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Stochastic processes depending on a continuous parameter have been de-

fined in various ways. A definition frequently given is in terms of a physical

system or other entity which depends on the parameter / (time) and whose

state is specified by the position of a point Q = Q(t) varying in some space in

accordance with a given probability law. The probability that Q will be in

given point sets at given times is specified, or, if the process is a Markoff proc-

ess, the probability that Q will be in a given point set at time t+8 (5>0)

if it was in a given position at time i is specified. Bachelier (I, II, III)f was

the first to study these processes. His work was pioneering, and without any

attempt at rigor. Most investigations have studied the particular case of

Markoff processes^ or else what are called below differential processes; that

is, those in which the changes of Q(t) in non-overlapping intervals are inde-

pendent in the usual probability sense. §

If Q represents the state of a physical system, the combination of the

physical system and the probability relations is to be taken as the stochastic

process. This, however, is not a mathematical definition, but a concretization

of an unstated mathematical definition. Sometimes Q(T) is simply described

as a function varying in accordance with a given law of probability.|| Khint-

chine (II) defined a stochastic process as a one-parameter family of chance

variables. If Q varies on the x-axis, the probability relations of such a process

are determined by specifying the probability of any set of inequalities of the

form

* Presented to the Society, September 1, 1936; received by the editors August 23, 1936.

f Roman numerals refer to the bibliography at the end of the paper. This bibliography does not

pretend to completeness. It refers only to those papers on probability which are fairly closely related

to this one.

t Cf. Hostinsky (I), Khintchine (III, pp. 24-59), Kolmogoroff (IV). Hostinsky has an extended

bibliography, including references to papers on the diffusion problem which leads to a study of

Markoff processes. Many papers have also been written studying Markoff processes in which Q—Q(t)

can have only a finite number of positions. These have not studied the specific difficulties of definition,

many of which do not arise in this special case, so specific references will not be given.

§ Bachelier (I, II, III); Khintchine (III, pp. 68-75); Kolmogoroff (I, II); Levy (II, III, and
several papers in the Paris Comptes Rendus whose results are given in II); Wiener (I, Chapters 9

and 10, and several earlier papers whose results are given in I).

|| Finetti (I, II).
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(0.1) x(t,) < \,, j = 1, • • • , n,

where Xi, • • ■ , X„ is any set of numbers and h, ■ ■ • , t„ any set of values of

the (time) parameter, f This definition is not complete enough for the follow-

ing reason. In many investigations it is necessary to examine the actual paths

Q = Q(t) as to their continuity, etc.f The probability that the paths are con-

tinuous cannot be defined, however, in terms of the elementary probabilities

of the inequalities (0.1).§ It is necessary, therefore, to define a stochastic

process in a way which will make it possible to study such classes of paths as

continuous paths. In this paper such a definition is proposed, and proofs are

given for some new theorems and for some old ones whose earlier proofs (and

formulations) have presupposed such a definition. Proofs which would merely

be rephrasings of earlier ones have been omitted. Only the case where Q varies

on the #-axis and where the parameter / varies from — oo to 4- oo is consid-

ered. The method in more general cases would be the same.

The point of view is that in which probability becomes (mathematically)

a study of Lebesgue and more general measures on suitable spaces. This point

of view was developed fully from an abstract standpoint by Kolmogoroff (V).||

It was applied (not in all cases in work based on Kolmogoroff's) by Doob

(I, II, III), Hopf (I), Kac and Steinhaus (II, III), Khintchine (I), Levy (IV,

esp. pp. 84-88), Lomnicki and Ulam (II) to discrete stochastic processes (those

in which the parameter t runs through integral values only) by choosing a

suitable space of infinitely many dimensions. Essentially the same space had

been used earlier by Steinhaus (II) and Wiener (I), and has been used re-

cently by Jessen (I).

1. Definitions. Let Q,* be the space of all functions x(t) defined over

— oo < t < + 00 • If {k, ■ ■ • ,tn}is any finite set of /-values, and if — «3 ^ a,- < b,- ̂

4- oo, j = 1, • • • , n, the set of elements of fl* satisfying

(1.1) aj < x(tj) < bj,       /"!,••• , *,

f Since a chance variable, mathematically, is merely a measurable function <£(oj) defined on

some sort of space fl on which a measure is defined, this definition presumably means that we have

given a one-parameter family of measurable functions <£i(w) all defined on the same space S2, and that

the ß-measure of the u-set, where the inequalities

t*to06 y=i,
are satisfied, is specified. Cf. Doob (I).

t Kolmogoroff (II, p. 868); Levy (II, III); Wiener (I).

§ Cf. Khintchine (III, pp. 68-69). If the space in which Q varies is the real axis, and if / is an

interval on the <-axis, not even the probability that L.U.B.tnx{t) gikf can be defined, for any number

M. Cf. Kolmogoroff (V, p. 26).

|| Cf. also earlier papers of Cantelli (I), Lomnicki (I), Steinhaus (I).
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will be called a neighborhood. If x0(t) is an element of such a neighborhood,

the neighborhood will be called a neighborhood of x0(t). The topological char-

acteristics of the space ß*, induced by this definition of neighborhood, have

been investigated by Tychonoff.f Kolmogoroff (V, pp. 24-30) has shown that

a measure function P*(A*) which is non-negative and completely additive,

and satisfies P*(£!*) = 1, can be defined on the sets of the Borel system of sets

determined by the neighborhoods.f The set function is determined by its

values on the neighborhoods (1.1) and the only requirement is that, for

h, ■ ■ ■ , tn fixed, P*(A*) should become a non-negative, completely additive

function defined on the sets of the Borel system over the neighborhoods (1.1),

taking on the value 1 for the whole space. § The sets on which P* is defined

will be called /""-measurable. If M* is any subset of tt*, its exterior P*-meas-

ure, P*(M*), is defined as the greatest lower bound of P*(A*) for all P*-meas-

urable sets A* containing M*. It is readily seen that P*(M*) is the greatest

lower bound of P*(A*) for all sets A* d M* which are finite or denumerable

sums of neighborhoods.

Theorem 1.1. Let übe a subset of Q*. A necessary and sufficient condition

that A * £2 = A2*ß imply that P* (A *) = P* (A2*) for every pair of P*-measurable sets

A?, A2* of Q* is that P*(ß) = 1.

The condition is sufficient. For if P*(ti) = 1, and if Af*ß=A2*ß,

(1.2) (A* — A*-A2*)0 = 0.

Then

(1.3) fi*=(Ai* - A!*-As*) + fi

implies

(1.4) 1 = P*(Ai* - Ai*-A2*) + P*(Q) = P*(A1*) - P*(Aj*-A2*) + 1,

or

(1.5) P*(Ai*) = P*(Ai*-A2*).

Interchanging A*, A*,

(1.50 P*(A2*) = P*(Ai*-A2*),

f Mathematische Annalen, vol. Ill (1935), pp. 762-766.
t The Borel system of sets determined by any collection of sets is the smallest collection of sets

which includes the given collection and which contains the setsXli ^"iITw'ln when it contains the

sets {An}. We shall suppose also that P*(A*) is defined for any set differing from a set A* in the Borel

system by a subset of a set in the system for which P* vanishes: P*(A*) = P*(A*).

§ This set function is merely a measure in rc-dimensional Euclidean space with coordinates

x(h), • ■ ■ , x{Q.
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so that P*(Ai*)=P*(A2*).

The condition is necessary. For if A*-Ö=A*-Q implies that P*(AX*)

=P*(A2*), let A* be a P*-measurable set containing ß. It is sufficient to

show that then P*(Ai*) = 1 necessarily. If A2* = Q*,

(1.6) Ai*-n* = A2*-Q = Ö,

so that P*(A*) =P*(A2*) = 1, as was to be proved.

This theorem makes possible the following definition.

Definition. Let übe a subset of Q* of exterior P*-measure I. If Ais a sub-

set of ß of the form A =A*- fl, where A* is P*-measurable, a set function P(A) is

defined by P(A) = P*(A*). The topological space ß together with the measure func-

tion thus defined, will be called a stochastic process.]

The sets A on which P(A) is defined will be called P-measurable. Explicit

examples of stochastic processes are given below.

Definition, will be called quasi-separable if for any open interval I, and

for any number k, the set of elements in Q at which

L.U.B. x(t) ^ k (G.L.B. x{t) ^ k),
itJ hi

is the same as the set of elements at which

L.U.B. x{tn) = k (G.L.B. x{tn) ^ k),

for some sequence {tn} of points in I.

The conditions require that certain non-denumerable products of closed

sets YLtei{x(t) ^k}X otY1m{x(t) ^k} be equivalent to denumerable partial

products, and thus imply less than separability. A stochastic process will be

called quasi-separable whenever the space   of the process is quasi-separable.

Theorem 1.2. Let x*(t), x*(t) be the upper and lower limiting functions of

x(/),§ respectively. Then the process is quasi-separable if and only if there is an

everywhere dense sequence of points {rn} such that if y*(t) (y*(t)) is the upper

(lower) limiting function of #(r,-),||

(1.7) **«) * y*(t), =

f Strictly speaking, the stochastic process should be defined as the physical system or other

entity whose changing is represented by the mathematical formulation of the definition, but it seems

wiser to use the term stochastic process both for the mathematical formulation and for the concretiza-

tion it represents, than to introduce more terminology.

