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1. Introduction. Every algebraic number except zero and unity (e°), when

raised to a power which is an irrational algebraic number gives a transcen-

dental number. This was conjectured by Hilbert, and proposed as a problem

in 1900.f It was only recently that Gelfond,{ and independently at about the

same time, Schneider,§ succeeded in proving this theorem. G. Ricci || has

shown that the transcendentality persists if the algebraic numbers are re-

placed by products of algebraic numbers and a restricted type of Liouville

number. The question we consider here is the more general one where the

algebraic numbers are replaced by numbers capable of approximation by

sequences of algebraic numbers in an appropriate manner.

These form a restricted type of certain generalized Liouville transcenden-

tal numbers very closely related to those treated by Ore.^f They bear a rela-

tion to the numbers of an algebraic field similar to that of the ordinary

Liouville numbers to the rational numbers.

Our principal result is that if X and Y are each suitably approximable by

sequences of algebraic numbers, then XY and log X/log Y are transcendental.

Some numerical examples are given in §7.

Though the transcendental numbers found by us have the power of the

continuum, they form a set of zero measure as we show.

My interest in this subject was stimulated by a report on the Hilbert-

Gelfond-Schneider theorem which I gave to the seminar of Professor H. Weyl

at Princeton, and in particular by a conjecture of Professor J. von Neumann

that natural generalizations of these results would involve approximations by

algebraic numbers, rather than by rational numbers. I also wish to acknowl-

edge my appreciation of the opportunity to work without distraction on this

field, made possible by the courtesy of the Massachusetts Institute of Tech-

nology and the Institute for Advanced Study.

* Presented to the Society, April 10, 1936; received by the editors January 2,1937.

f For reference to the earlier work on this and related questions concerning transcendental

numbers, the reader may consult J. F. Koksma, Diophantische Approximationen, Ergebnisse der

Mathematik, vol. 4, No. 4, Berlin, 1936, pp. 58-65.
t A. Gelfond, Bulletin de l'Academie des Sciences de l'U.R.S.S., vol. 7 (1934), p. 623.
§ T. Schneider, Crelle's Journal, vol. 172 (1934), p. 65.

|| G. Ricci, Annali delle R. Scuola Normale Superiore di Pisa, vol. 4 (1935), p. 341.

If O. Ore, Avhandlinger, Norske Videnskaps-Akademie, Oslo, Matematisk-naturvidenskapelig

Klasse, vol. 1 (1925), p. 11.
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2. The lemmas. We shall adopt the following notation for our lemmas.

Kv will mean an algebraic field of degree v, fixed throughout. For a concise

presentation of the concepts and theory on algebraic fields used here, see,

e.g., Landau, Einführung in die elementare und analytische Theorie der alge-

braischen Zahlen und der Ideale, Leipzig, 1927. The symbols et, ß, and rj will

denote algebraic numbers belonging to this field. We will attach subscripts

to indicate that we have an infinite sequence of such numbers. However, the

conjugates of these numbers in Kv will all be uniformly bounded. Since, ex-

cept for repetitions, a number has the same conjugates in any field contain-

ing it, the specification of Kv here is not essential. We indicate this by writing

(2.1) ||«|| < F, \\ß\\ < V, \\n\\ < V.

Moreover, | log ß \ and its reciprocal will be uniformly bounded by V.

The letters c, q, s, t, S, T will denote positive integers. In particular, c is

such that ca, cß, and cr\ are all algebraic integers. Usually s and t will take on

the values 0, 1, 2, • ■ • , 5 — 1 and 0, 1, 2, ■ ■ • , T—l, respectively, unless

otherwise indicated.

We use y or y{ as a generic symbol for any positive quantity which de-

pends only on Kv and V.

Finally we define

(2.2) g(x) = *tTtc*W,
k=0 1=0

where the Ck\ are algebraic integers belonging to Ky, more precisely specified

later.

We also define

(2.3) gs(x) = (log j8)'£ J^CUh + Q*«*»/S'».
i=0 1=0

It may be noticed that, if rj were equal to log a/log ß, this would be the sth

derivative of g(x).

Lemma I.* // q% S; 1ST, there exists a g(x) such that gs(t) = 0, with coefficients

Cki not all zero satisfying the inequality

(2.4) log \\Ck,\\ < 5[log (yc) + log q] + 2qT log (yc) .

To prove this, we note that the ST equations gs(t) =0 are linear in the q2

variables Cm, so that, if we denote the coefficients by akut, we may write them

in the form

* Cf. Schneider, loc. cit., and C. Siegel, Abhandlungen der Preussischen Akademie der Wissen-

schaften, No. 1,1929.
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(2.5) 22 a-kittCki = 0.

If we multiply the equations by a suitable power of c before doing this

the coefficients aknt will be algebraic integers in Ky, and we shall assume this

done. Furthermore, we may deduce bounds for the conjugates of these coeffi-

cients from those for a, ß, and rj. Thus:

(2.6) |t*Mw| < (ylC)s+WT-»qs-i m 0.

Now let p„ i = l, 2, ■ ■ ■ , v denote an integral basis for Kv. Suppose that

\\pi\\ <R. Put

(2.7) y8l = X dkutXki,

and

v

(2.8) %ki = 22 BkuPi.

If the Bku take on the values 0, ± 1, +2, ■ • • , + h, it follows that

(2.9) ||xu|| < vRh = yth.

Hence

(2.10) ||y.(|| < tfwdk.

Next we put

(2.11) y,t - I) B.,<fH.

We may write similar equations, with the same BsH but with yst and p,- re-

placed by their conjugates in K,. These may be solved, since the p,- formed a

basis, and the determinant of them and their conjugates depends essentially

only on Kv. Thus we will have

(2.12) I B.ti \ < q2py3h = 8.

We now observe that there are (2h+l)vqi choices of Bm giving rise to sets of

ytt, and there are only (28 + l)'ST choices of Bat% giving distinct sets of y,t.

Hence two sets of yst arising from two distinct sets of xki must agree if

(2.13) (2Ä + l)"3' > (25 + iyST,

or, since vq2^2vST, if

(2.14) (2h + l)2 > 4Ä2 + 1 > 25 + 1.
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That is, if

(2.15) 4h2 > 2hy3(y1c)s+2^T-1)qs+\

or

(2.16) 2h > y3(y1c)s+2"<T~1'lqs+1.

