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1. Introduction

We shall say that a point O of a surface S is a planar point of the third

order if the surface has a tangent plane at O and if every curve on the surface

through O has an inflexionf at 0. It is the purpose of this paper to study the

surface »S in the neighborhood of such a planar point from a projective point

of view by making use of the osculantsj of Bompiani of a plane section of 5

through an arbitrary tangent line through 0.

Lane and Su§ have used Bompiani's osculants to study the plane sections

of a surface at a non-parabolic point on the surface. In a sense every tangent

line to a surface at a planar point is an asymptotic tangent.

Downs|| has studied planar points of order n from a metric point of view.

In the last section we discuss the loci of certain points and lines intrinsi-

cally associated with the sections of the surface through the arbitrary tangent

line as this line generates a pencil. The loci so obtained are therefore covariant

loci associated with the surface and not merely with the surface in its relation

to the particular tangent line.

We first find a canonical power series expansion for one non-homogeneous

projective coordinate in terms of the two others. A complete geometrical de-

scription will be given of the tetrahedron of reference giving rise to this canon-

ical expansion.

2. The power series expansion

Let the equation of the analytic surface 5 be

_ z - fix, y) •

* Presented to the Society, April 10, 1936; received by the editors October 14, 1935, and in re-

vised form, January 11, 1936.

f Each branch of the curve of intersection of the surface with its tangent plane at a planar point

of third order has at least four-point contact with its tangent line at the point.

t E. Bompiani, Per lo studio proietlivo-differenziale dette singolarila, Bollettino dell' Unione

Matemática, vol. 5 (1926), p. 118. Hereafter referred to as Bompiani.

§ E. P. Lane, Plane sections through an asymptotic tangent of a surface, Bulletin of the American

Mathematical Society, vol. 41 (1935), pp. 285-290; B. Su, On certain quadratic cones projectively con-

nected with a space curve and a surface, Tôhoku Mathematical Journal, vol. 38 (1933), pp. 233-244.

|| T. L. Downs, Asymptotic and principal directions at a planar point of a surface, Duke Mathe-

matical Journal, vol. 1 (1935), pp. 316-327.
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Let the system of coordinates be so chosen that the point O(0, 0, 0) is the

planar point, and z = 0 the equation of the tangent plane to 5 at 0. The

Taylor's expansion of the function/(x, y) in the neighborhood of x = 0, y = 0

will be of the form

(1) z = A3(x, y) + At(x, y) + Ab(x, y) + ■ ■ ■ ,

wherein

As(x, y) = a30x3 + a2lx2y + ai2xy2 + a03y3,

At(x, y) = awx* + a3ix3y + a22x2y2 + al3xy3 + aoiy*,

At(x, y) = aMxs + anx4y + a32x3y2 + a23x2y3 + axiXy4 + «osy6,

The tangent plane z = 0 at O intersects the surface in a curve with a triple

point at 0. The triple point tangents are given by

(3) A3(x, y) = 0.

The equation A3(x, y) =0 defines a cubic involution in the pencil of tan-

gent lines to the surface at O, the triple lines being the triple point tangents

to the curve of intersection of the surface S with its tangent plane at O. We

shall assume that the tangent line y = z = 0 is not one of the triple lines of the

cubic involution defined by A3(x, y) =0. It follows that c^o^O.

We propose first to derive a canonical form of the expansion (1) in which

the edge y = z = 0 of the tetrahedron of reference giving rise to the expansion

is an arbitrary tangent line to the surface S at O except for the limitation

noted above.

If we make the transformation

(4) x = x' + py', y = y',        z = z',

on equation (1), and denote the new coefficients by ä30, d2x, • ■ • , we find that

Ö30 = Ö30,  d2x = 3p.a3o + <i2i,  di2 = 3p2a3o + 2pa2i + ai2,

(5) a« = ai0, »31 = 4tpai0 + a3i, äw = aM,

äu  =  5tlÖ60 + 041,   Ö60  =   060,   •  •  •   .