% The set of elements satisfying conditions C will be denoted by {C}.

§ ^*(0 = lim„»«,L.U.B.|T_i|<i/„x(T),   x*(/) = lim„,„G.L.B.|T_(|<i/„a;(T).

|| y*(/) = limB_.aL.U.B.|ry_(|<i/„a;(r)'),   y*(0 = üm„_„G.L.B.|rj-_i|<i/„:r(r,).
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The condition is certainly sufficient for quasi-separability. The sequence

{tn} of the definition can be taken as the subsequence of {rn} consisting of

the points of \rn) in I. Conversely suppose that ß is quasi-separable.

According to the quasi-separability hypothesis, to each open interval I,

and to each number k correspond two sequences of points in I. Let \rn} be

the set of all such points for all rational values of k and for all open intervals I

with rational endpoints. This sequence {rn} is evidently everywhere dense

and has the property that the least upper bound of x(t) (an element of ß)

in any interval I with rational endpoints is the same as that of x(t) for /

running through the values of {r„} in I. This statement is still true even if I

is not restricted to have rational endpoints, since any interval can be ex-

pressed as the sum of such intervals. The first identity (1.7) then follows at

once from the definitions of the functions concerned, and the second identity

is proved in the same way.

Theorem 1.3. If for some real number X, X„—>X implies

(1.8) P{lim*(X„) = x(X)} = 1,

then if {sn} is a denumerable set with \as a limit point,

(1.9) P{lim x(sH) = x(\)} = 1.

It is sufficient to prove that the upper and lower limiting functions of

x(sn) at X are both x(\), on an ß-set of P-measure 1. The proof will be given

for the upper limiting function x*(s). Unless

(1.10) **(X) ^ *(X)

with probability 1—i.e., on an ß-set of P-measure 1, there is a number r, a

positive number e, and a P-measurable set A of positive measure, such that

(1.11) x(\)<r<r + e<   L.U.B.  *(s,), n = 1, 2, • • • ,
|»,—X|<l/n

on A. Let u2m, ■ ■ ■ , be the points of {s, } in | /—X| <l/n, arranged in

any order. Then on A,

(1.12) x(X) < r < r + e < L.U.B. *(«/">),        n = 1, 2, • • • .

Now

(1.13) L.U.B. *(«/»>) = limmax [*(«i<»>), • • • , *(*,<*>)],'

so there is an integer vn so large that
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(1 14) max *(«/»>) > L.U.B. *(«/»>) - e > r
ji'n Ott

on a subset An of A of P-measure at least P(A)(1 -2—-1). If wi(1>,-,

«i(2), • • • ,w»2(2); " ' ' are renamed Xi, X2, • • • respectively, X„—>X and

(1.15) lim sup *(Xn) S£ r > x(\)
n—»«

on A0=IIiA«; where P(A0) ̂ |P(A) >0, contradicting the hypothesis of the

theorem. Then x„*(X) ̂ x(\) with probability 1, i.e., on a set of P-measure 1.

The inequality z«*(X) ̂ x(\) with probability 1 follows at once from the hy-

potheses, so x*(\) =x(X) with probability 1, as was to be proved.

Corollary. If for some real number X, X„—>X implies (1.8) on a quasi-

separable process, x(t) is continuous at X, with probability 1.

Since the process is quasi-separable, there is an everywhere dense se-

quence \rn) such that the upper and lower limiting functions of x(t) at X are

the same as those of x(t) when we consider x(t) defined only at the points

{rn}. By the theorem the latter limiting functions are both x(X), with proba-

bility 1.
2. Measurability of stochastic processes. In the applications of the the-

ory of stochastic processes, P*-measure is usually prescribed on ß*, and the

first problem becomes that of finding the subspace ß, P*(ß) = 1, whose ele-

ments are as simple as possible, e.g., measurable, monotone, etc. As an intro-

ductory example we prove the following theorem.

Theorem 2.1. Let P*-measure be so defined that there is a number M with

the property that for each value of t

(2.1) P*{ I *(*) I = M\ = 1.

Then if ß is the subspace of ß* consisting of those elements of ß* for which

\x(t) \ ^M, — oo < t < + co, P* (ß) = 1, and ß is the space of a stochastic process.

Let Y*=22F* he a sum of neighborhoods, and suppose that r* o ß.

If h, k, • ■ ■ are the /-values used in defining Tf, r2*, • • • , and if A* is the

P*-measurable set determined by | x(tj) \ =^M,j^l,

(2.2) P*(A*) = 1.

If x0(t)eA*, there is an element Xi(t) in ß such that Xi(t,) =x0(tj), j^ 1. For

some v, Xx(t)tT*. Since r* is defined by inequalities on x(t) at certain of the

numbers h, h, ■ ■ ■ , xx(t) eY* implies that xQ(t) eY*. Therefore

(2.3) A*cr*,
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so P*(r*) = 1. Thus any sum of neighborhoods which includes ß has P*-meas-

ure 1, implying that P*(ß) =1.

The space of all pairs {t, x(t)}, the direct product of the r-axis with ß,

will be denoted by TXß. If measure is defined on the r-axis as Lebesgue

measure, measure can be defined on the product space in the usual way,

being determined by the fact that the measure of the direct product of a

T-measurable set and a P-measurable set is the product of their measures, f

A set in TXÖ is measurable (i.e., its measure is defined) if and only if it is

the intersection of T X ß with a set measurable in T X ß*.

Definition. A stochastic process will be called measurable if the T X ß set

of elements {r, x(t)} for which x(t) >k is measurable in TXß/or every real

number k, i.e., if x(t) is a measurable function on TXß.

This implies, by Fubini's theorem,| that the element x(t) of ß is a Le-

besgue measurable function, with probability 1.

Theorem 2.2. The space ß* is never the space of a measurable stochastic

process.

If ß* were the space of some measurable stochastic process, x(t) would

be Lebesgue measurable, with probability 1, in terms of P*-measure. It is

therefore sufficient to show that if A* is the set of elements of ß* which are

not Lebesgue measurable, P*(A*) = 1, however P*-measure is defined. Let

T* =Sir,* be a sum of neighborhoods covering A*. Then we must show that

p*(r*) = 1. Let h, h, ■ ■ • be the set of /-values involved in defining V*. If

x0(t) is any element of ß*, there is a non-measurable function Xi(t), an ele-

ment of A*, such that^i(/,) =xo(tj),j = 1, 2, • • • . We need only take any non-

measurable function and redefine it, if necessary, &t t = h, k, ■ ■ ■ . Since

r* = A* contains the element Xi(t), it must also contain Xo(t). Therefore

T* = ß*: P*(r*) = 1, as was to be proved.

We shall need the following lemma on measurable functions.

Lemma 2.1. Let f(r, v) be a Lebesgue measurable function defined in the

strip 0 <v < 1 of the (t, v)-plane. Define <pn(t) by:

(2.4) pn(t) = k2~n   if   (k - 1)2"" < / =" k2~n.

Then there is a number c and a sequence of integers \an} such thatf[p„(i) +c, v]

is a measurable function in the strip 0 <v < 1 of the (t, v)-plane and that

t A treatment of measure functions in product spaces can be found in S. Saks, Theorie de

VIntegrale, Warsaw, 1933, pp. 257-263.

% The importance of Fubini's theorem in work of this kind was stressed by P. L6vy (V). Cf. also

the investigations of J. von Neumann on flows, Annals of Mathematics, vol. 33 (1932), pp. 587-642;

esp. pp. 588-589.
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(2.5) lim f[<t>an(t) + c, v] = f{t + c, v)
71—* 00

almost everywhere in the strip.

(i) Consider the function f[pn(t) +s, v], defined in the 3-dimensional

(s, t, v) -region 0 <v < 1. We show first that this function is Lebesgue measurable

in the (s, t, v)-region. It is sufficient to show that if Eu,v is a measurable plane

point set on the (u, v)-plane, and if

[pn{t) + s, v]eEu,v,       O = pn{t) 4- s)

determines the (s, t, vj-set Es,t,v, then EB,t,v is measurable. If EUiV is a rec-

tangle, Es,t,v is certainly measurable, as the direct product of an (s, t) Borel

set with a ^-interval. Then if Eu,v is any Borel set Ea,t,v is measurable. Sup-

pose that Eu,v is a Borel set of measure 0. It has just been shown that £»,<,„ is

measurable, and we shall show the additional fact that it is of zero measure.