But, on taking the difference of these two sets of xkt, we will have a set of Cki

of the kind required by the lemma, with

(2.17) ||C*,|| < 2||aft,|| < 2y2h.

That is, not all zero solutions exist with

(2.18) ||C«|| < (74c)S+2'V-

This proves Lemma I.

The bound for the coefficients readily leads to a bound for the function,

expressed in

Lemma II.* The gs(x) of Lemma I satisfies the inequality

(2.19) log I gs{x) I < log \\CH\\ + yq | * | + (s + 2) log q + ys.

This is proved directly from the definition of g3(x), which gives

(2.20) I gs(x) I < ||Ch||7i,+*9V+sI 1oS ß Is-

A lower bound for the functions ga(t) is given by

Lemma III.* Except when ga(t) =0, it satisfies the inequality

(2.21) log I g„(t) I ^ - 7log||C*z|| - y(s +2) log? — yqt —ys log c — yqtlogc.

This lemma is proved by consideration of the algebraic integer

9-1 9-1

(2.22) C+WgM(log ß)~° = E Z Cklc'+2<»(kri + l)°aktßlt.
k=0 1=0

As bounds for the conjugates of this number we have

(2.23) \\c*+2qtge(t)(\og ß)~'\\ < q2c3+2"t\\Cki\\y'+2'"qs.

Since the norm of an algebraic integer not zero must be at least unity in ab-

solute value, it follows from this that, unless gs(t) =0,

(2.24) I gs(t)cs+2qt(log ß)~° I ■\\c+i*lg.(t)(log ßyW"-1 ̂  1.

Hence we have

* Cf. Gelfond, loc. cit.
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(2.25)    I g,(t) I ^ ||ch||-"+1[cs+2'"]-,'[7s+29']-,'+1[?s+2]"'+1I iog/sK

which establishes Lemma III.

Our next lemma concerns the polynomial of interpolation determined by

its value and that of its derivatives at certain places. Specifically it reads:

Lemma IV.* // S>T, and \P'(t)\ <M, the polynomial of degree at most

ST—I determined by the ST values Ps(t), when \x\ Si P, satisfies the inequality

P(x) \ < M exp [- ST log T + 2ST+ 2S log S]

• I x(x - 1) • • • (x - T + 1) |s.

Let us first derive some formulas concerning the polynomial P(x) of de-

gree at most n, determined by the values of it and its first s,—J derivatives

at the points a,-, where 22T=   = w+1. We write

(2.27)       p(x) = (x - ai)"'(x - a2)s* • ■ • (x - aT)" = (x - a^'/piix).

Then

(2.26)

(2.28) P(x) = £
k=0

(x — a»)8' J
P(x)

is a polynomial of degree at most n. Also, for x = ait k=0, 1, • • • , st— 1, we

find that

(2.29)

Hence we have

dh rp(x)

dxh \_p(x)
(x - Oi)'*

dx L *=o J a<

(2.30) ̂ »Ä! = ~ [P(x) Ux)].. = 22 —- -P*(ai)pt-*(a>),
dx" a=o a\{k — a)!

and

(2.3D m - [ fg i ^ tpaiu - a^]m.
L i=i k=o a=o    a\    {k — a)\ J

But, if the prime indicates that j^i, pi{x) =LT'(x —a,)-*', and

(2.32)

dh _ _, 1 df*
-^i(x) = A!   2-, 11-(x - a,)-"'
dxh sifh       IA dx1'

= h\{- i)* Z IT (5/,t*'~ ^(* - a^srt-
/i'Ui — 1)!

Cf. Ricci, loc. cit.; Hermite, Crelle's Journal, 1878, pp. 70-79.
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Hence, putting b = Si— 1 — k, a, b and the /, all run from 0 to s; — 1, subject only

to the condition that a+b + ^lj — Si — 1, and we have finally,

P(x)       * P°(ad
—— =22   zj   (* - <*<)4-1 —r

(2 33) i=1 a+i>+sij=8''-1

■ II —-—L (a.- - a,)-rh(- 1)

We now specialize the values by putting ah a2, ■ ■ ■ , aT = 0, 1, 2, • • • ,

T—\ and Si = s2= ■ ■ ■ =sr = S. We also require |x| =7". Then we have

(2.34) [* -      5S 1   and    | (x - ai)-b~1\ g 1.

Again

1
(2.35) a! £ 1    and —gl.

a!

Next we notice that

(2.36) n'l    - at]—** $ II'I «* - ö>l_s-

When ris odd, 7'i = 2m-|-l, theleastll'| a< —a,-| is ml ml, but when 7" is even,

T2 = 2m, the leastXI'I a* — aj| is ml(m — 1)!. But*

(2.37) log x! = (x 4- §) log x - x 4- log (2ir)1/2 -\- (O<0<1),
12x

or

(x 4- 1)1
(2.38) log x! = log-—

x 4- 1

e
= (x 4- i) log (x 4- 1) - x - 1 + log (27T)1'2 4- ■ n

12(x 4- 1)

For the odd case, we obtain from the second expression (2.38):

2 log ml = (2m 4- 1) log (2m 4- 2) — (2m 4- 1) log 2 — 2m — 2

0
(2.39) 4- 2 log (27t)1'2 H-> (2m 4- 1) log (2m 4- 1)

6 (?» 4- 1)

- 4m - 2 Si JTi log Ti - 2Z\.

For the even case, using both expressions (2.37) and (2.38):

* See, for example, Whittaker and Watson, Modern A nalysis, 4th edition, Cambridge, 1927,

p. 251 ff., §12.33.
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log ml + log (m — 1)! = 2m log 2m — 2m log 2 — 2m + 2 log (2tt)112 -\-
(2.40) 6m

> 2m log 2m — 4m 5; 72 log 72 — 272.

This shows that in all cases

XI' I a; — a,: \ > exp [T log T — 2T] and

II' I a-i - < exp [- 57 log 7 + 257].
(2.41)

Again, since after the first term the numerators are all less than 25, and the

denominators are greater than or equal to 2, we have

(2.42)
(Sj + h- 1)! Sj  Sj + 1

1 2

S j -j" I j

hKsi - D!

In consequence of this we have

.,(*!.+ /<- 1)!

h
<5';

(2.43) n' < 5^> g 5s-1

To estimate the number of terms, we note that i has T values, while a, b and

the (T — l) lj have at most 5 values. This gives TST+1 as an upper limit to

the number of terms. Consequently, by combining all our appraisals, we find

that
P(x)

(2.44)
<b(x)

< [max I P°(ai) | ] exp [- ST log T + 2ST]TSs+t.