Hence if we choose p. to satisfy the equation

(6) 3p.«30 + Ö21 = 0,

we may make 52i = 0. We shall assume that this transformation has been

effected on the series (1).

We may give a simple geometrical characterization of the tangent line

x = z = 0 for the case in which a2i = 0. The unique line of the involution defined
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by A3(x, y) =0 corresponding to the line y = z = 0, considered as a double line of

the involution, is the line x = z = 0 if and only if a2X = 0.

The transformation

x' + az' y' + ßz' z'
(7)        :

1+Lx' + My' 1+Lx' + My' 1 + Lx' + My'

does not change the edges x = z = 0, y = z = 0 of the coordinate system, and

does not affect the coefficients of the form A3(x, y). If again we denote the

new coefficients by âi0, an, • • ■ , we find that

Ö40 = — 27<23o + «40,  ä3X = — 2Ma3o + a3i,

2
¿50 = 3aa3o — 3La^ + ßso,

(°)
du = 2ßa3oai2 — 3Maw + au,

2
äos = 3ßao3 — 3Mao4 + dos, • • • .

We note from (8), that, with proper choice of a, L, M, we may make

040 = 6X31 = 050 = 0. If cto^O, we may choose ß in such a way that a4i = 0. If

ai2 = 0, we may choose ß so that tíos = 0.

The Hessian H of the form

A»(x, y) = a30x3 + ai2xy2 + a03y3

is readily shown to be

(9) H = 4[3a3oai2x  + 9a3oa03xy — ai2y ].

Hence the tangent line y = z = 0 (x = z = 0) is one of the Hessian or neutral lines

of the cubic involution determined by A3(x, y) = 0 if and only if ai2 = 0.

We shall say that y = z = 0 is a Hessian tangent if di2 = 0.

Let us suppose first that y = z = 0 is not a Hessian tangent, and that the

transformation (6) has been used to make a4o = 031 = 050 = 041 = 0.

The transformation

x' y'
(10) x = , y = , z =

1+Nz' 1+Nz' 1 + Nz'

does not change the edges x = z = 0, y = z = 0 of the tetrahedron of reference,

and does not affect the coefficients of the forms A3(x, y), Ai(x, y), As(x, y).

The new coefficient 56o is given by the formula

CT60 = — 2Na3o + 060-

Hence we may choose N in the transformation (10) in such a manner as to

make ä6o = 0. We shall assume that this transformation has been effected.
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If we change the unit point by the transformation

(11) x = px',        y = qy',        z = rz',

we find that, if a225¿0, we may make 030 = 012 = 022 = 1, by choosing p, q, r to

have the values

(12) p = a12/a22,        q =• ± (012030)    /a22,        r = ax2a30/a22.

Hence the power series expansion (I) may be written in the canonical form

(13) z = a3(x, y) + ai(x, y) + a5(x, y) + • ■ ■

wherein

a3(x, y) = x3 + xy2 + Ay3,

at(x, y) = x2y2 + a13xy3 + a0iy4,

(14) a6(x, y) = Bx3y2 + a23x2y3 + auxy4 + aQ6ys,

ae(x, y) = Cxsy + • • • ,        a7(x, y) = Dx7 + Exsy + ■ ■ ■ ,

as(x, y) = Fxs + • • ■  , a9(x, y) = Gx9 + ■ ■ ■  .

The edge y = z = 0 is an arbitrary tangent line, not a tangent line to the curve of

intersection of the surface with its tangent plane, and not a Hessian tangent.

Every coefficient of the canonical expansion (13) is an absolute invariant ex-

pressing the relation between the surface S at the planar point O and the

tangent line y = z = 0. In the expressions (14) we have written only those

terms which will be of use in the discussions to follow.