The intersection of Eu,v with a line v = const, is almost always of measure 0,

and it is sufficient to show that the intersection of E,,(,„ with a line v = const,

is almost always of measure 0. To show this it is sufficient to show that the

(s, t)-set E,,t determined by p„(t)+seEu is of measure 0 if it is measurable

and if £„ is of measure 0. This is certainly true since the intersection of Ea-t

with a line / = const, is congruent to Eu and so has the same measure. Thus if

Eu,„ is a Borel set, Es,t,v is measurable, and has measure 0 if Eu,„ has measure

0. If £„,„ is any measurable set of zero measure, it can be enclosed in a Borel

set of zero measure, so in this case Es,(,„ is still measurable. Since any measur-

able set Eu,v differs from some Borel set by at most a set of measure 0, if

Eu,v is measurable, Et,t,v is also measurable, as was to be proved.

(ii) For v) fixed, f[pn(t) +s, v] is a measurable function of 5 (except

possibly for a (t, v)-set of measure 0) so by a theorem of Auerbachf if {«„}

is any sequence of integers, there is a subsequence {ß„} with the property

that

(2.6) lim f[pßß) + s,v] = f(t + s, v)
»—»00

for almost all 5. Let I, be any finite s-interval, e any positive number, and let

%n(t, v) be the s-measure of the subset of /„ where

f Fundamenta Mathematicae, vol. XI (1928), pp. 196-197. Auerbach's theorem states that if

F{x) is a Lebesgue measurable function of x and if {r\n} is a sequence of numbers converging to 0,

there is a subsequence { j;^ } with the property that F(x-\-rjan)—*F(x) almost everywhere on the z-axis.

This can be restated in terms of convergence in measure: F(x-\-h) converges in measure to F{x) on

any finite interval as A—>0. (Convergence in measure was defined and discussed by f. Riesz, Paris

Comptes Rendus, vol. 148 (1909), pp. 1303-1309.)
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(2.7) f[pn(t) +s,v] -f(t + s,v)\ = e.

Then £„(/, v) is defined almost everywhere in the (t, v)-strip 0<z><1, is uni-

formly bounded by the length of Ts, and converges to 0 with 1/w.f If Rt.v is

the (t, v)-rectangle [*0<f <*i, 0 <!><!], the integral

which represents the (s, t, v)-measure of the (s, t, z/)-set where (2.7) is true,

restricting (s, t) to [sels, to<t<h], converges to 0 with 1/n. This implies that

f[<Pn(t) +s, v] converges in measure to f(t+s, v) on the (s, t, v)-set IsY.Rt,v de-

termined by sels, (t, v)eRt,v There is then a sequence of integers {an} such

that f[<t>an(t)+s, v] converges almost everywhere on I,XRt,v to f(t+s, v). By

a familiar use of the diagonal process, there is a subsequence {an) of {an}

almost everywhere on the (s, t, t>)-set determined by 0<v<\. Then except

for an s-set of zero measure/[<£<>„(0 +s, v] converges ($ fixed) to f(t+s, v)

almost everywhere on the (t, v)-strip 0<z)<1. The number c of the theorem

can be taken as any number not on this exceptional s-set.

Theorem 2.3. If P*-measure is so defined that a constant c and a sequence

of integers {an} exist for which

for almost all t, there is a space 12 c Q* which is the space of a measurable stochas-

tic process.

Conversely, if there is a measurable stochastic process with space 12 c 12*,

the corresponding P*-measure must satisfy the above condition.

Suppose that the given P*-measure satisfies the condition of the theorem.

It will simplify the notation without restricting generality, if we assume that

c = 0. If x{t)eti*, we define x^{t) by

such that

lim f[pan(t) + s,v] =f(t + s, v)

(2.8) P*{\im x[c + paß)] = x(c + t)} = lj

x^it) = lim inf x[pan(t)],

(2.9)
x^(t) = lim sup a; [*»„(/)].

f Cf. the preceding note.

t The function <£„(i) is defined by (2.4).
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The functions x(t), x[<pn(t) ], xli)(t), xis)(t) determine functions x(t), #[</>„(t) ],

#(<)(t), x(s)(t) on TXfi*. The function #[</>an(r)] is readily seen to be measur-

able onTXß*,«=l,2, • • • , so the functions x(i)(r), ^''(r) are also measur-

able on T X12*. If / is not in an exceptional set 5 of measure 0,

(2.10) P*{x^(t) = x{t) = *<">(/)} = 1.

Let 12 be the set of all elements x(/)e!2* satisfying

(2.11) *«(#) =" x{t) =" *(s)(0

for all values of t not in 5 for which #(i,(/) < + oo , xM(t) > — °o, and otherwise

unrestricted. We shall show that P*(12) = l by showing that if r*=23 IV*

is a sum of neighborhoods covering 12, P*(r*) = 1 necessarily. Let k, k, • • •

be the values of t used in defining T*, of which tai, ta„ ■ ■ ■ are not in 5,f

and let A*be the 12*-set determined by

(2.12) x^(taj) = x{ta) = !"'((„,.),        / = 1, 2, ■ • • .

By (2.10), P*(A*) = 1. If x0(t) is an element of A*, let xi(t) be an element of 12*

equal to x0(t) at k, k, • • ■ and at t = k2~n, for k =0, ± 1, • • • , w = 1, 2, • • • ,

and otherwise restricted only by

(2.13) x^\t) = x0(i)W ^        ^ XoM(t) = «iw0)

at the values of t*S where x^ (t) < + oo, x0w(t) > — so. Then Xi(t)eti: for

t = k2~n, Xi(i) (t) =xi(s)(t) =x1(t) by the definition of the functions #(<)(/), *<*>(/)

so that (2.11) is satisfied; at t = tai, /„„ • ■ • , (2.12) implies (2.11); and for all

other values of t, (2.13) implies (2.11) (the qualifying conditions on the two

are identical). Since Xi(t) eT* there is an integer v such that Xi(t) eT* and since

xi(k) =x0(tj), i=l, 2, • ■ • , this means that x0(i)eT? : A* c r*, P*(r*) = l,

as was to be proved.

The space 12 is thus of exterior P*-measure 1 and so the space of a stochas-

tic process, which we shall now show is measurable. The functions x(i>(r),

xm(t) are measurable on TX12* and therefore on TX12. For fixed r = t they

are equal, with probability 1, by (2.10), except for a /-set of measure 0, so

they are equal to each other almost everywhere on TX12. Since for fixed

r = hS they are equal to x(t) with probability 1, they are finite valued almost

everywhere on TX12. The function x(t) on TX12 then satisfies

(2.11') *<«(r) ^ x(t) = iC'(t)

almost everywhere on TX12 and is therefore equal to x(i)(r) =x(8)(r) almost

everywhere on T X12, proving the measurability of the process.

t The set {tan} may be empty.
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Conversely, if P*-measure is so defined that there is a measurable stochas-

tic process with space 12 c 12*, the function x(t) is a measurable function on

TX12. We apply Lemma 2.1 to this function x(t) defined on \t, x(i)} space

TX12, finding that there is a number c and a sequence of integers {an\ such

that

P{lim x[c + p„n(t)] = x{c + /)} =1,
«—*»

equivalent to (2.8) because of the definition of P-measure.f

The condition of the theorem is in unwieldy form, but has the advantage

of being both necessary and sufficient for the existence of a measurable

stochastic process. The following theorem gives a necessary condition and a

sufficient condition in more usable form.

Theorem 2.4. (i) Let P*-measure be so defined that there is a space 12 c 12*

which is the space of a measurable stochastic process. Then if e > 0

(2.14) P*{ I x(t + h) - x{t) I > e}

is a measurable function of t (h fixed) which converges in measure to 0 on every

finite t-interval, as h—>0.

(ii) If P*-measure is so defined that for every positive e (2.14) converges to 0

for almost all values of t, as h—>0, there is a subspace 12 c 12* which is the space

of a measurable stochastic process.

If P*-measure is so defined that the P*-measure of a neighborhood (and

so of any P*-measurable set) is independent of translations of the /-axis, the

conditions (i) and (ii) become identical and the resulting condition is then

both necessary and sufficient.

We first prove (i). By hypothesis x(t) is a measurable function of {r, x(t)}.

Then | x(r + h) —x(t) | is measurable, so by Fubini's theorem

(2.14') P{ I x(t + h) - x(t) I > «}

is a measurable function of /. The function of (2.14) is equal to this function

for all /, h, and is therefore also measurable in /. The element x(t) of 12 is

measurable, with probability 1. Applying the theorem of Auerbach as in the

proof of Lemma 2.1, if I is any finite /-interval, x(t+h) converges in measure

on I to x(t) as h—>0; i.e., if £[#(/), h] is the Lebesgue measure of the /-subset

of I where | x(t+h) — x(t) \ >e, £ is bounded by the length of I and con-

verges to 0 with h. The measure of the T X 12-set (restricting r to I), where

I x(r+h) — x(t) I >e, is

f The lemma was stated, for convenience, for a function /(r, v) defined on (t, n)-space, but the

proof holds for this case also, with no essential change.
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(2.15) J £[*(*), h]dP,\

which converges to 0 with h. The measure of this set can also be expressed as

(2.16) jp\\x(t+h)~ x(t) I > .«}«,

and the convergence of this integral to 0 with h, remembering the identity

of (2.14) and (2.14'), is equivalent to the statement of the theorem.

Next we prove (ii). We shall show that P*-measure satisfies the condition

of Theorem 2.3 with c = 0 if (ii) of the present theorem is satisfied.