Since S>T, and both are integers, 5 = r+l, so that

(2.45) TSS+T < Ss+T+i g 52S.

Recalling that If is a bound for | P'(t) \, or | Pa(al) \, we have

I P{x) I < M exp [- 57 log 7 + 257 + 25 log S]

2'46'> . I x(x - 1) • • • (x - T + 1) |s,

which is the inequality of the lemma.

Our final lemma is Darboux's mean value theorem* for functions of a com-

plex variable.

Lemma V. For any function of a complex variable analytic on the straight

line segment joining Zi and z2, we have

/(z2) - fC&i)
(2.47) ^ max I f'{z) I,

z2 — Zi

the maximum meaning maximum on the segment.

* G. Darboux, Liouville, (3), vol. 2 (1876), p. 291.
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The lemma follows at once from the fact that

(2.48) /(*,) -/(«,) = ff(z)dz,

so that

(2.49) I /(z2) - /(2l) I g max I f'(z) | • | z2 -*\.

3. The general theorem. Our principal theorem may be formulated as fol-

lows:

Theorem I. Let ait ß,, and irrational (in particular ^0 or «>), be three

sequences of algebraic numbers in a fixed field, Kv, with uniformly bounded con-

jugates. Let Ci be a sequence of integers, becoming infinite, such that CiCti, c,ßi,

and c,T]i are algebraic integers. Then, if the three sequences approach limits A, B,

both distinct from zero and unity, and H in such a way that

(3.1) \A - «<|, I B - 0<|,  I H - ml < c-<i°s<h>*,

and

log A
(3.2) H = -^—,

log B

it is impossible to have k>6.

We shall prove the theorem by assuming it false and deducing a contradic-

tion. For simplicity of writing, we shall generally omit the subscript i on the

terms of the sequences. Consider then a particular set a, ß, -q, and c. Writing,

as usual, [x] to denote the greatest integer contained in x, put

(3.3) q = [(log e)'],   S = [q*l*],   T = (1 * j - 2t, t > oY

Since these values are such that q2>2ST, we may apply Lemma I to find a

function

(3.4) f(*) = £ £Ckltxkxßlx
k=0 1=0

with coefficients Cki algebraic integers in Kv, not all zero, and such that

(3.5) gs(t) = (log ß)' £ £ C«(*fl + Q'a*'ß» = 0

for
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(3.6) $ - 0» 1, 2, • • ,S- l;i - 0,1, 2, • • • , T — 1.

Furthermore, these coefficients will satisfy the inequality

log \\Cki\\ < S[log (yc) + log q] + 2qT log (yc)

(3.7) < 9»« [log t + (« + 1) 1/3-« + log q]

+ 2<7-ig1/3-[log7 + (q + I)"*-]

(3.8) < q*-' + o(92-) .

Here, as later, we write o( ) to mean terms of lower order in q than those

written explicitly in the parentheses.

Next, using these same coefficients Cki, form the function

(3.9) f{x) = ££cW**5",

and construct

(3.10) F(x) = f{x) - P(x),

with

(3.11) F'(D-0,

by subtracting off a polynomial with

(3.12) P>(t)=f>(t).

We can show that this polynomial is small by Lemma IV, provided the/"(/)

are small. These will be small if they approximate the #„(/), since the latter

are zero. To guarantee this, we must at this point introduce an assumption

as to the degree of approximation of a, ß, and rj to A, B, and H. Accordingly

we put

(3.13) a-A=AA,   ß-B = AB,   v - H = AH,

and assume that

(3.14) I A4 I, \AB\, and | AH \ are all < e~"V3.

As a first step in estimating the size oifs(t), we consider the crude estimate

obtained from Lemma II, which shows that

(3.15) log \f(t) I < log ||C«fl + yqt + (s + 2) log q + ys

(3.16) < ?2-< + o(q2-<).

Since we wish to compare the polynomial

(3.17) fit) = 2ZT,Cu(kB + /)*(log B)*A»B»,
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with

(3.18) G.(t) = (log £)%(/)(log/?)- = ££CwO) + Z)s(log£)*a*</3",

let us consider a general polynomial in three complex variables x, y, and z

with X2 — Xi=Ax, y2—yi=Ay, z2 — Zi=Az,

(3.19) J>(*. y, z) = £ C^^yz'.

If C, P, Q, R, X, Y, and Z are upper bounds for Cmr, p, q, r, x, y, and z re-

spectively, and X, Y, and Z exceed unity, a crude estimate for the size of

the polynomial, of the type just written for fs(t) is

(3.20) U = PQRCXPY®ZR.

But, on applying Lemma V to an individual term three times we find that

I      par p    q   t I
I xiyz z2 — xiyiZi \

(3.21) < pAXX*-W>Zr + qAYXpYq~1Zr + rAZXWZ'-1

< XPYQZR(PAX + QAY + RAZ).

Consequently, we have

(3.22) I P(xt, y,, z2) - P(xh yh ti) | < U(PAX + QAY + RAZ).

By reasoning of the same kind, we find that

I G,(t) - /•(/) I < U(qTAA + qTAB + SAH)

< exp [q2~' + o(g2-e)](g4'3 + <?B/3)e-"7'3,
(3.23)

by making use of the value of U, our crude estimate for f'(t), (3.16), the

values of S and T and our restriction on AÄ, AB, and AH, (3.14).

But, since gs(t)=0, we also have Gs(t)=0, so that the inequality just

proved amounts to

(3.24) log I f°(t) I < - ?7'3 + o(g7'3),

which is the refined estimate for/s(/) we were seeking.

For the product which occurs in Lemma IV, since T<q113, S <q513, if we

add the restriction \x\ ^q, we have

(3.25) I x{x - 1) • ■ • (x - T + 1) |s < (2q)ST < (2q)qi ^ exp q2 log 2q.

We may now apply Lemma IV, which, in view of the inequalities (3.24) and

(3.25) gives

log I P(x) I < - g7'3 + o{qVi) + 2q2 + Aq2 log2 q + q2 log 2q
(3.26)

< - g7/3 + o(97'3).
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While the lemma, as written, required \x\ StT", as soon as the product is re-

placed by a quantity independent of x, this restriction is no longer essential,

from the maximum properties of polynomials. Thus the relation just found

holds for all \x\ tkq.

