"

In order to find what element of R' corresponds to a product fg of ele-

ments of R, it is necessary to express fg in the form 2~2ciii,aiß>yk. We shall

now prove thatf

_ (- z)° d>f d'g'
(7) (fgy = E ^-~ -f- -¿-

s=o       s\       dy'  dx"

Since differentiation is a linear operation, it is sufficient to establish this

formula for the case in which/ and g are single terms of the form F = aiß'yk

and G = a'ßmy", respectively. We have from formula (2)

FG = a'iß'a')ß'"yk+" =  £ (-  l)"s\(J )(     ]«<+'-«/?'

and hence

(- z)s   d'F'   d'G'

.■i-,*+n+«

(FG)' = £
dv"     dx'

which is the desired result. It may be noted that formula (7) is essentially

a formula given by Bourlet for multiplying differentia] operators.!

We shall also require a formula which exhibits the element of R which

corresponds to a product fg' in R', namely

/ __   7s   d'f    d-i'Y
(8) /y - ( L ~ -¿- -i).

\ ,,=o   î!   dß*   da'I

Again considering the case f=F, g = G, this formula states that

X'+ly'+'"zl;+n

■£(:)^s<-»<r)('r)-.i+/— *— t \,;+ «i—*— t^k+n+»+ t

(l

This is easily verified, as the term on the right given by 5 = / = 0 is precisely the

left-hand side, while if p>0, the coefficient of xi+l~py'+'"~"z'-,"+p on the right

is

f Here, as elsewhere, the existence of j! in the denominator causes no difficulty, as (1/s!) d'f'/dy"

represents a uniquely defined element of R'.

X C. Bourlet, Annales de l'Ecole Normale Supérieure, (3), vo!. 14 (1897).
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(j - py.Q - p)\pi fo       \t

By means of these formulas we shall, in §4, find a characterization of all

two-sided ideals in R in terms of the sets of corresponding elements of R'.

But before proceeding to this, we pause to introduce some necessary con-

cepts of a somewhat different nature. This will be done in the following sec-

tion, which is independent of the rest of the paper.

3. Rings with operators. Differential rings and ideals. Let 5 be a com-

mutative ring,* and ti a set of operators A with the following properties:

(1) if s is an element of S, As is a uniquely defined element of S; (2) if 5 and /

are elements of S, then A(s+/) =As+At. For convenience, we shall refer to S

as an Q-ring. A set I of elements of 5 will be said to be an ü-ideal if I is an

ideal in S, and in addition I is closed under the operators A of fi.f

We remark that from the equation A (0+0) = A0+A0, it follows that

A0 = 0. Let now I be an S2-ideal in S, and denote by s and 5 corresponding

elements of 5 and of the quotient ring S/I respectively. We now define As

to be the element As of 5/7, and it follows readily that 5/7 is also an fi-ring.

Let T denote another fi-ring. The ring T will be said to be Q,-homeo-

morphic i^l-isomorphic) to 5, if T is homeomorphic (isomorphic) to 5 in the

usual sense, and in addition if s—->/ by this homeomorphism, then As—>A/ for

each A in Œ. The quotient ring 5/7 is clearly ß-homeomorphic to 5. It is now

not difficult to prove the following theorem:

Theorem 1. If the Q-ring T is Q,-homeomorphic to the Q-ring S, then T is

ti-isomorphic to the quotient ring S/I, where I is the Q-ideal in S consisting of

those elements of S which correspond to the zero element of T.

This will be recognized as a familiar result provided the symbol fí be

omitted from the statement of the theorem.% We note first that if s—>0 by

the given fi-homeomorphism, then As—>A0 0. Hence the set 7 of elements of

5 which corresponds to the zero element of T is actually an i2-ideal. Let now s

be any element of 5, s the corresponding element of 5/7, and / the element of

T corresponding to the element s of 5. Then, by the known case, it is clear

that the correspondence s—4 is an isomorphism of 5/7 and T and we only

need to show that this is also an ^-isomorphism. But by our hypothesis, At

* Some of the results of this section can be extended to the case of non-commutative rings. How-

ever, we shall simplify the discussion by considering only commutative rings, as these are the ones

which are important for our purpose.

f These conceits are essentially those used in the study of groups with operators. See van der

Waerden, op. cit., I, p. 132.

J van der Waerden, op. cit., I, p. 57.

