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1. Introduction. In a recent paperf the author has proved by expansion

methods a sufficiency theorem for the general problem of Bolza that had been

established previously by Hestenes| using the classical field method. This

proof had in common with the previous proof of Hestenes the property that

the theorem was not established directly for the general problem of Bolza

with non-separated end conditions; instead, such a problem was first trans-

formed into an equivalent one in a greater number of dependent variables

and with separated end conditions. In a paper appearing in the present vol-

ume of these Transactions, Hestenesf has devised a direct proof by field

methods for the general problem of Bolza. He has utilized the notion of

families of fields of extremals, and the proof is a generalization of a method

which he has previously used in treating the problem of Mayer.

It is the purpose of the present note to give a direct expansion proof of

sufficient conditions for the general non-parametric problem of Bolza. In this

direct expansion proof the auxiliary theorem of §3 of R is replaced by Theo-

rem A of §2 of the present paper. This latter theorem is an extension of the

results of §5 of H for the special case of a problem having the form of the

second variation, and thus may be considered as an extension of the trans-

formation of Clebsch.

It is to be remarked that there already existed direct sufficiency proofs

by field methods for the general problem of Bolza in case suitable normality

conditions were satisfied.|| Hestenes obtains in H a direct proof not involving

normality assumptions. On the other hand, the results of the author's paper R

do not yield a direct expansion proof of sufficient conditions for a problem

with non-separated end conditions that involves no differential side condi-

* Presented to the Society, April 10, 1937; received by the editors January 20, 1937.

t Sufficient conditions by expansion methods for the problem of Bolza in the calculus of variations,

to appear in a forthcoming number of the Annals of Mathematics. This paper will be referred to as R.

J These Transactions, vol. 36 (1934), pp. 793-818.

§ A direct sufficiency proof for the problem of Bolza in the calculus of variations, these Transactions,

vol. 42 (1937), pp. 141-154. This paper will be referred to as H.

|| See, in particular, Morse, American Journal of Mathematics, vol. 53 (1931), pp. 517-546, and

Bliss, Annals of Mathematics, vol. 33 (1932), pp. 261-274.
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tions, and which is thus identically normal. This fact is illustrated by the

example given at the end of §3 of R. In view of this difference between the

the generalization of Hestenes' paper H and the extension of the present

note over the previous paper R, it is somewhat surprising that essentially

the same auxiliary theorem is involved in these two direct proofs by quite

different methods of the same sufficient conditions for the general problem

of Bolza.

2. Auxiliary theorems. The form of the problem of Bolza here considered

is that of finding in a class of arcs

ji{x) {i = 1, • • • > n; *i 2a * £ x2)

satisfying differential equations and end-conditions

(2.1) to[x, y, y'] = 0 (ß = 1, • • • , m < n),

(2.2) PAxu y(xi), x2, y(x2)] = 0 (fi «■ 1, • • • , p g 2» + 2),

one which minimizes a given functional

f[x, y, y']dx.

The notation and terminology of R will be used throughout.

Suppose that E:yi(x), X0 = l, X^x) (xi^x^x2) is a non-singular extremal

which satisfies with constants eM conditions I and IV* . This latter condition

is that along E the second variation

(2.4) /s[|, ,] ■ 27fe, nixx), b, v(x2)] + f '2<a[x, n, n']dx

be positive for all non-identically vanishing variations £i, £2, which

satisfy the linear differential equations and end-conditions

$ß[x, V, V'\ = PßvtVi + PßnVi  =0 (ß = 1, • • " , m) ,

^Mu Is, v(x2)]

= #^ + + + *„«,>»*(**) =0   (ß = 1, ■ ■ ■ ,p).

As usual, it is assumed that the matrix (SE^j,; ̂ uVil;        ^i,2) is OI rank p.