Let us next consider F(x) for values of \x\ ^q. For these values we find

from Lemma II, (2.19) with s=0,

27^ log I /(f) I < log \\CU || + 7i? I x I + 2 log q

< yq2 + o{q2),

in view of (3.8). It follows at once from (3.10), (3.26), and (3.27) that

(3.28) log |F(*)| <yq2 + o(q2).

If we write

(3.29) <p(x) = [x(x - 1) • • • (* - T + l)]s,

in consequence of the way in which we constructed F(x), all the zeros of <p(x)

are zeros of F(x) to a multiplicity at least as high. Consequently the function

F(x)
(3.30) E(x)

<t>(x)

is an entire function. We compare its value for a fixed xi, and x2 varying on a

circle such that

(3.31) Uli-?1"*,       |*»|=? («>0).

From the relation

(3.32) I E(xi) I g max | E(x2) |,

we deduce

I F(xi) I ^ max I F(x2)*(xi)/^(x2) |

(3.33) <exp [yq2 + o(q2)]\\

< exp [- eq2 log q + o(q2 log q) ].

Since the estimate for P(x) in (3.26) is smaller than this, from (3.10) follows

(3.34) log I f(xi) I < - eq2 log q + o(q2 log q).

We proceed from this to the derivatives by the Cauchy integral formula

5!   C f(x)dx
(3.35) /«(*i) = - -,

J 2wiJ  (x - ^)'+1
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where the path of integration may be taken as a circle about the origin of

radius | £i| = qi~2t. We find from this, (3.3), and (3.34) that

(3.36) I f(h) \<f\ /(*i) I < (g5'3)'6'3 exp [- iq2 log q + o(q2 log q)],

if I hI < I XiI — 1. This will be true, for q large enough, if we require | h \ <q2'3.

We are particularly interested in the values

(3.37) h = 0, 1, 2, • • • , f, - 1; Tl - [^H.

For these values, we have

(3.38) log I f(h) I < - eg2 log q + o(q2 log g) .

To go from this to gs(h) we must again use Lemma V. We begin by noting

that the new value of Tx has no effect on the crude estimate, (3.16), so that

we still have for the value of U

(3.39) log I f(h) I < log f/ g 2<?2 + o(q2).

Consequently, we now have in place of (3.23)

1 G.(h) - p(h) I < UiqTiAA + qT^B + SAH)

< exp [2q2 + o(g2)](295'3 + g6'3)e-«7'3.

Thus the analogue of (3.24) is now

(3.41) log I G.(h) - /s(/i) I < - 97'3 4- o(97'3).

From this, and from (3.38), we find

(3.42) log I GM I < - tq2 log q + o(q2 log q).

Since

(3.43) log I g,{h) I = log I G3(h) I + s log I log 0 I - j log I log 5 I,

we also have

(3.44) log I ga(h) I < - e92 log q + o{q2 log q).

But, by Lemma III, unless g,(h) =0, it satisfies the inequality

log I g,(h) I > - 7 log \\Ch || - y(s + 2) log q - yqh

— ys log c — yqti log c,

so that, in view of (3.8), (3.3), and (3.37) we have

log I g,(ti) I > — 2yq2 — yq613 log q — 7g5'3 — 7g2 — yq2 — o(q2)

> - yq2 - o(q2).

(3.40)

(3.45)

(3.46)
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Since for sufficiently large q this is in contradiction with (3.44), by Lemma

III, it proves that

(3.47) g,(ti) = 0, for the h of (3.37).

We may now repeat our procedure, making use of the additional zeros whose

existence has just been established. That is, we construct

(3.48) Pi(*) - /(*) - Ptix),

with

(3.49) F1'(h) = 0,

by subtracting off a polynomial with

(3.50) Pfih) = }>{h)-

As before, we wish to estimate the size of this polynomial by Lemma IV. We

begin by using the vanishing of g3(h), and hence Gs(h), in conjunction with

Lemma V to get an estimate for/8(/i). The application of Lemma V has al-

ready been made in (3.40), so that we have merely to set G3(h) =0 in (3.41)

to obtain

(3.51) log \f'(h)\ < - q7'3 + o(q7'3).

We must next consider the product, and find as in (3.25) that

' x(x - 1) • • • (x - Ti + 1) |s < (2q)STi < (2q)7'3^

(3.52)
< exp [q7'3^ log 2q\.

We are now in a position to apply Lemma IV, and find from it, using (3.51)

and (3.52),

log I Px(x) I < - q7'3 + o(q7'3) + 2q7'3-<

+ 492 log q + q7'3-' log 2q

< - q713 + o{q713).

From this, (3.27), and (3.48), we conclude that for \x\ ^q,

(3.54) log I Fi(x) I < 7<Z2 + 0(<72).

If we write

(3.55) = [*(* - 1) • • • (* - Ti + l)]s.

we may now form the entire function

(3.56) Ei(x) =
<pi{x)
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We compare its values for a fixed Xi, and x2 varying on a circle where

(3.57) I *i| m q1-',      \ x»\ = q,       (e > 0).

From

(3.58) I £i(x)| gmax | £i(x2) |,

we deduce

Fi(xi) I g max | F1(ar2)0(xi)/0i(a:s) |

(2f*-)«i
(3.59) £ exp [7g2 + 0(g2)]

(g/2)sr>

< exp [— eg7/3_< log q 4- o(g7/3_< log g)].

As this exceeds the estimate for Pi(x) in (3.53), it follows from (3.48) that

(3.60) log I /(*0 I < - eg7'3"' log g + o(g7'3-' log q).

We use this to estimate the derivatives at the origin. We have from Cauchy's

integral formula

5!   r f{x)dx
(3.61) m=

where the path of integration may be taken as a circle of radius | X\ \ = ql~'

with center at the origin. We find from this

(3.62) I/•(()) I < s'|/(*i) |.

If we take

(3.63) *»-0, 1,2, •   • ,5i - 1,      S,= [q2\ogq],

we have

(3.64) log (ii*0 < Si log 5i < g2 log g(2 log g + log log g).

Combining (3.60), (3.62), and (3.64) we have

(3.65) log I /"(0) I < - eg7'3-' log q + o(g7/3"« log q).

We next apply Lemma V in the usual way to go from this to #,,(0). We first

get a value to serve as U from Lemma II, namely:

(3.66) log I gH(0) I < g2(log g)2 + o(g2{log gj2).