Consider the function x[<p„(t)], inducing the function #[</>„(t)] on TXfl*.

The latter function is measurable on T X ß*. The hypotheses of (ii) imply that

#[</>„(/)] (t fixed) converges (to x(t)) in measure almost everywhere on the

/-axis, and by the device used in the proof of the first part of this theorem,

this means that x[pn(r)] converges in measure on TXO* for r restricted to

any finite interval I. There is then a sequence of integers {«„} such that

x[0«„(t)] converges almost everywhere on /Xß*, and by the diagonal pro-

cedure, a subsequence {a„} of {an} can be obtained for which x[^>an(r) ] con-

verges almost everywhere on TXß*. By Fubini's theorem, x[<pan(t)] (t fixed)

converges with probability 1, necessarily to x(t), for almost all values of /,

as was to be proved.

Theorem 2.5. Let P*-measure be so defined that tn-^t implies

(2.17) P*{lim x(tn) = x(t)} = 1,

for all values of t except possibly those in a set S of measure 0. Then

(i) there is a measurable stochastic process with space ti, whose elements x(t)

are continuous almost everywhere on the t-axis, with probability 1, and x(t) is

continuous att = t0 with probability 1, for almost all values of t0;

(ii) every quasi-separable stochastic process with space flcß* is measurable,

and its elements fulfill the regularity conditions of (i);

(iii) if the exceptional t-set S is empty, and if there is an everywhere dense

denumerable set {rn} with the property that

(2.18) lim P*{L.U.B. | x{r,) \ S k\ = 1,

for every finite interval I, a quasi-separable process with space fl c Q* exists (to

which (ii) can then be applied).%

f The integral of a P-measurable function/[x(t)] over a P-measurable set A will be denoted by

JA{[x(t)]dP.
t Cf. Levy (II, p. 345).
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First we prove (i). By Theorem 2.4, (ii) there is a measurable process with

space Q, whose elements x(t) satisfy (2.11') almost everywhere onTXß. Let

x„(t), (xn(i)) be defined as L.U.B. x(r,) (G.L.B. x(rj)) for all numbers rt of

the form p2-" (ju = 0, +1, • • • , v = \, 2, • • • ) m the interval

k - 1 ft + 1
(2.19) -= r = -,

2" 2"

where k is determined by

k k + 1
(2.20) — ^t<-

2" 2"

Then x„(t), xn(r) are measurable on TXß. Define x(t), xit) by

*(/) = lim öcn(i),       x(i) = lim x„(/).
n—*» n—*oo

The functions ä(/), x(/) are respectively the upper limiting function of xw(t)

and the lower limiting function of x{i)(t). The functions x(t), x(t) are measur-

able onTXß and satisfy

(2.11") x(t) ^ *<*>(t) = *(r) = *<s'(r) = x(t)

almost everywhere on TXß. If x*(t), x*(t) are respectively the upper and

lower limiting functions of x(t), (2.11") implies

(2.11"') x(t) = x*(r) ^ *(r) = X*(t) ^ x(r)

almost everywhere on TXO. Applying Theorem 1.3, if t(S, there is equality

of the extremes in (2.11"') for r = /, with probability 1. Then there is equality

almost everywhere onTXß. The equality of x*(t), x*(t) at t0 is the condition

of continuity at /0. Applying Fubini's theorem, we have the statement (i) of

Theorem 2.5.

We now prove (ii). If P*-measure has the property described, and if ß

is the space of a quasi-separable process, let {rn} be a sequence of numbers

with the properties described in Theorem 1.2. Let x(t), x(t) be defined as in (i),

in terms of the values of x(t) at the points {rn), which no longer have the

special form prescribed there. Then if x(t)eQ,, x(t), x(t) are its lower and upper

limiting functions respectively, whose equality is the condition of continuity.

We have on

(2.21) x(t) = x(t) = x(t)

for all values of /. Now for fixed r, x(t), x(t) are equal with probability 1

(except for reS), applying Theorem 1.3 to the present stochastic process.
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Then by Fubini's theorem, x(t) =*(r) almost everywhere on TXfl, so x(t),

equal to a measurable function almost everywhere onTXfl, is itself measur-

able on that space. The process with space 12 is thus measurable, and the con-

tinuity properties of the elements x{t) are deduced by applying Fubini's

theorem, as in the proof of (i).

Finally we consider (iii). Suppose that the conditions of (iii) are satisfied.

Form the functions x{t), x(t) as in (i), using the sequence {r„} with the prop-

erties described in the statement of (iii). Let 12 be the space of all elements

x(i) satisfying (2.21) for every value of /. We shall show that P*(12) = 1 by

showing that if T* =^,1T* is a sum of neighborhoods covering 12, P*(T*) = 1

necessarily. Let h, k, • • • be the values of / used in defining T*, and let A* be

the 12*-set determined by

L.U.B. I x(rj) I g k.
Wf\<m

The set

CO CO

A0   = II S A*,n
n=l

then has P*-measure 1. It consists of the elements x(t) which are bounded

functions (considered defined only at the points {/,}) on every finite interval.

Let A* be the subset of A0* for which

x(tj) = x(tj) = x{t,)   \ --12

x(ff) = x(ri) = }

The set A* also has P*-measure 1. If *0(/)eA*, let Xi(t) be an element of 12*

equal to x0(t) at the points      and {r, } and otherwise restricted only by

Xl(t) =  X0(t)  ^  Xi(t)  ^ X0(t) = Xy{t).

Then Xi(t)eQ c T*. Since Xi(t)eT* there is an integer v such that Xi(t)eT*, and

since xi(k) =x<s(t]),j'=\, this means that x0(/,)er*:A* c r*:P*(r*) = 1, as was

to be proved. The sequence {rn\ can be used as the sequence of /-values re-

quired by the condition of quasi-separability (cf. Theorem 1.2).

Theorem 2.6. Suppose that P*-measure is so defined that for every number t

and positive number 5,

(2.22) P*\x(t + 8) - x(t) £ 0} - 1.

There is then a finite or denumerable sequence of points d\, d2, • • • such that

if 12 is the set of all elements x(t) of 12* which are monotone non-decreasing func-

ions and continuous on the right, except possibly at d\, d2, • ■ • , P*(12) = 1: 12 is
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the space of a quasi-separable measurable stochastic process. If t^d\, d%, ■ • ■ ,

x(t) in Q, is continuous at t0 with probability l.f

(i) Let h, h, ■ ■ ■ be any sequence of numbers. If /,•>/&,

(2.23) P* {*(*/) = x{tk)\ = 1.

Since the set of all pairs (/,-, tk) is denumerable, x(t), considered as defined only

at h, h, • ■ ■ is monotone non-decreasing, with probability 1 (in terms of

P*-measure).

(ii) Evidently if e > 0 and if a < b,

(2.24) P*{x(b) - x(a) = e}

is monotone non-decreasing in b for fixed a and in —a for fixed b. Then if

a<t<b and if a—>/, b—+t the expression (2.24) converges to a limit which is

unaltered if a, b are restricted to run through rational values. Let S(e, 77) be

the /-set for which this limit is at least ?j>0. Let A* be the subset of Q* con-

sisting of the elements x(t) which are monotone non-decreasing when con-

sidered only for rational /-values. By (i), P*(A*) = 1. If t0e S(e, rj), x(r) (r ra-

tional) has a jump of magnitude e at t0, if x(t) is in some set M * of /""-measure

at least r). The set S(e, rj) has only a finite number of points in common with

any finite interval I: otherwise, if tjeI S(e, rj), j = l, 2, ■ ■ ■ , there is a

/""-measurable set M* of /""-measure at least ?? each element of which is in

infinitely many of the sets M*,| and if x(t)eM*, x(r) has infinitely many

jumps in / of magnitude e, an impossibility. The set S(e, r{) is therefore at

most denumerably infinite, and the set {d,} of the theorem is the sum of the

sets S(l/m, l/n), m, n= 1, 2, • • • .

(iii) We show that P*(Q) = 1 by showing that if T* =^llTn* is any sum of

neighborhoods covering fl, P*(r*)=l. Let h, /2, • • • be any everywhere

dense sequence which includes the sequence {dn} and those values of / used

in defining the neighborhoods of I"", and let A* be the subset of ti* consisting

of those elements x(t) which, when considered defined only at h, /2, • • • ,

are monotone non-decreasing. By (i), P*(A*) = 1. If x(/)eA*, x(t) (considered

defined only at h, /2, • • • ) is either continuous on the right at /,• or has a

jump there. If tj^dy, v = \, 2, • • • , the first case is true, with probability 1.

Then if A0* is the subset of Q* consisting of those elements x(t) which are

continuous on the right (considered defined only at h, Z2, • ■ • ) at each point

h, /2, • • • not in the set {dn}, P*(A0*) = P*(A*) = 1. If *„(/) eA„* define xx{t) by

t This does not mean that x(t) in ft is continuous except at di, d2, ■ ■ ■ . The probability that x(t)

is continuous at any given point t0 may be 1 for every value of to, although at the same time the proba-

bility that x(t) is continuous in an interval is less than 1. An example of this is given below. The last

statement of Theorem 2.6 implies that the condition on P*-measure of Theorem 2.5 is satisfied.