If y = z = 0 is a Hessian tangent we may, as was remarked previously,

make use of the coefficient ß of the transformation (7) to make a05 = 0. We

may as before choose the coefficient A of the transformation (10) to make

fleo = 0. If the two Hessian tangents are not coincident, and if a22^0, by proper

choice of the unit point we may make a30 = a03 = a22 = l. Hence the power series

expansion (1) may be written in the canonical form

z = x3 + y3 + x2y2 + A'xiy + ■ ■ • + B'x^y + ■ • ■

+ C'x7 + D'x*y + • • • + E'x* + • • • + F'x* + ■ ■ ■ .

The edges y = z = 0, x = z = 0 of the tetrahedron of reference are the Hessian tan-

gent to S at O. Every coefficient of the expansion (15) is an absolute invariant

of the surface.

3. Plane sections through a tangent line

Let us first consider a surface S whose equation in non-homogeneous pro-

jective coordinates (x, y, z) has been reduced to the form (13). Let us intro-
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duce homogeneous projective coordinates (xi, x2, x3, xi) of a point whose non-

homogeneous projective coordinates are (x, y, z) by placing

x2 x3 xt

Xi Xi Xi

The plane whose equation is

(16) y = nz,        «/0,

cuts the surface in a curve T whose projection C onto the tangent plane from

O3(0, 0, 0, 1) has the equations

y = n[x3 + xy2 + Ay3 + x2y2 + • • • + Bx3y2 + • ■ • + Cx5y+ ■ ■ ■ ],

z = 0.

If we solve the series in (17) for y as a power series in x we obtain

(18) y = n[x3 + bW + b»xs + hx* + ■ ■ ■ ]

wherein

(19) b7 = n2 + D,       bs= n2 + Cn+ F,       b9 = An3 + Bn2 + En+G.

Equations (16) and (18) are the equations of an arbitrary plane section Y

of the surface S through an arbitrary tangent line not a Hessian tangent at a

planar point O of S.

Suppose next that the tangent line y = z = 0 is a Hessian tangent line, and

that the equation of the surface has been reduced to the form (15). The plane

(16) intersects the surface S in a curve T whose projection C onto the tangent

plane from O3(0, 0, 0, 1) has the equations

(20) y = n[x3 + c7x7 + c8x8 + c9x9 + ■ ■ ■ ],        z = 0,

wherein

(21) c7 = A'n + C,       cs = n2 + B'n + E',        c9 = n3 + D'n + F'.

4.   BOMPIANl'S OSCULANTS AND THEIR LOCI

We may use the expansions (18) and (20) to derive the equations of the

osculants used by Bompiani in discussing the various neighborhoods of an

inflexion of a plane curve. We observe first that the expansions (18) and (20)

are identical in form with the expansion* (2) of Bompiani's paper.

Let us first discuss the equations (18) and z = 0. These are the equations

of the projection C of the curve V of intersection of the plane (16) with the

surface S.

* Bompiani, p. 119.
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The equations of the cusped cubic with seven-point contact with C at O

are

(22) y = nx3,        z = 0.

This cubic has of course an inflexion at 0(1, 0, 0, 0) and its cusp is at the point

O2(0, 0, 1, 0). The cusp tangent of the cubic is the line a;i=a;4 = 0. The locus

of the cusps for all plane sections V through y = z = 0 is therefore a line, namely,

the edge Xi = x2 = 0 of the tetrahedron of reference. The cusp locus of all six-point

cusped cubics of the curve C is the line x = z = 0 previously characterized as the

line corresponding to the line y = z = 0 considered as a double line in the cubic

involution in the pencil of tangent lines determined by a3(x, y) =0. The cusp

tangent intersects the tangent y = z = 0 at the point Oi(0, 1, 0, 0) of the tetra-

hedron of reference. The edges Xi = x2 = 0, xi = X\ = 0 and the vertices Oi and 02

of the tetrahedron of reference giving rise to the canonical expansion (13) are

therefore characterized geometrically.

The locus of the cusped cubics for all plane sections V is the cubic cone

(23) z = x3

with vertex at the cusp 02 of the seven-point cusped cubic (22).