We then use this, (3.43), (3.14), and the reasoning used for (3.23) to derive

(3.67) log |GS1(0) - /"(0) I < - g7'3 + o(g7'3).

From this, (3.43) and (3.65), we find that
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(3.68) log I gn(0) I < - eq7'3-' log q + o(g7'»-« Jog q).

But, by Lemma III, unless g»,(0) =0, it satisfies the inequality

(3.69) log I gn(0) I > - 7g7'3-2< log q + o(g7/3"2« log q).

Since this is in contradiction with (3.68), when q is sufficiently large, it follows

from Lemma III that

(3.70) g„(0) = 0.

But from the expression for Si in (3.63), we see that for q sufficiently large, Si

exceeds q2. For such a value of q, we may regard the equations

(3.71) *.,((>) = 0

as a system of linear equations in the q2 variables,

(3.72) uH = aMß"> = i.

Eventually, a^O, ß^O, since otherwise H=<x> excluded, or H = 0 excluded

by the conditions on A and B. Some of the coefficients CH may be zero. In

this case we omit the corresponding terms and variables uH- The coefficients

Cu are known to be not all zero. If there are Qx distinct from zero, the values

(3.73) s = 0, 1, 2, • • • ,Oi - 1

gives a system of Qi equations of the form

(3.74) EEC»i»ii«h-0,

where

(3.75) t«- +

Since the uH are not all zero, the determinant of their coefficients must van-

ish. On factoring out the Cu, none of which vanish, there is left a Vander-

monde determinant, which reduces to

(3.76) II        ~        ~ 0-

Thus, for some pair of subscripts (&,/»), (kj,) distinct from one another, we

must have a vanishing factor,

(3.77) M + *<- (**> + ?/) -0.

This is impossible, since the coefficients are integers, and we have expressly

ruled out the possibility r\ = 0, °o, or a rational number.

This contradiction has been derived from the assumptions that
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(3.78) g=[(logc)*], — =-2«, and \AA\, \AB\, \ AH \ < e-"1'3,
k 3

for indefinitely large q. The assumption of the theorem was that

(3.79) I A4 I, |ASj, I AH\ < c-"0«"'*, k>6.

If we put

(3.80) k = 6 + v,

and define

,11
(3.81) q = [(log c)'], — =-2e, so that log c 2; q11',

k 3

it follows that

(3.82) log {c-'10*')*} = - (log c)7+" g - g(v+i)(W3-2,) < - q7/3

provided that e is sufficiently small. That is, when (3.79) hold for a particu-

lar k, a suitable e and q can be found such that the proof as given leads to a

contradiction. This proves the theorem.

Corollary. // any two of the three numbers A, B, and H satisfy the hy-

pothesis of Theorem I, i.e., the statement as far as (3.1), and k>6, then the third

number given by

log A
(3.83) H - — —,      A = BH

log B

is necessarily transcendental.

In particular, we note that one or both of the two numbers we started

with may be actually algebraic.

4. The first special theorem. If some of our quantities are actually alge-

braic, instead of merely approximable by algebraic numbers, a slightly weaker

condition suffices. Thus we have

Theorem II. Let a and ß be fixed algebraic numbers both distinct from zero

and unity. Let t/<, irrational (in particular not 0 or <x>),bea sequence of algebraic

numbers in a fixed field Kv with uniformly bounded conjugates. Let c, be a

sequence of integers, becoming infinite, such that c„ 77, are algebraic integers.

Then, if the sequence approaches a limit H in such a way that

(4.1) I H - ml < crlloec')k
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and
log a

(4.2) # = —5—,
. .  . log ß

it is impossible to have k>4.

We shall prove this theorem by the same method as that used for Theo-

rem I. To facilitate reference to the earlier argument, we shall use similar

numbers for corresponding equations. Thus these do not run consecutively.

The omitted numbers correspond to such equations in §3 as we refer to,

without repeating explicitly. Let then rj and c be particular values, and put

(4.3) q= [(log c)»],   S - [q*'2},    T = [§</«"]     (- - — - 4*, e > oY

Apply Lemma I to find a function g(x), (3.4), with coefficients Ckt alge-

braic integers in K„ not all zero, and such that gs(t) = 0, (3.5) and (3.6).

Furthermore, the coefficients will now satisfy the inequality

(4.7) log||C*,|| <S[\og (yc) + tog f ] + 2?7Mog7.

To justify the omission of the term 2qT log c, we turn back to the proof of

Lemma I, and note that this term entered because of . the term c25(r_1> in

(2.6), necessitated by the multiplier which made ak(T~1) and ßk<-T-1) algebraic

integers. As the a and ß are here fixed, so is the multiplier for them, and we

may replace c2q(T~1'> by y2qt-T-i\ which may be incorporated with a term al-

ready present in (2.6). From (4.7) and (4.3) we conclude that

(4.8) \og \\Ckl\\ <q2 + o(q2).

We next work with f(x), which is here

(4.9) /(*) = g{x) = £ £ Cklak*ßl*.
k=o 1=0

However, since the derivatives f*(x) are different from gs(x), we must again

construct F(x) by using (3.10), (3.11), and (3.12).

With regard to the degree of approximation, we assume that for the AH

defined in (3.13) we have

(4.14) I AH\ < e-'bl\

The application of Lemma II to obtain a crude estimate proceeds as before.

From (3.15), (4.3), and (4.8) we have

(4.16) log I f(t) I < log U ^ q2 + o(q2).

For the comparison of
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(4.17) f'(t) = E Z Cu(kH + /)<(log ß)'a**ßH,

with

(4.18) Gs(t) = g,(t) = EZCh(*ii + l)*akiß",

we use (3.22) to deduce

(4.23) I g.(0 - /•(/) I < US AH < exp [?2 + o(92)]93'2e-'5'2,

from which we obtain the refined estimate

(4.24) log I /•(/) I < - ?5/2 + o(q512).

Since the values in (4.3) satisfy ST<q2, the inequality (3.25) holds here,

and we may combine it with (4.24) and Lemma IV to deduce

(4.26) log I P{x) I < - 96'2 + o(g6'2) for I *| g q.

To proceed to F(x), we first use (4.8) and Lemma II to deduce (3.27).

Then this, (3.10), and (4.26) may be combined to give (3.28). From this,

as before, (3.33) and, in view of (3.10) and (4.26), (3.34) follow. We then

focus our attention on the values

(4.37) h = 0, 1, 2, • • • , Ti - 1; Z\ = [?l-3<].