% The set M* can be defined asXI™_1 YL°n M *.
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XiO) = lim *(>(/„)f if t?*ti,        7 = 1, 2, ■ ■ • ,

(2.25)
xi(tj) = x<>(tj), j = 1, 2, • • • .

Then «i(/) is monotone non-decreasing and continuous on the right, except

perhaps at t = dhj = 1, 2, ■ • ■ , so#i(/)eQ. For some »», #i(/) eT*. Since r* is de-

fined by inequalities on x(t) at certain of the numbers h, t2, ■ ■ ■ , xi(t)eT* im-

plies that x0(t)eT*. Therefore A0 c r*:P*(r*) = 1, P*(ß) =1.

(iv) The numbers {tn} required in the definition of quasi-separability (cf.

§1) can be taken as the rational numbers in the interval. The process is there-

fore quasi-separable. Let t0 be any value of t not in the sequence {dn}. Then

lim x(tn) = x(t0 + 0),
hü,

if x{t)eti, and at the same time x(t„) converges in measure on ß to x{ta), so

x(tn) converges to x(tQ) =x(t0+0) with probability 1. Similarly

lim x(tn) -   x(to — 0) = x(t0)

with probability 1, and we can say in general that if tn-*k,

(2.26) P*{ lim x(tn) = x(t0)} = P{ lim x(tn) = x(/0)} = 1.
n—*« n—* *

The P*-measure thus satisfies the condition (ii) of Theorem 2.5, and the

process is therefore measurable. We have proved that

(2.27) x(t0 + 0) = x(h - 0) = x(h)

on with probability 1, if to^di, d2, ■ ■ ■ , completing the proof of the theo-

rem.

The following examplej of a stochastic process of the type just discussed

has no point dn, and so x(t) is continuous, with probability 1 at every value

of t. If ii</i+51g/2< • • • ^tn<tn+8„, and if vit • • • , vn are any positive

integers or 0, we define P*-measure by

P*{x(0) = 0} = 1,

(2.28) . .       " 5/
P*{x(tj + 5.) _ x{tj) =Vj>      J = 1, ,-•,»}= II e->i^--

1 Vj\

The elements of ß are monotone non-decreasing and everywhere continuous

on the right. It can be shown that the subspace ß0 of ß whose elements x(t)

all vanish at t = 0, and are constant except for jumps of magnitude 1, is also

f The notation /„ f t (t„ J. /) will be used to denote approach from below (above),

t Cf. Khintchine (III, pp. 23-24).
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of exterior P*-measure 1. This space ß0 is the natural space of the time series

with Poisson distribution.

Let M* be an Q*-set in the Borel system over the neighborhoods (1.1) with

t,^r,j = 1, ■ ■ ■ ,n, but otherwise unrestricted. If Q is the space of a stochastic

process, and if A is P-measurable, P(A-MT) is a completely additive non-

negative function of the sets Mr = M* • fi (r fixed), and P(MT) = 0 implies that

P(A ■ MT) = 0. There is therefore a P-measurable function Pr,A [x{t) ] such that

for all Mr. The function PT,A is uniquely determined up to a set of P-measure

0 and Pr,a>k defines an MT-set. This function Pr,A is called the conditional

probability function of A if x,(t) is known for /=Y.

Theorem 2.7. If PT,i.is the conditional probability function of A when x(t)

is known for t^r, and if <f>[x(i)] is the characteristic function of the set A,j

t„—»°o implies

with probability 1.

The proof of this is the same as that for the corresponding theorem on

discrete stochastic processes, proved by Levy (IV, pp. 88-89), and will there-

fore be omitted.

Let Tf be the transformation of Q* taking the element x(t) into the ele-

ment x(t+s). This point transformation takes P*-measurable sets into P*-

measurable sets. If P*-measure has the property that the transformations

{Tf} are measure preserving, the P*-measure, and any process with space

flcSl* with the corresponding P-measure, will be called temporally homo-

geneous. In the study of temporally homogeneous processes, a natural tool is

the ergodic theorem. The following lemma will make its application possible.

Lemma 2.2. Let f\x(t) \ be a P-measurable function defined on the space Q,

of a temporally homogeneous measurable stochastic process, and suppose that

TfQ = Qfor all values of s. Then

is a measurable function in {t, x(t)} space TXß.

t The existence of such a density function was proved by Nikodym, Fundamenta Mathematicae,

vol. IS (1930), pp. 168-179. The discussion here is a specialization of one by Kolmogoroff, (V, pp.

41-43).

t The characteristic function of a point set is denned as 1 on the set and 0 on its complement.

(2.29)

(2.30) lim PT„,a[*(*)] = P[x(t)]

fHt + r)] =f[T*x(t)]
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The statement that the process is measurable gives the lemma for

f[x(i)]=x(0). The proof in the general case consists of showing that the

lemma is true for/[#(/)] the characteristic function of a P-measurable set

(going from neighborhoods to more general sets), and then approximating /

in the general case by linear combinations of such functions.

If/[#(/)] is as described in the lemma, f[T*x(t) ] is Lebesgue measurable

in t (for x(f) a fixed element of Q), with probability 1. If we suppose that the

integral

f f[x(t)]dP
«* S!

exists, the ergodic theorem states that

1 rz
lim — I   f[x{t + r)]dr

z—»°o Z> J o

exists, with probability l.f

3. Differential stochastic processes. If P*-measure is defined in such a

way that for h<t2< ■ ■ ■ <tn

X{h) — X(h), • • • , X(tn) —

form an independent set of chance variables, J the process will be called a

differential process. § The time series discussed above (p. 122) is an example

of a differential process.

An ß-set determined by

(3.1) a, < x{tj + Si) - x(tj) < bj, j = 1, ■••,»,(- oo = a,- < hi ^ +oo)

will be called a differential neighborhood. An Q-set in the Borel system of

sets over the differential neighborhoods, or differing from such a set by a

subset of such a set which is of P-measure 0, will be called a differential set.

A function / [x(t) ] will be called measurable on the differential sets if the set

defined by f>k is a differential set for every number k.

t Cf. Doob (I); Khintchine (II, pp. 613-615); Wiener (I, Chapter X); Khintchine's treatment

is open to the objection that he does not justify integrating his chance variables with respect to t.

Doob (II, pp. 763-765), Hopf (I, p. 95), and Khintchine (I) applied the ergodic theorem, in

the discrete case, to derive the law of large numbers.

A simple presentation of the ergodic theorem, first proved by Birkhoff, was given by Khintchine

(Mathematische Annalen, vol. 107 (1933), pp. 485-488).

% This means that for any real numbers oi, • • • , an

n

P*{x(tj)-x(li_1)>ai,j=2, •••,«} =J\P*{x(t1)-x(ti_l)>ai}.
j=2

§ Differential processes have been discussed by Bachelier (I, II, III), Khintchine (III, pp. 68-75),

Kolmogoroff (I, II), Levy (II, III), and Wiener (I, Chapters IX and X).



1937] STOCHASTIC PROCESSES 125

The definition of temporal homogeneity given in the preceding section is

not the most convenient one, when differential processes are under investiga-

tion. Throughout this section, we shall understand by the temporal homo-

geneity of a differential process merely the invariance of the /""-measure of

differential sets under the transformations {Tf).

It will be convenient to define a transformation PSA on the P-measurable

sets of the space ß of a stochastic process by

tsa = q-t*a*,

where A* is a P*-measurable set satisfying A*-fl=A. If Tf takes sets of P*-

measure 0 into sets of P*-measure 0, PSA is uniquely determined up to a set

of P-measure 0. If Ps*ß = Q,

rsA = qt*a* = t*(qa*) = t*a,

so in this case Ts becomes Tf on the P-measurable sets. If the process is a

temporally homogeneous differential one, PSA can be defined as above for A

any differential set, and the definition will be unique, up to differential sets

of P-measure 0.

Theorem 3.1. Let BT be the Bor el system of sets over the Q,-sets determined

by the differential neighborhoods (3.1) with tj, /, + 5,>t, j =1, ■ ■ ■ , n, where ß

is the space of a stochastic differential process. Then if A is a P-measurable set

which is in BTfor all values of r, P(A) = 1 or P(A) =0.f

Using the notation of Theorem 2.7, if Mr is P-measurable,

(3.2) P(A ■ MT) = P(A) • P(MT).

Then it follows that if P(A) >0, PTiA = P(A) almost everywhere on fi, so that,

by Theorem 2.7, P(A) = 1.

Using this theorem, if 2„—>°o, the probability of convergence of x(tn) is

either 0 or 1. Or by a simple transformation of the /-axis, if tn approaches t

from one side, the probability of convergence is either 0 or 1.

Theorem 3.2. Any differential set, invariant {up to a set of P-measure 0)

under the transformations {Ts) on the differential sets of Q, the space of a tem-

porally homogeneous differential stochastic process, has P-measure 0 or l.J

t Cf. Jessen (I, pp. 270-271), Kolmogoroff (III, pp. 60-61), and L6vy (IV, pp. 88-89), for the
analogous theorem on discrete stochastic processes.