-„.
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is the element of T corresponding to As, and by definition As is the element

of 5/7 corresponding to As of 5. Hence As—>A£, and the theorem is estab-

lished.

We shall henceforth assume that the ring 5 has a unit element e, and that

every ideal in 5 has a finite ideal basis. We shall also assume that each opera-

tor A of ß satisfies the further condition (3) : if Si, s2 are elements of 5, then

A(siS2) =SiAs2+s2Asi. The ring 5 may then be called a differential ring, and

an ß-ideal in 5 a differential ideal*

In a differential ring we have Ae = 0. For applying the condition (3) to

the case in which Si = s2 = t, we get Ae = 2Ae, that is, Ae = 0. We shall now prove

a few theorems concerning differential ideals in 5.

Theorem 2. An ideal 7= («i, a2, ■ ■ • , ak) in S is a differential ideal, if

and only if Aoí=0 (7)   (¿ = 1,2, • • • ,k).

It is clearly only necessary to establish the sufficiency of these conditions.

If a is any element of 7, then we may write

k

a = 23 biat,
i-l

where the ô» are elements of 5. Thus

k

Aa = X) ibiAai + atAbi).
i—l

Hence if all Aa¡=0  (7), it follows that Aa=0  (7), and 7 is a differential ideal.

If 7i and 72 are differential ideals in 5, their least common multiple

7ifl72= [7i, 72] is obviously a differential ideal in 5. By Theorem 2, it is

clear that their greatest common divisor (7i, 72) is also a differential ideal in 5.

Theorem 3. If I is a differential ideal in S and 7 = 7i n 72, where 7i and I2

are proper ideal divisors of I such that (7i, 72) = (e), then 7i and I2 are differential

ideals in S.

Under the hypotheses of the theorem, there exist elements ¿i, ¿2 of 5 such

that

ii + i2 = e, ¿i =- 0    (7i), i2 = 0    (72).

Let a be any element of Ix. Then a¿2=0 (7), and hence A(a¿2) =aAi2+i2Aa=0

(7), that is, ¿üAa^O (7j). But i2 = e (7i), and thus Aa = 0 (7i). In like

manner it can be shown that 72 is also closed under the operations of ß,

which proves the theorem.

* See H. W. Raudenbush, Jr., loc. cit.
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An ideal (differential ideal) 7 may be said to be direct indecomposable*

if it cannot be expressed in the form 7i n 72, where 7i and 72 are proper ideal

(differential ideal) divisors of 7 such that (7i, 72) = (e). The above theorem

then states that a differential ideal 7 is direct indecomposable if and only if

it is direct indecomposable when considered as an ordinary ideal.

Theorem 4. Each differential ideal I in S can be expressed uniquely as the

least common multiple or product of direct indecomposable differential ideals 7*<:

(9) 7 = [7i, 72, • • • , Ik] = Ixl2 ■ ■ ■ Ik,

where the I i are proper ideal divisors of I such that (7¿, I,) = (e), i^j.

Considered as an ordinary ideal, it is knownf that 7 has a unique decom-

position of the form stated, except that the I, are of course not required to

be differential ideals. We shall show that they are necessarily differential

ideals.

We have from (9), 7-7iil [72, h, ■ ■ ■ , Ik}. Since (h, 7,) = (e) (j = 2,

3, • • • , ¿),it followsj that (Iu [I2,I3, ■ ■ ■ ,Ik]) = («), and hence, by Theorem

3, 7i and [72, 73, ■ • • , 7*] are differential ideals. A repetition of this argument

proves the theorem.

If Si (i = 1,2, ■ ■ ■ , r) are differential ideajs in 5 such that each element of

S can be expressed uniquely as the sum of elements which belong respectively

to the Si, then S is said to be the direct sum of the differential ideals Si, and

we write

(10) S = Sx + S2+ ■ ■ ■ +Sr.

A differential ring which can be expressed as the direct sum of two or more

differential ideals may be said to be reducible, otherwise irreducible.

Suppose now that relation (10) is given. From the uniqueness of the ex-

pression of any element of 5 as a sum of elements of the S,, it follows that

Si and Si have no element in common except zero, and thus SiS, 0, Í9*j.

Considering now the unit element e of S, we have the following relations:

r

(11) é = E «.'. «< - 0  (Si), titi - 0 (» * j), e,2  = e, jt 0.
t-1

It follows readily that Si consists of all elements of the form sei, where s is

an element of S, and thus e, is the unit element of St.