As a consequence of IV*   there exists a family ij,-= «,•*(»), f

(£ = 1, ■■•,») of mutually conjugate solutions of the canonical accessory

equations with |«i4(a;)| f^O on £i#2.t

f See Reid, American Journal of Mathematics, vol. 57 (1935), pp. 573-586; also Morse, these

Transactions, vol. 37 (1935), pp. 147-160, and Hestenes, Annals of Mathematics, vol. 37 (1936),

pp. 543-551.
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Now suppose that be, a,], be2, at2e (6 = 1, ■ ■ ■ , In+l — p) are linearly in-

dependent solutions of the equations

*„tJ>* + %9tfia + ^f>2+ ^MifiiB = 0 (jt = 1, • • • , p).

Let q denote the maximum number of linearly independent accessory ex-

tremals of the form Yu(x) =0, Zit(x) (l = \, ■ ■ ■ , q) such that for every non-

identically vanishing linear combination

Vi = Ya(x)ci = 0,      f; = Zn(x)ci

the equations
1 2

U(xi)aie — U(xi)aie = 0     (0 = 1, • • • , 2n 4- 2 - p)

are not all satisfied. Without loss of generality we may then suppose that the

sets bl, a/e (s = l, 2; 6 = 1, ■ ■ ■ , 2n+2 — p) are so chosen that
12

Zii(x!)aie - Zii(xi)aie = — Su (I = 1, • • • , q; 6 = 1, • ■ • , 2n 4- 2 — p).

Then for an arbitrary accessory extremal rii(x) =0, ft(x) we have

1 2
U(xi)a,i, — U(xi)aiv = 0    (v = q 4- 1, • • • , 2n 4- 2 — p)

and there exists a unique accessory extremal t]i = Uiv(x), f,- = Viv(x) such that

Ui,(xs) = aiv (s = 1, 2; v = q 4- 1, ■ • ■ , 2n 4- 2 — p).

Let

Uu(x) = pYu(x) = 0,   Vu(x) = pZu(x)     (I = 1, • ■ ■ , q),

where p is a real constant whose value will be determined shortly. The multi-

pliers corresponding to uik, vik and Uie, Vte will be denoted by lßk(x) and

Lßt(x) (k = \, ■ ■ ■ , n; 6 = 1, ■ ■ ■ , 2n+2 — p), respectively.

Suppose £i, £2 are constants and rn(x) are arbitrary functions of class D'

on XiX2. Then there exist unique constants cj, ce (p = 1, ■ • • , p; 6 = 1, • • • ,

2n+2-p) such that

(2.5) £3 = ^s.c' 4- be'ce,   Vi(X8) = %v,ej + aleCe        (s = 1,2),

and corresponding to these constants ce there are determined for Xi, X2 suffi-

ciently near x\, x2 unique functions hi(x) of class D' and such that on XiX2

(2.6) Vi(x) = uik(x)hh(x) 4- Uie(x)ce.

For such a set £i, £2, r]i(x) define

ui(x) = ua(x)hk(x) 4- U'ie(x)ce,       vt(x) = uik(x)hk(x),

lß(x) = lßk(x)hk(x),      Lß(x) = Lße(x)ce,      p-ß = Iß + Lß,
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and consider the expression

(2.7)     27[fi, n(Xi), t}t, y(X2)} + f \2Q[x,        p] - Frirkvtvk)dx.

In this expression it is to be understood that the coefficients of y are the

values determined by the end-values of E, and do not depend upon Xi and X2.