% Another way of stating this theorem is that the transformations { T, j are metrically transitive

over the collection of differential sets. The corresponding theorem was proved for discrete processes

by Doob (II, pp. 761-763) and Hopf (I, p. 95). The method used here can also be used in that case.
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Let a be a differential set of p-measure p invariant under the transforma-

tions {ps}. If 0 <p < 1, there is a number e>0 so small that

(3.3) (p + e)2 < p - 2e.

Let r be a finite sum of differential neighborhoods satisfying

(3.4) p(r) <p + e,       p{a-cr} <e.f

Suppose that the /-values involved in defining T are all in the interval a<t<b,

and let r' = p6_or. Then

(3.5) p(r') = p(r) < p + e, p(r-r') <(P + e)2, p(a-Cr') < e,

so

(p + £)2 > p(r-r') ^ p(att')

^ p(a) - p(a-cr) - P(A-cV) > p - 2t,

contradicting (3.3).

Lemma 3.1. Let A1; A2, • • ■ Je a sequence of independent chance variables.

If there is a chance variable A such that

a-£a,
i

is independent of the set {Ai, • • ■ , A„} for n = 1, 2, • ■ • //zere is a sequence of

constants {mn} such that

(3.7) lim    2 Ai — mn
n-><* L   1 J

exists and is finite with probability 1.

The existence of constants {mn} with the property described was proved

by Levy (I, p. 132).

Theorem 3.3. Choose m{t) to satisfy

(3.8) I   arctan [x(t) - m{t)]dP = 0{

for each value of t, and set y(t) =x(t) —m(t). Then if the process is a differential

one, and if t is any real number, there is a chance variable y(t — 0) (y(t+0)) such

that tn] t (tn i t) implies

t The notation cF will be used to denote Q—T. The existence of T can be proved, for example,

by transfinite induction.

t For t fixed the integral is a monotone decreasing function of m, varying from x/2 to — 7r/2 as m

varies from — a> to + oo, so there is a unique value of m satisfying (3.8).
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(3.9) lim y(tn) = y(t - 0),        lim y(tn) = y(t + 0)
%—* oo n—* oo

with probability 1. Except at most at a denumerable t-set,

y(t - 0) = y(t) = y(t + 0)

with probability l.f

Suppose that tn T t. We can assume that h<fe < • • • . Then

n

(3.10) y{Q - y(h) = £ A,,      A, = y('«-i) - y(/,).
l

Taking the variable A of Lemma 3.1 as y(i) —y(h), it follows that a sequence

of constants {mn} exists such that

(3.11) lim [y{Q - mn] = y
n—*oo

exists and is finite with probability 1. If lim sup,^!mn\ = co, some subse-

quence of {arctan y(tn)} must approach — tt/2 or t/2, contradicting

(3.8') I   arctan y{t)dP = Q.%

Unless the sequence {mn} is convergent, there are two subsequences {man},

{mon} converging to different finite limits m', m" respectively. Then

(3.12) lim y(taJ = y + m',       lim y{tK) = y + tn",
ft—*W »—+oo

contradicting (3.8) again. Thus lim„..00w„ exists and is finite, implying the

same (with probability 1) for lim„ ..„,;>>(/„). The latter limit must be independ-

ent of the particular sequence {tn} chosen since any pair of such sequences

can be arranged in a single sequence. The limit y is thus the y(t — 0) of (3.9).

The other half of (3.9) is proved in the same way. We shall need the fact that

(3.8") I   arctan y(t - 0)dP = f arctan y(t + 0)dP = 0.

To prove the last part of the theorem, define at(v) by

t This theorem is due to Levy (II, pp. 342-343). Levy centers his distributions by a different

function of t.

X We shall use repeatedly in this discussion the theorem of Lebesgue that a uniformly bounded

convergent sequence of measurable functions denned on a measurable set of finite measure can be in-

tegrated term by term.
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(3.13) aT{v) = \je* ivly(t)-v(.0)](ip t > 0.

Then at(v) is non-negative and continuous in v. Sinceat+h(v), h>0,t>0, is

the product of at(v) (which is less than or equal to 1) and a function obtained

similarly from the distribution of y(t+h) — y(/),t at(v) is monotone non-in-

creasing in /. It can readily be shown that at any /-point where y(t — 0) — y(t),

y(/+0) —y(t) are not identically constant, with probability 1, a,(v) must have

a jump for some rational value of v. Then the set of such points is at most

denumerable. Moreover if either of these two differences is identically con-

stant with probability 1, the constant must be 0, because of (3.8"), so the

theorem is completely proved, for />0. A similar discussion can be given for

/<1, and the combination of the two results gives the theorem in full.

Corollary. If the process of Theorem 3.3 is measurable, m(t) is a Lebesgue

measurable function, and the process whose elements are {y(f)} is a measurable

differential process.

The inequality m(t)<k is equivalent to

(3.14) I   arctan [*(/) - k]dP < 0.

Now arctan [x(r) — k] is a measurable bounded function in {r, x{t) }-space

TXfi, so the integral of (3.14), a Lebesgue measurable function of / (Fubini's

theorem), is negative on a Lebesgue measurable /-set. The function m(t) is

thus Lebesgue measurable. Let Q' be the space whose elements are the func-

tions y(t). We define P'-measure by

(3.15) P'{y(tj) <ß,;j= 1, •••,»} - P{x(tj) 1, ■ ■ ■ ,n),

for any h, • • • , In, Pi, • • • , Hn- It is readily seen that in this way a measurable

differential stochastic process with space ß' is defined.

The choice of the function m(t) is to a certain extent arbitrary. If

OTi(/) —m(t) is continuous, Wi(/) would serve as well for the purposes of Theo-

rem 3.3. If, whenever /„ T / or /„ 11,

lim x{tn), lim x(tn)
tnU tnit

t This follows at once from the fact that if / and g are bounded P-measurable functions, which

are independent in the usual sense of probability,

ff-gdP=ffdP-fgdP,
a fact which in turn is simply the fact that an iterated integral, if the limits of integration are con-

stants, is the product of its component integrals.
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exist and are finite with probability 1, and if the differences x(t —0)— x(t),

x(t+0) —x(i) can never be identically constant with probability 1 unless the

constant is 0, the process will be said to be centered If a process is centered,

the proof of Theorem 3.3 shows that at most a denumerably infinite set of

/-values are points of "fixed discontinuities" (where P{x(t—0) = x(t)} <1 or

P{x(t+0) =x(t)} <1). Even these cannot occur if the process is temporally

homogeneous. The P*-measure of a centered differential process thus satisfies

the condition of Theorem 2.5 on P*-measure, so a measurable process always

exists with the same measure relations. This result will be considerably

strengthened by Theorem 3.8. The above corollary can be restated as fol-

lows. If the process of Theorem 3.3 is measurable, m(t) is a Lebesgue measurable

function, and the process whose elements are {y(t}} is a centered measurable

process.

Theorem 3.4. If x(t) is the general element of a quasi-separable differential

stochastic process with the property that the integrals

(3.16) f [x(i) - x(0)]dP,       f [x{t) - x{Q)YdP
Ja Ja

exist for all t, and if the first vanishes identically, a? is monotone non-decreasing

in tfor t>0, and if T>0, p>0,

(3.17) P{ L.U.B. I x(t) - x(0) \ > p} < o-S/m2.
o<i<r

Since if 5 > 0

(3.18) <r]+s = o-2 + f [x(t + 8) - x{t)fdP,
J a

01+s ̂ o-<2. The ß-set A where

(3.19) L.U.B. I x{i) - x(0) I > ju
0<KT

is the set where

(3.20) L.U.B. I x(X,-) - x(0) | > p

for some sequence {X„} in 0</<P, since the process is quasi-separable. The

set A is P-measurable and

(3.21) P(A) = lim P{max | *(X/) - x(0) | > j*}.

By Kolmogoroff's generalization of the Tchebychefl inequality (III, p. 310,
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Theorem 1), the P-measure of the rath set on the right is at most <r(w)2/V2,

where if X„ = max,s„X}-, °"(w)2 = (täv Then

(3.22) P(A) =" lim sup <r(n)2/p2 =" <tt*/p2,

as was to be proved.

This theorem could be used to derive the analogue of Theorem 3.3 in the

special case being considered. Under the hypotheses, the process is already

centered.

Theorem 3.5. Let BT be the Bor el system of sets over the H-sets determined by

inequalities of the form

(3.23) a,- < x{tj — 8,) — x(tj) < bjy   Sj > 0,      § r,   j = 1, • • • , »,

where ß is the space of a centered temporally homogeneous differential stochastic

process. Let s[x(t)] be a P-measurable function with the property that the Q-set

determined by s^t is in BT for every number t. Let

y(t) = x(t + s[x(t)}).