The equations of the cubic having eight-point contact with T at 0 and

passing through the cusp of the seven-point cusped cubic of T are

(24) ny = n2x3 + b-jxy2,        y = nz.

The locus of the curve (24) for all sections through the given arbitrary

tangent line is the algebraic surface of order three whose equation is

(25) z = x3+ x(y2 + Dz2).

The surfaces (23) and (25) intersect in the line x = z = 0, and in two plane

curves whose projections from the point 03 onto the tangent plane are the

cusped cubics

y =   ±  (- Dy'2X3, Z = 0,

and whose projections from the point Oi onto the face of the tetrahedron op-

posite Oi are the straight lines

y2 + Dz2,        x = 0.

The equations of the nine-point quartic curve passing through the point

Oi(0, 1, 0, 0), tangent to the cusp tangent Xi=x4 = 0, having a node at the

point O2(0, 0, 1,0) with the cusp locus x2 = xx = 0 for one nodal tangent are

(26) ny = n2x3 + b-¡xy2 + b%x2y2,        z = 0.
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The residual nodal tangent of the quartic (26) is the line having the equations

(27) 67X1 + ¿>8x2 = 0,        Xa = 0.

The locus of the nine-point quartic curve of the section T for all sections T

is the quartic surface whose equation is

(28) z = x3 + x(y2 + Dz2) + x2(y2 + Cyz + Fz2).

The locus of the residual nodal tangent of the nine-point quarries of the sec-

tions r is the cubic surface

(29) y2 + Dz2 + x(y2 + Cyz + Fz2) = 0.

The locus of the cusps Xi = x2 = 0 of the seven-point cusped cubics lies on the

cubic surface (29). The tangent plane to the surface (29) at the point

(0, 0, X, p) is the plane

(30) (X2 + Dp2)xi + (\2 + CXp + Fp2)x2 = 0.

The tangent plane (30) coincides with the plane determined by the locus of

the cusps and by O if and only if

X2 + TV = 0.

There exist therefore two points Px, P2 on the locus of the cusps of the seven-point

cusped cubics of plane sections through an arbitrary non-Hessian tangent at a

planar point O such that the tangent plane to the locus of the residual nodal

tangent of the nine-point nodal quartic coincides with the plane determined by the

point O and the locus of the cusps of the seven-point cusped cubics. The vertex

O3(0, 0, 0, 1) is determined on the locus of the cusps as the harmonic conjugate

of the cusp 02 with respect to the points Pi, P2. The four vertices of the tetra-

hedron of reference giving rise to the expansion (13) have therefore been char-

acterized geometrically. In the last section we shall characterize the unit

point of the system of coordinates.

The seven-point cusped cubic and the nine-point quartic of the projec-

tion C of T intersect at O and also at the point

/_ h      _nbf     \

\     bs'        bi'    )'

The coordinates of the intersection of the seven-point cusped cubic and the

nine-point quartic of the curve of section Y are

/      h nh3 tV \
31) (-—,-, -—A.

\     h tV bs3/
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The locus of this point for all sections V of the surface through the tangent

y = z = 0 is a rational curve of order seven tangent to y = z = 0 at 0.

The line through 0 and the point (31) has the equations

(32) b2 y = nb-?x,        y = nz.

The locus of this line is the quintic cone

(33) x(y2 + Dz2)2 = ziy2 + Cyz + Fz2)2.

The lines x = z = 0, y = z = 0 lie on the cone. The plane x — z = 0 is tangent to the

cone along the line x = z=0. The line y = z = 0 is a singular line on the cone, the

planes y2+Dz2 = 0 being tangent to the cone along this generator.