For these values, using (3.35),we readily deduce (3.38). Then, with only slight

modifications of the previous reasoning, we conclude that (3.44) holds.

We then apply Lemma III, which here becomes

If not 0, ga(h) satisfies the inequality

(4.45)   log I g.(h) I > - 7 log ||C*j|| - y(s + 2) log q - yqh - ys log c.

We justify the omission of the term —yqh log c by examining the proof of

Lemma III. This term arises from c2qt which first appears in (2.22). Here,

since a and ß are fixed, we may take a fixed multiplier for them, and so use

72<", which in the final result replaces —yqh log c by —yqh, which in turn may

be incorporated with the term of this type already present.

From (4.45), in conjunction with (4.8), (4.3), and (4.37) we may conclude

that (3.46) holds. As before, the contradiction of this and (3.44) proves that

(4.47) g,(h) = 0, for the ft of (4.37).

We now come to the second application of the process. We construct

Fi(x), defined by (3.48), to satisfy (3.49) and (3.50). In place of (3.51), we

now have by similar reasoning

(4.51) log \f>(h) I < - g6'2 + o(?5'2).
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For the product our new values give

(4.52) I *{* - 1) •'■(*- Tx +        < (2q)ST> < exp [g5'2"3' log 2q}.

These last two inequalities enable us to apply Lemma IV to obtain

(4.53) log I Px(x) I < - q6'2 + o(?6/2)-

From this, (3.27), and (3.48), we see that (3.54) again holds. The argument

based on the zeros leads from this to the inequality

(4.59) log [ Fi(*i) I < - eg6'2"3' log q + o(q5l2~3t log q),

and hence to

(4.60) log I /(xi) I < - e?6'2"3' log q + o(96'2-3< log q).

Then using (3.61) and the argument which follows with the value of Si again

given by (3.63), we find that

(4.65) log I /s'(0) I < - eg5/2"3e log q + o(qbl2-}t log q).

Since (3.66) may be again used, and

(4.67) log I gs,(0) - /-(0) I < - q*<2 + o(q^2),

we may derive

(4.68) log I gs,(0) I < - tq*'*-*' log q + o(q6'2-^ log q).

But the modified inequality of Lemma III given in (4.45) shows that

(4.69) log I gSl(0) I > - t<Z6/2-4< log q + o(g6'2-^),

unless gs,(0) =0. Since the last two inequalities are contradictory, we must

have the second possibility, (3.70). From here on the earlier argument applies

without change, and shows that the assumptions

(4.78) q = [(log c)k],   — =-4e,   and   | AH \ < e~"w,
k 2

for indefinitely large q, lead to a contradiction.

The assumption of Theorem II was that

(4.79) I AH\ < c-<10^'*,       k > 4.

If we put

(4.80) £ = 4 + 17,

and define
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,     1 1
(4.81) q = [(log c)k], — =-4«,   so that log c ^ qllk,

k 2

it follows that

(4.82) 10g {c-t10^*}  =  - (log C)6+" g  - ?(5+lKl/2-4£) < _ q»it>

provided that e is sufficiently small. That is, when (4.79) holds for a particu-

lar k, a suitable e and q can be found such that proof leads to a contradiction.

This proves Theorem II.

Corollary. // ß and H satisfy the hypothesis of Theorem II, i.e., the state-

ment as far as (4.1) and k>4, then the number given by

(4.83) a = ß«

is necessarily transcendental.

5. The second special theorem. We next consider the case where the ex-

ponent is actually an algebraic number. The theorem here is

Theorem III. Let rj be a fixed irrational algebraic number (in particular

distinct from 0 and °o). Let at and ßi be two sequences of algebraic numbers in

a fixed field Kv, with uniformly bounded conjugates. Let c{ be a sequence of in-

tegers, becoming infinite, such that cicti, c(ßi are algebraic integers. Then, if these

sequences approach limits A and B, each distinct from zero and unity, in such a

way that

(5.1) I A - I B - ßi I < cr110*^"

and

log A

(5.2) " = rhrlog B

it is impossible to have k>\.

We again use the form of exposition of the preceding section. Let, then

a, ß, and c be particular values, and put

(5.3) ?- [(log*)*],    S-[Hi     T=[hq'],       (y= l-2e,€>u).

Then apply Lemma I to find a function g(x) of (3.4), for which (3.5) and

(3.6) hold. The inequality satisfied by the coefficients in this case may be

written

(5.7) log ||C«|| < 5 [log 7 + logg] + 2?riog (ye).
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Here we have omitted the term 5 log c, since this comes from the term cs

in (2.6). As -q is now fixed, we may take a fixed multiplier for it and so replace

the term cs by 7s, which may be combined with the term of this type already

present in (2.6).

It follows from (5.7) and (5.3) that

(5.8) log ||C*j|| < q2 + o{q2).

We now form the function/(x) of (3.9), and the F(x) of (3.10), (3.11),

and (3.12). This time we take as our assumption on the degree of approxima-

tion the following restriction on the size of the A A and AB defined by (3.13)

(5.14) I A4 I,   I AB\ < e-«2+2\

The crude estimate is obtained as before by applying Lemma II. Thus

from (3.15), (5.3), and (5.8) we deduce

(5.16) log I /■(*) I < log U ^ q2 + o(q2).

For the comparison of

(5.17) f(t) = 2ZlZCki(kv + Z)*(log B)°A*<B»,

with the G.(t) of (3.18), we use (3.22) to deduce

(5.23) \G.(t) - f(t) I < U(qTAA + qTAB) < e«i+»uJye-«s+,<.

This leads to the refined estimate

(5.24) log I f(t) I < - q2+2' + o(q2+2').

Since the values in (5.3) satisfy ST<q2, the inequality (3.25) holds here, and

may be combined with (5.24) and Lemma IV to yield

(5.26) log I P(x) I < - q2+2' + o(q2+2<), for | X | ^ q.

We proceed to F(x), by first using (5.8) and Lemma II to deduce (3.27),

and then combining this with (3.10) and (5.26) to give (3.28). From this, as

before (3.33) and, in view of (3.10) and (5.26), (3.34) follow.

We then consider the particular values

(5.37) h = 0, 1, 2, • ■ • , Ti ~ 1; Ti = [q2'].

For these values we may deduce (3.38) by using (3.35). Then, making a few

obvious modifications in the earlier argument, we show that (3.44) holds.