(i) If 5 [x(t) ] takes on at most denumerably many values,

(3 24)     P^y(ti + Si) ~ y{t,) < ßiJ = l' ' ' ' ' ^

= P{x(tj + Sj) - x(tj) < nhj - 1, • • • , n\

whenever 0<h<t\-\-hi^t2< ■ ■ ■ ^tn<tn-\-8n.

(ii) If the process is quasi-separable, the conclusion of (i) holds without the

restriction that s take on at most denumerably many values.]

(i) If 5 assumes only the values ah a2, • ■ ■ on sets Ai, A2, • • • respectively,

andif 0 <t1<h+81^h< • • ■ =/„<Z„+5„,

P{y(tj + Sj) - y{t,) <|»a/« 1,   • • ,«}

= X) P\s = a»        + a' + Si) — x<Ji + a') < Pitj     if * - * i *»}

(3.25) '     . ,     , ,
= 2^ P\s = ar\-P\x{tj + a, + 8,) - x(tj + a,) < \xj,j = 1, • • • , n)

= £ P{s = a,}-Plxitj + Sj) - x(tj) < ßj,j = 1, • ■ • ,n\
v

which is equivalent to (3.24), since 22>P {s = a,) =1.

(ii) Define sn by

(3.26) sn=(k-l)/n   if   (k - l)/n = 5 < k/n,      k = 0, 1, • • • .

Then \sn — s\ ^l/n. The hypotheses of the theorem imply that

t Doob (iii) proved this theorem, in a somewhat more general form, for discrete processes.
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lim x(t') = x{t)
»'->t

with probability 1 (/ fixed). There is therefore a positive function 8(e, 57), in-

dependent of /, such that if / is fixed, and if « >0, 77 >0,

(3.27) P{ L.U.B. I x(t + 8) - x(/) | < e} > 1 — 17.
I«l<«

By (i) the distribution of

x(sn + t 4- 8) — x(sn + /) ,       5 > 0,

is the same as that of

*(/ + 8) — x{t),

if t>\/n, and evidently the elements x(sn+t) (n fixed), />l/ra, can be con-

sidered as the elements of a quasi-separable stochastic process, so

(3.28) PjL.U.B. I x(sn 4-/4-5) - x(sn 4- /) | < e} > 1 - 77, (/ > 1/n),
\i\<>

»= 1. 2,

If v = v(e, 77) is so large that \/v < 8,

(3.29) I x($ 4- /) - x(s, 4- /) I = I x(s, + t + S — S,) — x(s, + /) | < e, / > l/v

with probability at least 1 —77: the sequence x(sn + i) converges in probability,

i.e., in measure on fl, to x(s+t), if />0. Then y(t) —x(s+t) is readily seen to

have the same differential distribution as x{t) (/>0), another way of stating

(3.24).
We consider now a differential process for which the integrals (3.16) exist,

the first vanishing identically. We shall assume for greater simplicity, that

there are no fixed /-points of discontinuity, meaning in this case that o-,2 is a

continuous function of /. Then if V(t) is defined by

(3.30) V(t) = a?, t > 0; V(t) = - c? , / < 0; 7(0) = 0,

we shall define a chance variable (i.e., a P-measurable function)

(3.31) j fWx(t)

for any Baire function/(/) for which

(3.32) J /(/)W(/)

exists as a Lebesgue-Stieltjes integral.
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Let /(/) be the characteristic function of an open bounded /-set, the sum

of intervals a,j<t<bj, j = \, 2, • • • . Then we make the definition

/CO

f(t)dx(t) = X - *fo)j.

where the series on the right must converge, since the terms are independent

chance variables whose means are 0 and whose standard deviations squared

form a convergent series :f

(3.34) £ f [*(&,-) - x(a,)]*dP =Z[7(ft,-) - 7(a,-)].
i J b i

We note that

(3.35) J j jf(t)dx(t)^ dP = J dV{t).

If B is any bounded Borel set, there is a monotone sequence Oi d 02 a ■ •

of bounded open sets whose product includes B and differs from it at most by

a set of F-measure 0; i.e., by a set on which JdV(t) = 0. If /,/i,/2, • • • are the

characteristic functions of B, Oi, 02, • • • , respectively,

(3.36) J        fn(t)dx(t) - Jfm(t)dx(t)^ dP = j     dV(i), m>n,

so that ffn(t)dx(t) converges in the mean on ß. It can be shown that the limit

is independent of the sequence {0„} chosen (disregarding ß-sets of P-measure

0). This limit is denoted by (3.31), and (3.35) remains true, substituting B

for 0.

If /(/) is a Baire function taking on only a finite number of values, and

equal to 0 outside some finite interval,/(/) is a linear combination of functions

of the type just treated, and (3.31) is defined as the corresponding linear

combination of integrals. Equation (3.35) becomes

(3.35') f { JV(0<**(0j *dP = J°7(OW(0.

If /(/) is any Baire function for which (3.32) exists, it can be approximated

in the mean by Baire functions {/„(/)} each of which takes on only a finite

number of values:

(3 /+00 /» +00lUt) -f(t)]*dV(t) = lim   I     [/„(/) - fm(t)]*dV(t) = 0.

f Kolmogoroff (III, p. 314, Theorem 7).
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Then

(3.38)

j  { j fn(t)dx(t)  ~ j fm(t)dx(t)^ dP

so that the sequence {ffn(t)dx(t)} converges in the mean. The chance variable

(3.31) is defined as the corresponding limit, which is readily seen to be inde-

pendent of the approximating sequence, neglecting fl-sets of P-measure 0.

Theorem 3.6. If fi(i), f2(t) are Baire functions, and if

(3.39) j f/(t)*dV(t)< • ,     j = 1, 2,

then

(3.40) JfAt)dx(t), Mt)dx(t)} dP

are defined, and

(3.41) J" j J" Mt)dx(t) ■ j Mt)dx(t)}dP = j+ Mt) -Mt)dV(t). f

We have already defined ffj(t)dx(i). Equation (3.35') is a special case of

(3.41) with/i =/2 =/, / taking on only a finite number of values, and (3.35')

is true whenever the integral (3.32) is finite , since the corresponding equality

is true for the approximating functions. Equation (3.41) is deduced from

(3.35') by writing (3.35') for/i-f/2,/1—/« and finding the difference between

the two equations thus obtained.

Theorem 3.7. Let<pi(t), fait), ■ ■ ■ be a complete normal orthogonal set with

respect to the measure function V(t), for functions defined on the interval a^t^b

(— co_"a<£^4-co). Then if

(3.42) $„[*(/)]= f pn(t)dx(t),

the functions {4>„} form a complete normal orthogonal set for the space of func-

tions (3.40) on Q with f(t) =0 if t<a, t>b:

f The integral over ß in (3.41) exists, by Schwarz' inequality, since the second pair of integrals

in (3.40) exists.
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(3.43) f #« #»^P-8»,»,

and

/n f(t)dx(t) = l.ijn.Ef.*„t
JV—=o 1

(3.44)

Cn = J|*n- ff(t)dx(t)\dP - f fMfWV(t).

In particular

n

x(t) — x{a) = l.i.m. ^ c„(t)$„,

(3.45)

C.(t) = f {*»-[*(t) - x(a)]}dP = f pn{t)dV(t).

The functions {<!>„} form a normal orthogonal set since by (3.41),

(3.46) f *n *mdP = f pn-pmdV(t) = 8n,m,
J n ''a

and (3.44) follows by applying (3.41) to

n

fI — f t = / —  X Cn<rV-
1

If /(/) is taken as the characteristic function of the interval a^t^r, (3.44)

becomes (3.45).

The elements of the process have thus been made to depend upon a de-

numerably infinite set of parameters <J>i, $2, ■ • • . The discussion given here

is a generalization of one given by Wiener, who supposes that x(t + 8) —x(t)

has a Gaussian distribution with zero mean and standard deviation propor-

tional to (| ö|)1/24 Wiener defines the elements x(t) by (3.45), taking advan-

tage of the fact that in this case there is a subset ß0 of ß* of P*-measure 1

on which the series in (3.45) converges to a continuous function of t.§

Theorem 3.8. Let P*-measure be so defined that Q* is the space of a centered

differential stochastic process. Let ß0 be the space of elements x(t) which are con-

f Limit in the mean will be denoted by l.i.m.

t Cf. Wiener (i, Chapter ix).

§ Cf. our proof of Theorem 3.9.
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tinuous except possibly for discontinuities of the first kind,] and everywhere con-

tinuous on the right except perhaps at fixed points of discontinuity. Then

P*(J20) = 1: fi0 is the space of a quasi-separable measurable differential stochastic

process.

If Q is the space of a quasi-separable centered differential stochastic process,

the elements x(t) are everywhere continuous, except possibly for discontinuities

of the first kind.%

The first part of the theorem is really an existence theorem, and therefore

the second part would have no content unless the first part, or some similar

statement, were true.

