ON A CLASSIFICATION OF INTEGRAL FUNCTIONS BY MEANS OF CERTAIN INVARIANT POINT PROPERTIES. A SUPPLEMENT*

ву M. T. BIRD

In a recent paper† Carmichael, Martin, and Bird noted that the existence or non-existence of their α -sequences had not been established. The purpose of this note is to establish the impossibility of α -sequences. In other words, Theorem I of the paper cited above may be replaced by the following theorem:

In order that $\{t_n\}$ shall be an I-sequence it is necessary that the following condition shall be satisfied:

$$\lim_{n\to\infty} (t_n)^{1/n} = \infty.$$

It is sufficient for the proof of the theorem to show that the inferior limit of $(t_n)^{1/n}$ cannot be zero. For this purpose we assume that the inferior limit of $(t_n)^{1/n}$ is zero and show that a contradiction arises.

The positive integers can be arranged in ascending order in two infinite sequences $\{m_i\}$ and $\{n_i\}$ such that

$$t_{m_i} > 1$$
, $i = 1, 2, 3, \cdots$; $t_{n_i} \leq 1$, $i = 1, 2, 3, \cdots$.

Let β , γ be a pair of integers such that

$$\gamma \geq \beta \geq 2$$
.

We wish to show that an infinite subsequence $\{\nu_i\}$ of the sequence $\{n_i\}$ exists such that for an infinite subsequence $\{\mu_i\}$ of the sequence $\{m_i\}$ we have

$$\beta\mu_i \leq \nu_i \leq \gamma^2\mu_i, \qquad i = 1, 2, 3, \cdots.$$

We take ν_1 to be the least member of the sequence $\{n_i\}$ such that

$$\beta m_1 \leq \nu_1$$
.

^{*} Presented to the Society, September 10, 1937; received by the editors January 12, 1937.

[†] Carmichael, Martin, and Bird, On a classification of integral functions by means of certain invariant point properties, these Transactions, vol. 40 (1936), pp. 462-473.

Let us write ν_1 in the form $\nu_1 = x\gamma^2 m_1$. If x does not exceed 1 we take μ_1 to be equal to m_1 . If x exceeds 1 we define μ_1 as the greatest integer which does not exceed $x\gamma m_1$. In either case μ_1 is a member of the sequence $\{m_i\}$ such that we have

$$\beta\mu_1 \leq \nu_1 \leq \gamma^2\mu_1$$
.

We take m_i' to be the least member of the sequence $\{m_i\}$ such that

$$\beta m_i' > \nu_{i-1}, \qquad j = 2, 3, 4, \cdots.$$

We define ν_i and μ_i with respect to m_i' in the same manner that we defined ν_1 and μ_1 with respect to m_1 . In this way we define the monotonically increasing subsequences $\{\nu_i\}$ and $\{\mu_i\}$ of the sequences $\{n_i\}$ and $\{m_i\}$, respectively, which are such that

$$\beta\mu_i \leq \nu_i \leq \gamma^2\mu_i, \qquad i = 1, 2, 3, \cdots.$$

We proceed to show that the function defined by the series

$$E_1(x) = \sum_{i=0}^{\infty} x^{n_i},$$

which converges for |x| < 1, disputes the relation (1) of the paper cited above. We observe

$$\lim_{n=\infty} \sup |t_n E_1^{(n)}(0)/n!|^{1/n} \leq 1.$$

Furthermore, we have

$$E_1^{(\mu)}(a)/\mu! \ge a^{\nu-\mu}C_{\nu,\mu}, \qquad 0 < a < 1,$$

where ν and μ are corresponding members of the sequences $\{\nu_i\}$ and $\{\mu_i\}$, respectively.

It is easy to prove the inequality

$$C_{\nu,\mu} \ge \frac{1}{\nu+1} \left(\frac{\nu}{\nu-\mu}\right)^{\nu} \left(\frac{\nu-\mu}{\mu}\right)^{\mu}.$$

This leads us to the inequality

$$E_{\mathbf{I}^{(\mu)}}(a)/\mu! \ge \frac{1}{\nu+1} \left(\frac{a\nu}{\nu-\mu}\right)^{\nu} \left(\frac{\nu-\mu}{a\mu}\right)^{\mu}.$$

Let us take a to be equal to $1-\gamma^{-2}$. Then we have the inequalities

$$t_{\mu}E_{1}^{(\mu)}(a)/\mu! \ge (\gamma^{2}\mu + 1)^{-1}(\beta - 1)^{\mu}a^{-\mu} \ge (\gamma^{2}\mu + 1)^{-1}a^{-\mu}.$$

Hence we have

$$\lim_{i = \infty} \inf | t_{\mu_i} E^{(\mu_i)}(a) / \mu_i! |_{1/\mu_i} \ge a^{-1} > 1$$

and, consequently,

$$\lim_{n=\infty} \sup |t_n E^{(n)}(a)/n!|^{1/n} > \lim_{n=\infty} \sup |t_n E^{(n)}(0)/n!|^{1/n}.$$

This contradicts relation (1) of the paper cited above and leads us to conclude that the limit of $(t_n)^{1/n}$ must be infinite.

University of Wisconsin, Madison, Wis.