Then we apply Lemma III. The inequality here becomes

(5.45)   log I g,{t) I > — 7 log \\Cki\\ — y(s + 2) log q - yqh — ys — qh log c.

The only modification is the replacement of —ys log c by the term —ys.
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This is permissible, since the multiplier for rj is now fixed, and so the factor c8

of (2.22) maybe replaced byy8. From (5.45), in conjunction with (5.8), (5.3),

and (5.37) we may conclude that (3.46) holds. As before, the contradiction

of this and (3.44) proves that

(5.47) g.(h) = 0, for the h of (5.37).

We are now at that stage of the proof where our process is repeated. We

construct Fi{x), defined by (3.48), to satisfy (3.49) and (3.50). In place of

(3.51), we now have, similarly,

(5.51) log I f>(h) [ < - 92+2< + o(g2+2').

For the product of our new values gives

(5.52) I x{x - 1) • ■ • (x - Ti + 1) |s < (2q)ST> < exp [q2+' log 2q}.

These last two inequalities enable us to apply Lemma IV, and so obtain

(5.53) log I Pi(*) I < - 92+2' + o(g2+2<).

From this, (3.27), and (3.48), we see that (3.54) again holds. The argument

on entire functions leads from this to

(5. 59) log I Fi(*i) I < - e?2+< log q + o(q2+' log q),

and hence to

(5.60) log I f(Xl) I < - g2+< log q + o(g2+< log q) .

Then using (3.61) and the argument which follows with the value of Si again

given by (3.63), we find that

(5 .65) log I /8>(0) I < - eq2+< log q + o(92+' log q) .

Since we may again use (3.66), and

(5.67) log I G.,(0) - /8'(0) I < - ?2+2« + o(<72+2<),

we may, using (3.43), derive the inequality

(5.68) log I g„(0) I < - tq2+> log q + o(q*+' log q) .

But the modified inequality of Lemma III given in (5.45) shows that

(5.69) log I g„(0) I > - <z2(log qY + o(?2{log g}2),

unless gs,(0) =0. Since the last two inequalities contradict one another, we

must have the second alternative, (3.70). From here on the earlier argument

applies with no change, and shows that the assumptions

(5.78) g=[(logc)*],   I A4 I   and | AB | < e-**+u,



1937] transcendental numbers 177

for indefinitely large q, lead to a contradiction.

The assumption of Theorem III was that

(5.79) I A4 I,  I &B\ < er"0"'*, k>l.

If we put

(5.80) k = 1 + 77,

and define

1
(5.81) ?=[(logc)*],   — = 1 - 2e,   so that log c & gI/A,

it follows that

(5.82) log (c-»"««)*) = - (log c)2+' g - 5(2+1)0-2«) < _ g2+2e

provided that e is sufficiently small. That is, when (5.79) holds for a particu-

lar k, a suitable e and <7 can be found such that the proof leads to a contra-

diction. This proves Theorem III.

Corollary. If rj and B satisfy the hypothesis of Theorem III, i.e., the state-

ment as far as (5.2) and k>\, then the number given by

(5.83) A = B"

is necessarily transcendental.

6. Generalized Liouville numbers. If the numbers approximable by alge-

braic numbers used in Theorems I, II, and III were algebraic, our theorems

would merely be complicated restatements of that due to Gelfond and

Schneider. That this is never the case, follows from the theorems of this

section.

Theorem IV. Let a, be a sequence of algebraic numbers all belonging to a

fixed field Kv, and with their conjugates uniformly bounded. Let an infinite num-

ber of them be distinct from one another. Let cf and\t be two sequences of integers

becoming infinite, such that the quantities dati are algebraic integers, and the

numbers a{ approach a limit A in such a way that

(6.1) \m~A\< —

Then A is a transcendental number.

For, suppose A were an algebraic number, and that

(6.2) P{x) m pnx" + pn-ixn~l + ■ ■ ■ + pis + p0 = 0
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were the irreducible equation it satisfied. Let V be the bound for ||qü|| and

IA I, and put 2~li=0Pi= s- Write a for a particular a,-. Then, by Lemma V, we

have
P{A) - P{a)

(6.3) g P'(Q < nsV,
A — a

so that, since P(A) = 0, we have

(6.4) I P(a) I < I a - A | wsF""1.

We next notice that

(6.5) ||c"P(a)|| < cnsV,

and since the norm of an algebraic integer not zero is numerically at least

unity,

(6.6) 1 £ I c"P(a) I (\\c»P(a)\\)-1 g 6»»4(»-i)|r»(^i) | p(a) |.

The possibility that P(a) = 0 offers no difficulty, since we have assumed that

there are an infinite number of distinct au. Consequently, we may omit those

equal to A or to one of its conjugates, and still have an infinite sequence left

to use in the proof.

Now from (6.4) and (6.6) we have

■ 1 1
(6.7) a - A \>->-

cn,ns,ynr-l JiCy2

In this relation a and A are two distinct non-conjugate algebraic numbers,

and the y depend only on A, the algebraic field Kv containing a and the

bounds for ||a ||.

From this last result, Theorem IV follows at once, since (6.7) contradicts

(6.1), if

(6.8) a > ti   and   X, > y2 + 1.

Like their subclass, the ordinary Liouville numbers, the generalized Liou-

ville numbers do not constitute a large fraction of the transcendental. In fact

we shall establish

Theorem V. The generalized Liouville numbers correspond to a set of points

of zero measure in the complex plane, and those on the real axis approximable by

real algebraic numbers have zero measure on the line.

First, consider a fixed field K„, and the algebraic numbers in it, a, such

that

(6.9) iui < V.
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If c is the smallest integer for which ca is an algebraic integer, and we write,

as in Lemma I,

v

(6.10) ca=Y,pm,

it follows from ||ca|| <||cT/|| that

(6.11) I Bi \ < ycV.

Consequently, in the field K,, subject to the bound V, the number of a is

at most

(6.12) (2yicV + 1)" < T2c", for a particular c.

Next select a sequence of positive numbers em, decreasing to zero, and a

sequence of positive integers pm increasing to infinity, as m increases. Then

for each value of a,-, whose multiplier is c, we draw a circle about its represen-

tative point of radius em/cim. Call Sm the set of points inside any of these

circles, and define the set T by

(6.13) T = SvSz.Sn- ■ ■ ■ .