It will be sufficient to prove the theorem under the assumption that there

are no points of fixed discontinuity (the denumerably many jumps at such

points in any finite interval can be subtracted out). Suppose then that Öcl2*

is the space of a centered differential process, and that tn—>t implies that

P* {lim x{Q = x{t)) = 1.
«—►00

(i) Let R: {rn} be a sequence of numbers satisfying the following condi-

tions: R includes the rational numbers; if p,-eR,j = l, ■ ■ ■ , n, (pi + p2± ■ ■ ■

+ p„)ei?. The set R is everywhere dense. Then by Theorem 1.3,

(3.47) lim x(r) = x{t) (rtR)
r—*t

with probability 1.

The oscillation of x(r), (rtR) at / is defined as

(3.48) lim     L.U.B.    \ x(r) - x(r')\.
.—0 \t-r\ + \t-r'\<e

This oscillation is 0 almost everywhere on Q, for each value of t. Let / be

any closed /-interval a^t^b. The set

00

(3.49) II Z { I x(n) - x{rk) I > a - l/v},      a > 0,
v=\ ri|<l/»

a-l/j><r j,rk<b+l/v

consists of the elements x(t) for which the oscillation of x{r) is at least a at

some point of I. This set is P-measurable, and its complement is also: if

Sa [(t) ] is the t-set at which the oscillation of x(r) is at least a, the Q-set of ele-

ments for which I ■ Sa [x(t) ] = 0 is P-measurable.

t A function x(t) is said to have a discontinuity of the first kind at a if the limits lim< ,<.*(<),

lim( j ax(f) exist and are unequal.

t Cf. L6vy (II, pp. 359-364; III, pp. 217-218).
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(ii) We shall now prove that the points of the set Sa [x(t) ] are points of

discontinuity of the first kind, with probability 1. Unless this is true, there is

an interval I: a^t^b so large that the set of elements x(t) for which there is

a point /, teI-Sa[x(t) ], t<b, t a point of discontinuity of x(r) of the second

kind, is not of P-measure 0. The set 5«[x(/)] is closed for each element x(t).

Let Si [x(t) ] be the first point of Sa [x(t) ] in /, or b,U I- Sa [x(i) ] = 0. According

to (i), the function Si [x(t) ] is P-measurable, and evidently it has the property

described in Theorem 3.5. Then if si,n is defined by

(3.50) Si,n = k/n if k/n ^ Sl < (k + \)/n, k = 0, + 1, • • • , n = 1, 2, • • • ,

Si,n+l/n has this same property. According to (i), if e>0, there is a number

8 = 5(e, /) such that

(3.51) P{ L.U.B. I x(r') - x(r") | = «} = 1 - e,   r', r"tR.
\t-r'\<S

\t-r"\<S

An immediate application of the Heine-Borel theorem shows that a function

ö(e) exists, independent of such that (3.51) is true for 5 = 5(e) when tel.

Then if 5 = 5(e),

P{ L.U.B. I x(sUn + l/n + r') - x(sUm + \/n + r") \ = e}
0<r', r"<«

(3.52) - E ^{'i.- - (* " 1)/«}
k

■P{ L.U.B. I x(k/n + r') - x(k/n + r") \ ^ e} = 1 - e,
0<r',r"<ä v

or

(3.53) P{ L.U.B. I x(r') - x{r") | ^ e} = 1 - e,

where r', r" are points of R satisfying

(3.54) »M + l/n < r', r" < sUn + l/n + 8,

which will surely be true (for l/n < 5) if

(3.55) Si + l/n < r', r" < j, + 5.

Since n can be made arbitrarily large,

(3.56) P{    L.U.B.    I x(r') - x{r") \ ^ e} ^ 1 - e.

This inequality implies that limrtSlx(r) exists with probability 1. If Si<b, Siis

therefore an isolated point of S„ [#(/)] with probability 1. It is then readily

seen (applying the results just obtained to the process with elements x( — t))
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that limrt ,,#(?•) exists with probability 1. Then x(r) has at worst a discon

tinuity of the first kind at Si, with probability 1. If s2 is the second point

of Sa in / (or b if there is no second point), it can be shown in the same

way that x(r) has at worst a discontinuity of the first kind at s2, with prob-

ability 1. In this way we obtain a sequence st, s», • • • , SiS»$«S • • • £b:

sn[x(t)]eSa[x(t)] if sn<b; x(r) has a discontinuity of the first kind at sn, if

sn<b, with probability 1. If lim„,0Os„ = s, stSa[x(t)] if s<b, and the above

argument shows that s is an isolated point of Sa [x(t) ] in that case, with proba-

bility 1, an impossibility, unless

(3.57) P{ lim sn < b} = 0.
n—»»

This however contradicts the hypothesis that the set of elements x(t) having

a point teI Sa [x(t) ], Kb, t a discontinuity of x[f) of the second kind, is not

of zero P-measure. We have thus proved, since a is arbitrary, that the junction

x(r) (rtR) has at worst discontinuities of the first kind, with probability 1.

(iii) If in particular ß is quasi-separable, there is a sequence R: {rn} of

points which has the property that the upper and lower limiting functions

of x(r), rtR are the same as those of x(t). The above proof then shows that

x(t) is continuous except for discontinuities of the first kind, with probability

1. The number of such discontinuities for a given element x(t) is at most de-

numerable.f This completes the proof of the second part of the theorem.

(iv) Suppose that ß = ß*, and define ß0 as in the statement of the theorem.

To show that P*(ßo) = 1, it is sufficient to show that if T* =S,r* is a sum

of neighborhoods covering ß0, then P*(r*)=l. Let R: \rn) be the set of

/-values used in defining the neighborhoods T*, T*, ■ ■ ■ , enlarged, if neces-

sary, to satisfy the requirements on R in (i). Let A * be the ß*-set of elements.

x(t) for which x(r) is continuous except for discontinuities of the first kind.

In accordance with (ii), P*(A*) = 1. If A* is the subset of A* for which x(r)

is continuous at r,;j = l, 2, ■ ■ ■ , P*(A*) = 1, by (3.47). Let x0(t) be an element

of A*. Define xi(t) by

(3.58) Xi(t) = lim x0(r), rtR.

Then Xi(r,) =x0(rj), j = 1, 2, ■ ■ ■ , and Xi(/)eß0 c r*. There is therefore an in-

teger v such that xi(t)tT*. Since T* is defined by inequalities on x(t) at cer-

tain of the numbers »% r2, • ■ • , x^tT* implies that x0(t)tT*. Therefore

A* c r* so

P*(r*) ^ P*(A*) = 1 : P*(Q0) = 1,

as was to be proved.

t Hobson, The Theory of Functions of a Real Variable, vol. 1, 3d edition, 1927, p. 304.
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Differential processes for which the distribution of x(t + 8) — x(t) is Gaus-

sian have been discussed by many authors,! who have shown completely or

partially that this is the only case in which the elements x(t) can all be sup-

posed continuous. Such processes can be made temporally homogeneous by a

transformation of the /-axis.

Theorem 3.9. Let P*-measure be so defined that ß* is the space of a tem-

porally homogeneous differential process for which

(3.59) P*{a < x(t + 8) - x(t) < b} = (27T5)-1'2 f e~^<^dx,   8 > 0.
" a

Let ß„ be the space of elements x(t) which are everywhere continuous. Then

P*(ßc) = 1: ßc is the space of a quasi-separable measurable process.

Conversely if ß is the space of a differential stochastic process all of whose

elements x(t) are everywhere continuous, x(t+8) —x(t) has a Gaussian distribu-

tion, for all t, 8.

If P*-measure is defined by (3.59), it is readily seen that the chance vari-

able ff(f)dx(t) discussed above has a Gaussian distribution with mean 0 and

standard deviation

(3.60) { J"J" j f(t)dx(t)JdPy'2,

more generally that the set

(3.61) jMMm,       , jMt)dx(t)

has an w-variate Gaussian distribution, the covariance between the jth and

kth members being given by

(3.62) J j ffi(t)dx(t)- j fk(t)dx(t)^dP.

Then the orthogonal set $i, $2, • ■ • becomes an independent set of functions,

in the usual sense of probability, and in (3.44) there is actual convergence,

almost everywhere on ß*: the series is a series of independent chance variables

whose standard deviations squared form a convergent series.J In particular

the series in (3.45) is convergent almost everywhere on ß*. Now if a, b are

finite, Wiener has shown that ph p2, ■ ■ ■ can be chosen so that

t Kolmogoroff (II, p. 868); Levy (II, pp. 346-347); Wiener (I, Chapter IX).
t Kolmogoroff (III, p. 314, Theorem 7).
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CO

X c„(r)$„
l

converges almost everywhere on 12* to a continuous function of r.f Since this

continuous function coincides with x(r) — x(a) for any fixed r with probabil-

ity 1 (in terms of P*-measure), if R: {rn} is an everywhere dense set of num-

bers, x(r) (reR) is everywhere continuous, with probability 1. Then if 120 is

the space whose existence was proved in Theorem 3.7, the discontinuities

(jumps) are absent, with probability 1. A slight variation of this discussion

would show that x(t) is everywhere continuous with probability 1 on any

quasi-separable subspace of 12* which is the space of a stochastic process.

Conversely if x(t) is everywhere continuous, the Laplace-Liapounoff theo-

rem can be invoked to show that the distribution of x(t + S) — x(t) is Gaus-

sian.}
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