For Xi, X2 near Xi, x2 the expression (2.7) is well-defined. The integral in

(2.7) is readily seen to be the Hilbert integral for the second variation involv-

ing slope functions and multipliers determined by the 3n — p parameter

family of accessory extremals given above, and evaluated along the curve

y= [»>«(#)] {Xi^x^X2). One may also verify directly by the use of Taylor's

formula and the transformation of Clebsch that for Xi, X2 near X\, x2 the

expression (2.7) is a quadratic form in [fi, t?,(Xi), £2, Vi(X2) ] whose coefficients

depend upon the end-values of uik, Ua, vik, ViS at Xi and X2. For brevity

this form will be denoted by 2Q[£i, rji(Xi), £2, Vi(Xt) | Xh X2]. Now it may be

proved that the parameter p involved in the definition of Un, Vu 0 = 1, ■ ■ •, q)

can be chosen so large that Q[£i, ti%(x\), £2, r)i(x2)\xi, x2]>0 for every non-

zero set r)i(xi),£i,rii(x2)] satisfying the equations ^ [fi, 77 (*i), £2, ■q(x2)]=0

(p = l, ■ ■ • , p) [see H, §5]. In the following discussion we shall suppose that p

has been so chosen. It is to be emphasized that the arc 77 = [77,(0;) ] has not been

assumed to be differentially admissible, and hence £1, £2, 77^X1), 77;(X2) are

independent variables. By continuity it then follows that there exists a

positive 8 such that for | Xs — xs\ <8 (s = l, 2) and an arbitrary non-zero set

[£1,77n, £2,77i2] satisfying

I       mu £2, va] I < 5[?i2 + ii + nmtl + nmit]m

we have

QUh vn, £*> m* I Xi, X2] > 0.

Consequently, by the use of the integral form of the remainder in the expan-

sions of the functions i/v about the values [xi, y,(xi), x2, ji{x2)) (see R, §3) we

obtain the following theorem:

Theorem A. Suppose that for a problem of Bolza E:y((x), Xo = l, X/s(«)

(xi^x^x2) is a non-singular extremal which satisfies with constants e„ condi-

tions I and IV* . Using the accessory extremals uik, vik, Ute, Vie and termi-

nology introduced above, there exists a neighborhood 9c 0 of the end-values

[xi, yi(xi), Xi, yi(x2)] such that if [Xu Yn, X2, Yi2] is in Wo the extremal

Ji{x), X0 = 1, ~kß(x) is defined and non-singular on X\X2 while \ uik\ f^O on this

interval; moreover, there exists a k>0 such that if [Xh Yn, X2, Yi2] is in 9l0

and terminally admissible we have
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(2.8)    Q[Xi — asi, mx, X2 — xt, Vi21 X\, X2]

Si k[(Xi - Xi)2 + (X2 - x2Y + rjnrjn + r)i2t)i2\,

where r,u = Y,,-F\{X,) (s = l, 2).

By relatively slight modifications of the proof of Theorem 4.3 of R one

may establish the following corresponding result.

Theorem B. Suppose that E:yi(x), Xo = l, Xß(x) (xi = x^x2) is an ex-

tremal satisfying conditions IIN, III', and that uik(x), vik(x), Ui6{x), Vie{x)

(k = 1, 6 = 1, ■ • • , 2»+2 — p) are associated accessory extremals with

I uik(x) I ̂ 0 on X\X2. For arbitrary sets {hi, Ce) let

yi(x, h, c) = yi(x) + uik(x)hk + Ua(x)ce,

ri(x, h, c) = y!{x) + u'a(x)hk + U'ie{x)ce,

\ß(x, h, c) = \ß(x) 4- lßk{x)hk 4- Lß6(x)ce,

where lßk and Lße are the multipliers for the accessory extremals uik, vik and

Uie, Vie, respectively. Then for every e>0 there exists a du>0 and a neighbor-

hood %u in xy-space of the [x, y(x)} on E such that if 0^||(c«)|| =du, while

[x, y(x, h, c)] is in %u and [x, y(x, h, c), f] is differentially admissible, we have

£[x, y(*. h, c), r(x, h, c), Hx, h, c); f]

^ rR[\\f-r(x, h, c)\\] - t\\(kh Ct)\\*,

where t is a positive constant independent of €.t

As in Theorem 4.3 of R we may choose r = r3/4, where r3 is the constant

appearing in Lemma 4.3. In the above expression (2.8) R[t] is the convex

function (1 +t2)m-1 for t^O.