For any m, the generalized transcendental number A, with bound F, satisfy-

ing (6.1) will be in Sm. For, since c< and X* are becoming infinite, for a suffi-

ciently large i, we shall have

1 1 <m
(6.14) Cix<~m > — > and hence — < —

Thus T includes all such numbers A, related to K and F.

But the set T has a measure not exceeding that of Sm, and this last, by

(6.12) and the definition of Sm, is at most

(6.15) E 72Cf7rf—) = y^ej £ crlm■

When 2m exceeds v + 2, the series converges to a sum <2, so that the measure

of Sm approaches zero with em- Thus the measure of T is zero. Let V be a

positive integer. Then there are only an enumerable number of choices for

Kv and V. Hence each generalized Liouville number is included in one of an

enumerable number of sets, each of zero measure. This proves the first part

of Theorem V.

The statement about the one-dimensional measure of the points on the

real axis approximable by real algebraic numbers is proved similarly by en-
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closing them in intervals. In this case the series corresponding to that in

(6.15) is£c""m, which converges when m exceeds v-\-2.

In view of our general theorems, the measure of the BA is of interest. We

have

Theorem VI. The set of numbers BA, where A and B are generalized Liou-

ville numbers with sequences a{, ß{ having a common ct is of measure zero in the

complex plane. The subset with at, ß{, ßf' real has zero measure on the real axis.

We begin by finding the relation between the degree of the approximation

of A and B to that of the power. We have

(6.16) BA - ß« = BA - ßÄ + ßA - ß", and

(6.17) I B* - ßA I ^ max | AzA~l | • | AB \,

by Lemma V, where AB = ß—B.

If we restrict | A |, | B | and | a,-1, | ßi \ as well as their reciprocals, and

I log BI, I log ßi I, to be all less than M, necessarily > 1, we have from this

(6.18) I BA - ßA I < MM+2\ AB\.

Again, by Lemma V,

(6.19) I ßA - ßa I ^ max | ß° log ß \ ■ \ AA \,

so that

(6.20) I ßA - ß" \ < MM+1\ AA |.

Next, assume that sequences Ci and X; exist, such that simultaneously

1 , 1
(6.21) I on - A I <- and   \ßi-B\<-,

where the c/ are multipliers for both cxi and ß(. Then, from (6.16), (6.18),

(6.20), and (6.21) we deduce that

(6.22) \BA - ß"  < Mr/c/^ ^-■-,

where Mi is a bound depending only on M. For m, M, and hence Mi fixed,

when * becomes infinite, the second factor approaches zero, so that eventually,

(6.23) f B* - ß*\ < em/dm < tm/c*,

where c,- is the least multiplier for both a,- and ßi, and therefore less than or

equal to c'.

This situation enables us to use the reasoning applied to prove the last

theorem. We surround each point ßa with least common multiplier c{ for a,-
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and by a circle of radius em/ctm, and call Sm the set of points inside any of

these circles. The set T is then defined by

(6.24) T = SxBi.Sm-

The inequality (6.23) shows that the point BA is in each of the sets Sm,

and therefore in the set T. To estimate the measure of Sm we observe that c,

is at least as great as the multipliers for a; or ßi individually, and hence by

applying (6.12) to the number of a{ and ßi for a given c,-, we find that the

number of points ßf' for a given c< is at most yc2". Thus the measure of Sm

is at most

(6.25)
«-i \c,"/

Since the series converges for v greater than ra+1, to a sum less than 2, the

measure of Sm approaches zero with em, and the measure of T is zero.

This shows that when the restriction involving M holds, and if M is taken

integral, there are only an enumerable number of choices for M and K„ so

that the set discussed in the theorem has been shown to be the sum of an

enumerable number of sets, each of measure zero.

For the one-dimensional case, we use intervals in place of the circles.

It is worth noting that there are no theorems like those of this section on

transcendentality and measure for numbers merely known to be approxima-

te by sequences of numbers ßft, without a; and ß, separately approaching

limits. The first fact is shown by the example

21'2 Pi
a; =->       jSt- = — j       Ci = l,

where pi is an integer so chosen that

Pi
2 i / 21/2 _ _ < ™ • so that ßi = 2i/21/2 ( 1 + —-) with I 6 \ < 1.

Under these conditions we have

•   l r t log 2 i
|4-PV<|<^   where   X^-jj—j-j J

and so becomes infinite with i. Similar sequences may be constructed with

any number in place of \, so that they do not lead to sets of zero measure.

7. Conclusions and examples. A simple example of an ordinary Liouville

number is obtained by using a series
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(7.1)

where the p„ are uniformly bounded integers, and the N„ are integral values

increasing with n sufficiently fast. In particular, by taking the pn less than 10,

and the Nn = 10m!, Liouville found one whose decimal expansion could readily

be written down. In place of this, we might use

(7.2) Nn = 10<10"1OE">   or a»*>

where a and b are fixed integers greater than unity, and £ is a function of n

increasing faster than n, i.e., such that E/w—>=o.

If we take as the pn algebraic integers from a fixed field Kv, with uni-

formly bounded conjugates, and again use (7.1) and (7.2), we obtain simple

examples of the generalized transcendental numbers of Theorem IV.

To obtain simple examples of the restricted generalized Liouville numbers

used in Theorems I, II, and III, we use (7.1) with the pn algebraic integers

from a fixed field Kv, with uniformly bounded conjugates, and put

(7.3) Nn = 10«°(lon)>    or a«(Kn)\

where in the second form, a, b, and K are fixed integers, a and b exceed unity,

and K exceeds k + l, for the k of the condition (3.1).

Suppose, to be specific, we put x, equal to the square root of the digit in

the ith place of the decimal part of it, and y; equal to the square root of the

digit in the ith place of the decimal part of e. Then write

(7.4) x = 2>»2-<*(8"», Y=T,yn2-

Then, by the corollary to Theorem I, we may assert the transcendentality

of the following numbers

log X    log X
(7.5) 2X, X\ XY, ——, -

log Y     log 2

The first of these also illustrates the corollary to Theorem II, and would con-

tinue to do so if we replaced the 8 in (7.4) by 6. The second of the numbers is

an illustration of the corollary to Theorem III, and in this case we could re-

place the 8 in (7.4) by 3.

We note that if we take the xn all equal to the 2, and the yn all equal to 3

in (7.4), the transcendentality of the first three numbers in (7.5) would follow

from the theorems of G. Ricci.
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