From (18) we find readily that

y — nx3 = nlfnx1 + b3xs + • ■ • ],

b7
y — nx3-xy2 = n\b%x* + b$x9 + • ■ • j,

'(34) n

bi b3
y — nx3-xy2-x2y2 = nb$x9 + • • ■  .

n n

It follows therefore that the seven-point cusped cubic has eight-point contact

with T if and only if b7 = 0, the eight-point cubic (24) has nine-point

contact with T if and only if &8 = 0, and the nine-point quartic has ten-point

contact with T if and only if b» = 0. There are two plane sections through an

arbitrary tangent line at a planar point of a surface such that the seven-point

cusped cubic of the section has eight-point contact with the section. The planes of

these sections separate the planes y = 0, z = 0 harmonically. The face y = 0 of the

tetrahedron of reference giving rise to the canonical expansion (13) has

therefore been given a simple geometrical characterization.

Let us now consider the osculants of Bompiani for the curves of intersec-

tion of the surface S by planes through a Hessian tangent line at the planar

point. If use be made of equations (20), we find readily that the equations

of the seven-point cusped cubic, the eight-point cubic, and the nine-point

nodal quartic of the section T through a Hessian tangent are respectively

(35) y = nx3,        y = nz;

(36) ny = n2x3 + Cixy2,        y = nz;

(37) ny = n2x3 + c,xy2 + c%x2y2,        y = nz.

The loci of these curves are respectively

(38) z = x3,

(39) z = x3 + xz(A'y + C'z),

(40) z = x3 + xz(A'y + C'z) + x\y2 + B'yz + E'z2).
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From (20) we find that

y — nx3 = n[cyx7 + c&xs + • ■ ■ ],

c7
y — nx3-xy2 = n[c$x3 + e9x9 + • ■ • J,

(41) n

Cl Ci
y — nx3-xy2 — — x2y2 = nc9x9 + ■ ■ ■

n n

It follows that through a Hessian tangent line there is only one plane sec-

tion having eight-point contact with its seven-point cusped cubic, two sections

having nine-point contact with their eight-point cubics, and three sections having

ten-point contact with their nine-point quartics.

The curves (35) and (37) intersect at O and at the point

/ C7 C73 Cl3 \

V       Ci ci ci /

The locus of the line joining O to this point is a quartic cone whose equation is

(42) (y2 + B'yz + E'z2)2 = xz(A'y + C'z)2.

Other discussions similar to those made for sections of the surface through

a non-Hessian tangent could be made, but we shall carry this discussion no

further.

5. LOCI RELATED TO THE SURFACE 5 AT O

The points, curves, and surfaces discussed in the previous sections have,

in the main, given properties of the configuration composed of the surface »S

and the given tangent line used in making the sections of the surface. For

example, the cusp of the seven-point cusped cubic of the projection of the

plane section is a point intrinsically related to the tangent line through which

the plane sections were made. Likewise the locus of this point is a straight

line which is related to the particular tangent line through which the sections

were made.

In this section we propose to derive the necessary formulas for studying

the loci of the various points, lines, and the envelopes of the surfaces derived

in the previous sections as the given tangent line generates the pencil of tan-

gent lines. Thus we obtain loci covariant to the surfaced at the planar point.

To the end in view we shall make the transformation

(43) x = x,        y = mx + y,        z = z,

on the expansion (13). We obtain an expansion of the form

(44) z = B3(x, y) + Bt(x, y) + ■ ■ ■ .
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We now, by means of transformations similar to (4), (7), (10), and (11), re-

duce (44) to the canonical form resembling the form (13) except that the line

y = z = 0 is the arbitrary tangent line used as one edge of the tetrahedron of

reference giving rise to the canonical expansion.

The forms 7?3(x, y), ■ • • have coefficients 03O, 021, ■ • • given by the for-

mula

1    dka,+kil,m)

(45) aik = -        dmk C/+**3).

The canonical form of the expansion (44) with y' = z' = 0 (y = z = 0) as one

edge of the tetrahedron of reference is of the form

(46) z' = ai (x', y') + a¡ (x', /)+•■-.