* This is in agreement with the terminology used by O. Ore in his paper, Abstract ideal theory,

Bulletin of the American Mathematical Society, vol. 39 (1933), pp. 728-745.

f E. Noether, Idealtheorie in Ringbereichen, Mathematische Annalen, vol. 83 (1921), pp. 24-66;

van der Waerden, op. cit., II, p. 46.

X van der Waerden, op. cit., II, p. 45.
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Let us now assume that relations (11) are given, and deduce from them

the decomposition (10). Let 5, be the set of all elements of 5 of the form se„

where s is any element of 5. Then clearly 5,- is an ideal in 5 and e, is the

unit element of 5¿. If s is any element of 5, we have

s = st = sei + se2 + ■ ■ ■ + ser.

Thus any element of 5 can be expressed as the sum of elements belonging re-

spectively to Si (¿=1,2, ■ • • , r). Furthermore, this expression is unique, for

if 2Za¿í > = 0, it follows by multiplication with e, that a,-€,- = 0 (y = 1, 2, ■ ■ ■ ,r).

We shall now show that 5, is a differential ideal. Since Ae¡ = Ae,2 = 2í¡Aí,,

it follows that Ad=0  (5¡). Also from (11) we find

Ae = 0 = Aei + Aé2 + • ■ ■ + Aer,

and thus Ae¿ = 0 (¿ = 1, 2, ■ • • , r). If s, is any element of 5¿, we have there-

fore Asi = A(si6j) = e¿Asj = 0 (5,). Hence 5¡ is a differential ideal and 5 is the

direct sum of the 5,-   (¿= 1, 2, • ■ • , r).

We have therefore shown by a familiar kind of calculation, that a decom-

position (10) has relations (11) as a consequence, and conversely. In view of

Theorem 3, it is not surprising to find that if a differential ring can be ex-

pressed as the direct sum of ordinary ideals, these ideals are of necessity dif-

ferential ideals. We may remark here that if s is any element of 5, the corre-

spondence s—>S€j is an ß-homeomorphism between 5 and S{.

We conclude this section with the following theorem:

Theorem 5. If I is a differential ideal in S, the quotient ring S/I can be

expressed as the direct sum of k differential ideals K¡, if and only if I can be

expressed in the form (9). By a proper choice of notation we have also that K~i

is il-isomorphic to S/I< (¿ = 1,2, • • • , k).

The theorem that can be obtained from this one by omitting the word

"differential" and the symbol "ß" is known to be true.* We shall not give

a detailed proof of this extended theorem, as it follows readily from the known

case by means of Theorem 3, and the fact that if 5/7 is reducible, the com-

ponents are necessarily differential ideals.

4. Two-sided ideals in R, and quasi-commutative rings. We now return to

a further consideration of the rings R = K[a, ß] and R' = K[x, y, z] intro-

duced earlier. If M is any set of elements of R, we shall let M' denote the set

of corresponding elements of R', and conversely.

We associate with the commutative ring R' the operator domain ß con-

* van der Waerden, op. cit., II, p. 47. See also E. Noether and W. Schmeidler, Moduln in nicht-

kommutaliven Bereichen, Mathematische Zeitschrift, vol. 8 (1920), p. 11.
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sisting of the two operators z(d/dx) and z(d/dy). Since R' consists of all

polynomials in x, y, z with coefficients in K, it is clear that R' is closed under

these operations. Also these operators satisfy all requirements prescribed in

the preceding section, and thus R' is a differential ring with respect to these

operators. Throughout the remainder of this paper, it wiU be understood

that the terms "differential ring" and "differential ideal" refer to the particu-

lar operator domain

/   d        d\
fi  = I Z-;   Z-  1.

\   dx       dyfdy/

The following theorem now gives a characterization of the two-sided ideals

in R.

Theorem 6. A set M of elements of R is a two-sided ideal in R, if and only

if the set M' of corresponding elements of R' is a differential ideal in R'.

First let us assume that If is a two-sided ideal in R, and show that M'

is a differential ideal in 7c'. Let/', g' be any elements of M', h' any element of

R'. Then/, g are elements of M, h an element of R. Hence

f-gmO,        Ä/=.0,        /A = 0    (M).