Finally, we shall use Theorem 5.1 of R, which for completeness we shall

state.

Theorem C. If zt{x) (t = \, ■ ■ ■ , N) are absolutely continuous functions

on Xi s= x ^ X2, and \\z\\ ̂ 5 on this interval, then

(2.10) f 'WzW-Wz'Wdx ^ di[f * R[\\z'\\]dx + ||z(Xi)||2J,

(2.11) J   \\s\\*dx fS d2[ fX*R[\\z'\\]dx + HzWll2],

where

ii = 4((1 + 52)1/2 + 1) max {l, X2 - Xi \ ,   d2 = 3(X2 - X1)d1.

t If s =     0=1, • • • , N),\\z\\ =[|(S()|| is used to denote the positive square root of Zi + • • • +3jv.
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3. The sufficiency theorem. We shall now indicate briefly how the direct

proof of the following sufficiency theorem differs from the proof previously

given in R.

Theorem 3.1. Suppose that Eiyfa), Xo = l, X#(x) (xi^x^x2) is an ex-

tremal arc satisfying with constants eß conditions I, Il/y, III' and IV*'. Then

there exists a neighborhood % of E in xy-space and a neighborhood 9i of the ends

of E in [xi, yiu x2, yn\-space such that J[C] >J[E] for every admissible arc C

in % with ends in 9c and not identical with E.

Suppose that C:Yi(x) (Xi^x^X2) is an admissible arc with end-points

[Xi, Fi(Xi), X2, F,(X2)] in the 9c0 neighborhood of [xu yi(xi), x2, y<(*»)] de-

fined by Theorem A. Let t)i{x) = F,(x) — y;(x) on XXX2, and determine con-

stants c„', Co (m = 1, • • • , p; 0 = 1, • • • , 2n+2 — p) by equations (2.5) for

■qi(Xs) thus defined and £s = X, — xs (s = 1,2). The corresponding functions hi(x)

determined by (2.6) are of class D' on X,X2. If for a given arc C of this type

we set

u((x) = u'ik{x)hk{x) + Ui'e(x)ce,      vt(x) = uik{x)hk{x)

we have, in the notation of Theorem B,

Yi{x) = yi(x, h[x], c),      yl{x) 4- u[{x) = u(x, h[x], c),

\ß(x) 4- nß(x) = \ß(x, h[x], c).

Finally, let m0, M0 be positive constants such that for every element

[Xu Ffl, X2, Yi2] in 9c0 we have m0\\h\\ ̂ \\(uik[x]hk)\\ £M0\\h\\ for arbitrary

sets h = (Ai).

We write for brevity

g[Xu YiXJ, X2, Y(X2)] - g[xh y(Xl), x2, y(x2)].

Then

AC] AE] Ag+ f *F[x, ¥, ¥', X 4- n]dx — f F[x, y, V, \]d x

(3.1)
Ag + /° - r - j\

where

(3.2)

(3.3) E[x, Y, y' + u\ X + m; Y']dx + Fu(Xs)Vi(Xs)
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1 c X, /• x,
+ — I    (20 [x, v, V, m] - FrirkViVk)dx + I    (B + vtB?)dx,

2 J x, •'i,

and for every e>0 there exists a corresponding de>0 such that if ||??|| —dt

\B(x) \ g e|j c9}||2,    ||fl*(*)|| £ (e/M0)|| {**(*), c*}||.

The proofs of these relations are similar to those of (6.1), (6.2), (6.3) of R.

As in R, one may likewise show that for a given e>0 there is a bounded

neighborhood 9c2e of the end-points of E which is interior to the 910 neighbor-

hood of Theorem A, and such that if C is admissible with end-points in 9t2e,

then
«=2

Ag - Z1 - r + Fri(Xs)Vt(Xs)

(3.4) , -1
&y[Xi- x,, mix,), X2 - x2, ̂ (X^l

- e[(Xi - xO« + (X2 - x2y + llu^OH» + |h(X2)||2].