By means of (4), (7), (10), (11), and (43) the transformation of coordinates

between the tetrahedron of reference used in the canonical form (13) to that

of the canonical form (46) is

pxi = xi + pLxi + qMx3  + rNxi ,

px2 = pxi + qßxi + fiä + ßß)xi ,

(47) r_
px3 = pmxi + q(l + mpi)xi + f[ß + m(ä + ßß)\xi ,

pXi = fxi ,

wherein ä, ß, ■ ■ ■ are defined by formulas used in reducing (1) to the form

(13) but with 0,-4 replaced by äjk defined by (45). These formulas are

303OP + 021   =   0, 2d3oL   =   040,

203Oi7 = 031 + 404Oj"> 3503o = 37040 — (Î50,

(48) _r ,        _
2cz3o/3|3a30M2 _f_ 2ä21ß + 012j = 317040 — 041 — 5p0so,

203oA  =  060-

Denote by O, 0/, Oi, 03 the vertices of the tetrahedron giving rise to

the canonical expansion (46) in such a manner that 0/, 02, Oi have geo-

metrical characterizations similar to Oi, 02, 03.

By means of (47) and (48) we find readily that the parametric equations

of the locus of the point Oi as the line y' =z' =0 generates the pencil of tan-

gent lines are

Xx = m2 + ai3ms + ao^m4,

x2 = 2(1 + m2 + Am3),

(49)
x3 = 2mil + m2 + Am3),

Xi = 0.
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The locus of 0{ of course passes through the point Ox. Moreover the tangent

line to the curve at Ox is the line xx = Xi = 0. Hence the envelope of the cusp

tangents of the seven-point cusped cubics of the projections C of all sections of a

surface at a planar point of the third order is a rational quartic curve. It follows

also that the plane 01, 02, 03 is tangent at Oi to the ruled surface generated by

the line Oí03 as the tangent y' = z' = 0 describes the pencil of tangent lines at the

planar point O.

If we eliminate m homogeneously from the parametric equations of the

locus of Oí, we may write the equations of the locus of Oí in the form

(50) 2(x3 + xy2 + Ay3) = x2y2 + auxy3 + aoty*,        z = 0.

Hence the locus of Oí has a triple point at 0, the triple point tangents being the

tangents to the curve of intersection of the surface with its tangent plane at 0.

Equation (50) furnishes a rather simple interpretation of the form

a±(x, y). The line Xi = x4 = 0 intersects the quartic (50) in four points. The

equations of the four lines through O and these four points are

ai(x, y) = 0, z = 0.

The equations of the conic tangent to the line y = z = 0 at O and having

three-point contact at Oi with the curve (50) are

(51) x32 - 2X.X2 = 0,        xi = 0.

The parametric equations of the locus of the point 02 as y' = z' = 0 gen-

erates the pencil of tangent lines are readily found to be

xi = 3(1 + m2 + Am3)(2m + 3ai3m2 + 4a0m3)

— 4(2m + 3Am2)(m2 + ai3m3 + aotfn1),

(52) Xt - - 2(1 + m2 + Am3)(2m + 3Am2),

x3 = 2(1 + m2 + Am3)(m2 + 3),

#4   =   0.

The locus of the cusp 02 of the seven-point cusped cubic is therefore a rational

quintic curve. This curve has a triple point at O, the triple point tangents being

the tangents to the curve of intersection of the surface with its tangent plane at O.

The tangent to the curve (52) at 02 has the equations

(53) 2*1 + 3x2 = 0,        Xi = 0.

We have already characterized the vertices of the tetrahedron of reference

giving rise to the expansion (13). We may characterize the unit point in the

following manner. First the line (53) and the edges xi = a;4 = 0, x2 = .r4 = 0 en-
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able us to characterize the line xi—x2 = Xi = 0 by means of a cross ratio. This

latter line intersects the conic (51) in two points Qi and Q2. Either of these

two points and the points Oi, 02 may be used to characterize the line

x2—x3 = X4 = 0 by means of a cross ratio. The choice of either Qx or Q2 corre-

sponds to the choice of sign in the double sign of q in (12). The point

E(l, I, I, 0) is therefore characterized. The line E03 intersects the cone(23)

in the unit point.
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