Also, by relations (6), it follows that

dH dH
yi-L^Q,      7^-0   (M) (i = l,2,---).

da' dß%

We therefore have at once

df df
f'-g'mO,        z^-=-0,       z^-=-0   iM')

dx dy

and we have only to show that fh'=0 iM'). From relations (8) we find that

/ „ 7* d'f d'h\'
fh' = [ 2Z -t —-)•

\ t!o  si   dß>   da")

But

7'-^=-0    iM) is = 0,1,- ■■).
op"

Hence the expression in parentheses belongs to M, and therefore/'A' =■ 0 iM').

Now let M' be a given differential ideal in R', and M the set of correspond-

ing elements of R. From the preceding case it is clearly sufficient to show that

if/is any element of M, h any element of R, then/A = 0 iM), hf=0 iM).

From equation (7), we have
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_   (- z)<  ¿1»/' d'g'

,_o       s!       dy*  da;*

But since M' is a differential ideal,

d'f
z»—= 0    (AT).

Hence (Jh)'=0 (If'), and therefore fh=0 (Af). It follows similarly that

also hf=0 iM), and M is a two-sided ideal in R. This completes the proof

of the theorem.

Let M' be a differential ideal in R' with the ideal basis f{ ,f{, • • • , fi ■

Denote by N the two-sided ideal in R with the basis fi, ft, • • • ,fr; that is, N

consists of all finite sums of terms of the form hfig, where h and g are elements

of R. We shall write M' = ifi ,fi, ■ ■ ■ ,fi), N = (ft,f,, ■ • • , /,). We shall now
show that N = M.

Let / be any element of M. Then/'=0 (Af) and we may write

/' = Y?i=Jl hi. By relation (8) it follows that

èi\ ¿Í  s!   3/3"  dW

But from (6), it is clear that

9'fi
T---0    (AT),

hence /=0 (A7). Thus all elements of M are also elements of N. Since the

converse is obviously true, it follows that N = M. This result may be stated

as follows :

Theorem 7. If M'' = (Jl ,fi, ■ ■ ■ , fi ) is a differential ideal in R', then the

corresponding two-sided ideal in R is M = (/i, ft, • • • , />•).

We now pass to an extension of Theorem 6. Let M and M' denote respec-

tively a two-sided ideal in R, and the corresponding differential ideal in R'.

Let f be any element of R, and suppose/—>/by the homeomorphism R~R/M,

and /'—»/' by the homeomorphism R'~R'/M'. The correspondence /—»/' is

then a one-to-one correspondence between elements of R/M and those of

R'/M'. For ii f=g (M), it follows that/'=g' (Af'), and conversely. It is

also clear that if /—>/', g—*£', then f+g—J'±g'.

If iV is a set of elements of R/M, we shall let N' denote the set of corre-

sponding elements of R'/M', and conversely. We may then extend Theorem 6

as follows :
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Theorem 8. A set N of elements of R/M is a two-sided ideal in R/M, if

and only If N' is a differential ideal in R'/M'.

First let Ñ he a two-sided ideal in R/M, and A7 the set of all elements of

R which correspond to elements of Ñ by the homeomorphism R~R/M. Then

Nisa two-sided ideal in R, and by Theorem 6, N' is a differential ideal in R'.

Now N' is the set of all elements of R'/M' to which elements of N' correspond

by the homeomorphism R'~R''/M''. We shall show that N' is a differential

ideal in R'/M'. Let ñ{, ñi be any elements of A7', /' any element of R'/M'.

Thus there exist elements ni, ni of A7' and an element /' of R' such that

«'—>«/, n%—+ñ¿,f'—+j by the homeomorphism R'~R'/M'. Then clearly

it ' —ni —>ñ{ — ñi ,f'n'—*f'ñ', A«/—>A«i' = Añi, where A is either of our differ-

ential operators. Now since N' is a differential ideal, n[ —ni, fni, An' are

elements of N'. Thus

»' - ñ' = 0,        fñ' m 0,        Añi = 0    (Ñ').

That is, À7' is a differential ideal in R'/M'.

Now let N' be a given differential ideal in R'/M', and N' the set of all

elements of R' which correspond to elements of N' by the homeomorphism

R'~R'/M'. It follows readily that A" is a differential ideal in R', and A7 is a

two-sided ideal in R. Hence A7 is a two-sided ideal in R/M, and the theorem is

established.

If T is any ring, and each element of T can be expressed uniquely as a

sum of elements which belong respectively to the two-sided ideals Ti (¿= 1.