Let %u be a neighborhood of E such that if C is in 3;2e then ||r?(x)|| ^de on

XiX2. Consequently, if C is an admissible arc in $2e with end-points in 9i2e we

havef

7[C] - J[E] = C/tATi - n, ^(XO, A2 - x2, | X1; A2]

+ f *£[*, F, / + «',X + p; r]»J*

- J(Xj - *,)* + (x2 - X2y + UnWll' + lh(A2)||2

+ £ \\\ {*<(*),*}II* + HT*<(*),*1IHI {*/(*),d Ilk*] ■

For a given «>0 let denote a bounded neighborhood of E in rry-space

interior to both the neighborhood %u of Theorem B and the neighborhood

%2( defined above; moreover, suppose that 9te is a neighborhood of the ends

of E interior to both 9f o and 9t2e, and such that if the end-values of C are in 91«

the corresponding constants c« satisfy ||(c«)|| ^du, where dlc is as in Theo-

rem B. Suppose C:Yi(x) {Xx — x^.X2) is an admissible arc in %t with end-

points in 9Je. Since 9J( is interior to 9J0 inequality (2.8) is applicable to the

quadratic form Q. We also see that £(x, F, y'+u', X+m; F'] satisfies

t Since ce (9=1, • • • , 2n—p) are constants,

\\v\\^Mo\\h'(x)\\=M0\\{h'i(x),ce'}\\,
and by Cauchy's inequality

\viB'{\^e\\{hUx),4 }||-||{*|(*),«»|||.
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(2.9). The functions A,(x) determined by C are absolutely continuous, and

\\h'(x)\\ =|| \h!{x), d }\\, R[\\k'(x)\\], R[\\v(x)\\] are Riemann integrable on

XiX2. Since w0||A'|| = \\v\\, we have R ] ^d3 R[\\v\\], where d3 = (l/w0) max

{l, l/m0} (see R, Lemma A of §4). Moreover, since ce (0 = 1, • • • ,2n+2 — p)

are linear in Xs — x3, r?s(Xs) (s = l, 2), there is a constant m' such that

||{*<(Xi), c9}||2 = - *02 + (X, - *2)2 + H^XOll2 + ||r,(A2)||2].

Applying (2.10) and (2.11) to the functions (zt) = {hi, ce) and combining the

relations indicated above, it follows that for an admissible arc C in gre with

end-points in 9ie, we have

J[C] -J[E] = («-€{1+ [2d, + d1]m'})'£, [<Jf. ~ xs)2 +||r,(Xs)||2]

(3-6) ,r
+ (r - e[2d2 + dAdz) f *R\\\v{x)\\\dx.

J x,

Now di and d2 depend upon the particular arc C in that they involve (X2 — Xi)

and a quantity 5 such that || [ki(x), ce}\\ < 8 on XiX2. These quantities, how-

ever, are uniformly bounded when e is restricted to a bounded set of values,

and C is in the neighborhood of E with end-points in the 9te neighborhood

of the end-points of E. Hence the quantities (k — e{l + [2d2+d1]m'}),

(T — e[2d2+d1]d3) are positive for e sufficiently small. Let 5 = o:<, 9J = 9c( for

such a value of e. Then for an arbitrary admissible arc C in % with end-

points in 91 we have J[C] }^J[E], and the equality sign holds if and only if

0=1    R[\\v(x)\\]dx = Xa - x, = \\r,(Xs)\\ (5=1,2),
Jx1

that is, if and only if C is identical with E. We have established, therefore,

the conclusion of Theorem 3.1.

As indicated in R, the class of comparison arcs C may be enlarged by

interpreting the integrals involved as Lebesgue integrals.

The Institute for Advanced Study,

Princeton, N. J., and

The University or Chicago,

Chicago, III.