2, • • • , k) in T, then T is said to be the direct sum of the ideals Ti, and we

write

T = 7',+ T2+ ■ ■ ■ + Ti-.

If T can be expressed as the direct sum of two or more two-sided ideals, we

shall say that T is reducible, otherwise irreducible. These terms have been

defined in §3 for commutative differential rings. From the preceding theorem

we can therefore establish at once the following theorem.

Theorem 9. Let M and M' denote respectively a two-sided ideal in R, and

the corresponding differential ideal in R'. Then

(12) R/M = Rl + R„+ ■ ■ ■ + À5,,

if and only if

(13) R'/M' = AY + ÄY + ■    ■ +3?*'.

This theorem shows that not only can the two-sided ideals in R be de-
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termined by working in the commutative ring R', but that reducibility of

R/M corresponds also to reducibility of R'/M'.

We now assume, for the remainder of this section, that in K each ideal

has a finite ideal basis, and the same is therefore true for the ring R' = K [x, y, z} .*

Hence if Af' is any differential ideal in R', there exists, by Theorem 4, a

unique decomposition,

(14) M' =  [Mi, Mi,- ■ ■ ,M¿],

where the Mí are direct indecomposable differential ideals such that

(Af/, Af/) = (i) ii^j). Now let Af< be the two-sided ideal in R corresponding

to Af /. Then we have (Af ¡, M¡) ' = (Ml, M/ ), and (Af,- n M¡) ' = Af / fl Af/.

In accordance with the definition given in §3, we may say that a two-

sided ideal N in R is direct indecomposable if it cannot be expressed in the

form TVi n Ar2, where Ni and AT2 are proper two-sided ideal divisors of N, such

that iNi, N2) = (e). It follows at once that the Af¿ are direct indecomposable.

The following theorem is then an immediate consequence of Theorem 4.

Theorem lO.f Corresponding to the decomposition (14) of M' there exists

a unique decomposition of M of the form

(15) M = [Ifi, Ms, - • • , Aft],

where the Mi are direct indecomposable two-sided ideals such that (Af,, Af,-) = (i)

If Af has the decomposition (15), then Af' has the decomposition (14),

and by Theorem 5, we have the unique decomposition (13) of R'/M', and

the R¡ are irreducible. It follows from Theorem 8 that R/M has the unique

decomposition (12), where the /?, are irreducible. We thus have

Theorem 11. The quotient ring R/M can be expressed uniquely as the di-

rect sum of k two-sided ideals i?„ if and only if M has a decomposition of the

form (15). Furthermore, by a proper choice of notation, Ri—R/Mi.%

It follows at once that each quotient ring R/M can be expressed uniquely

as a direct sum of irreducible two-sided ideals.

Corollary. The quotient ring R/M is irreducible if and only if M (or .17')

is direct indecomposable.

We now return to a consideration of quasi-commutative rings over A". In

§1, it was shown that any quasi-commutative ring over K is isomorphic to

* van der Waerden, op. cit., II, p. 23.

t Cf. W. Krull, Zweiseitige Ideale in nichtkominulativen Bereichen, Mathematische Zeitschrift,

vol. 28 (1928), p. 499.

X See Noether and Schmeidler, loc. cit., p. 14.
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a quotient ring R/M, where M is a two-sided ideal in R, and we have now

given a characterization of the two-sided ideals in R. However, if M is a

given two-sided ideal, the quotient ring R/M may clearly not be quasi-com-

mutative over K, but over some ring homeomorphic to K.

Let L denote the ideal in K consisting of the elements of M which are

also elements of K, and denote by K the ring K/L. Let a, ß be the elements

of R/M to which a, ß respectively correspond. Then R/M is a quasi-com-

mutative ring K[ä, ß] over K. Now K will be isomorphic to K, if and only if

Z = (0), and if this is true, it follows that K[ä, ß] is isomorphic to K[ä, ß].*

Thus R/M is a quasi-commutative ring over K, if and only if M contains no

elements of K, except the zero. By the preceding section, any such two-sided

ideal M in R corresponds to a differential ideal M' in R', which contains no

element of K besides the zero.

5. Finite algebras homeomorphic to R. We conclude with a few remarks

about quasi-commutative rings over a field, which are also finite algebras over

that field.

Let K now be a non-modular field with unit element 1, and A a finite

algebra homeomorphic to R, and therefore isomorphic to R/M , where M is a

two-sided ideal (invariant sub-algebra) in R. IÍM contains any non-zero ele-

ment of K, then clearly M= R, and the homeomorphism is a trivial one.

Hence we may assume that M contains no non-zero element of K, and by

the homeomorphism, K corresponds to a field K, simply isomorphic to K.

We shall consider these fields to be identical, as we may without essential

loss of generality.

By the homeomorphism R^A, suppose a—>p, ß—*q, y—>r. Then

^2<iiik(xiß"Yk-^2aijkpiq'rk. Since now A is a finite algebra over K, each

element of A satisfies a unique minimum equation with coefficients in K,

and leading coefficient unity. | Let/(X)=0, g(X)=0, h(K)=0 be the mini-

mum equations of p, q, and r respectively. We may now prove the follow-

ing theorem:

Theorem 12. 7//(i)(X) denotes the ith derivative of /(X) with respect to X,

then we have

r'f»ip) = 0,

ry*>(g)-0 (¿ = o, I,---).

Now M consists of those elements of R which correspond to the zero ele-

* This follows readily since the constants on the right of the multiplication formula (2) are inde-

pendent of the ring K.

f See L. E. Dickson, Algebras and their Arithmetics, Chicago, 1923, p. 111.
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ment of A, hence Af contains/(a), giß), Hy). Thus Af' contains/(s), giy),

Á(z), and since it is a differential ideal, it contains zl/(i)(#), z'g^iy). That is,

Af contains 7*/(i)(a), y^^iß), and we have the desired result.

It follows at once from this theorem that r is nilpotent, and hence

h(X)=Xk, where the index k does not exceed the degree of /(X) or of g(X).

We may, however, get more information about k in the following way. Let

/(X)= [/i(X)]mi[/2(X)]"12--- [/.(X)]-

be the decomposition of /(X) into powers of distinct polynomials which are

irreducible in K, and denote by m the maximum of the m,. Then /(X) and

/(m)(X) have no factor in common, and their resultant D is not zero. We thus

have a relation*

a(X)/(X) + *(X)/<->(X) "DXO,

where a(X) and ¿>(X) are polynomials with coefficients in A. It follows that

bip)f-m)ip) =D, and thus by the preceding theorem, rmD = 0. That is, rm = 0,

and we have established

Theorem 13. The index k of r does not exceed the multiplicity of the factor

of f(X) [or of g(X) ] of greatest multiplicity.

By Theorem 9, the question of reducibility of A is equivalent to that of

reducibility of R'/M', and this in turn depends upon whether Af ' is direct

indecomposable or not. We may now prove the following theorem.

Theorem 14. 7//(X) [or g(X) ] is expressible as the product of two relatively

prime factors with coefficients in K, the algebra A is reducible.

Suppose f(X) =<f>iX)\¡/(X), where <p(X) and ^(X) are relatively prime, and

have coefficients in K. There then exists a relation

(16) aiXMX) + 6(X)tf(X) = 1.

Let Mi = (Af', </>(#)), Af2 = (Af', ipix)). Since fix) is the polynomial in x of

minimum degree belonging to Af', it follows that Mi and Mi are proper di-

visors of Af'. We have also from relation (16) that (Af/, Mi) = (1). It is easy

to show that Af ' = Af / fl Mi. Let c(x) be any element belonging to Mí n M2 .

Then we have

cix) = dix)<¡>ix) = eix)\Pix)    (Af'),

and thus dix)<j>ix) — e(^)^(x) = 0 (Af'). If we multiply this last relation by

aix), we find, by use of relation (16), that

* See, e.g., van der Waerden, op. cit., II, p. 4.



116 N. H. McCOY

dix) =• \dix)bix) + aix)eix)]pix)    iM').

Thus dix)4>ix) =0 iM'), and therefore cix) =0 (AT). By Theorem 5 it now

follows that R'/M' is reducible, and Theorem 9 then shows that A =R/M

is reducible.

The converse of this theorem is not in general true even for the commuta-

tive case, as can be shown by the following example. Let K be the field

of real numbers, and set/(X) =X2+1, g(X)=X2+l, M' = (x2+1, y2+l, z),

mi = iM', l—xy), Mi = iM', 1 +xy). It is not difficult to show that Mi and

Mi are proper ideal divisors of M' and that M' = Mi fl Mi, (A//, A72 ) = (1).

Hence R/M is reducible.
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