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1. Introduction. For the space (AC) of functions x(t) absolutely continu-

ous on the interval 0 ^ 1 it is natural, since (AC) then becomes isomorphic

with the space (L) of Lebesgue integrable functions, to employ the metric

(1) (*, y) = I *(0) - y(0) I + T0(x - y),

where T\(x —y) stands for the total variation of x(t) —y(t) onO^/^ 1. Until

recently the few writersf who have considered the space (BV) of functions

of bounded variation have simply carried over to this larger space the metric

of (AC). Although with this metric (BV) is a Banach space, it is not separa-

ble; perhaps it is partly on that account that (BV) was so little studied.

In I Adams introduced for (BV) the new metric

(2) (*, y) = f I x(t) - y(t) \dt + \ T\(x) - T0(y) |,

giving reasons for this choice. These reasons will not be repeated here, but

by way of partial motivation one might make two observations: (i) an arbi-

trary function in (AC) can be approximated (arbitrarily closely) in the metric

(1) by an inscribed polygonal function, but no function in the class

(BV) — (AC) can be so approximated;{ (ii) the metric (2) permits such ap-

proximation to an arbitrary function in (BV). Hereinafter, unless otherwise

specified, (BV) shall always be understood to be metrized with (2); although

not then a Banach space, it is boundedly compact and contains a countable

dense set of polygonal functions (see I).

Presumably the most important subsets of (BV) are (CBV), the set of

continuous functions of bounded variation, and (AC). With the metric (1),

(AC) is a closed linear manifold in (CBV) which in turn is a like manifold

in (BV), so it may be inferred at once that (AC) is of first category in (CBV)

and of second category in itself, while (CBV) is of first category in (BV) and

of second category in itself. When the metric (2) is employed, however, the

* Presented to the Society, December 29, 1936; received by the editors February 8, 1937.

t For references see Adams, The space of functions of bounded variation and certain general spaces,

these Transactions, vol. 40 (1936), pp. 421-438; later referred to as I.

I For an indication of this fact see Adams and Lewy, On convergence in length, Duke Mathemati-

cal Journal, vol. 1 (1935), pp. 19-26; especially p. 23. This paper will be referred to as AL.
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questions of category appear to be less trivial, and one of the main objects

of this paper is to answer them.

As a preliminary we set forth in §2 a lemma on semi-continuity of the

functional T(x). In §1 of I we compared several kinds of convergence and

indicated by example that certain kinds do not imply certain others;* in each

case the example was one in which the limit function has an external saltus.

That only such an example will serve this purpose will appear among the

consequences of the lemma in §2, and of an analogous lemma in §5. In §3

we consider the questions of category just mentioned. With (DBV) designat-

ing the set of discontinuous functions of bounded variation and (CS) the set

of continuous singular functions,! the critical issues in §3 are met by showing

that (DBV) is the sum of sets each closed and non-dense in (BV) and that

(CBV) — (CS) is the sum of sets each closed and non-dense in (CBV). In §4

we determine a base for (BV). Finally, in §5, we examine similar questions

which arise when T(x) is replaced by L(x), the Peano length of x(t).

2. Semi-continuity of T(x), with applications. A short time ago Adams

and Clarkson| observed the rather obvious but none the less fundamental

semi-continuity relation: limn^xn(t) =x(t) everywhere on% (0, 1) implies]]

lim mfn_xT(xn) = T(x). Although it was not expressly so stated, this result

holds for T(x) = « as well as for T(x) < oo . Our first object here is to obtain

a similar result when xn(t) is assumed to converge to x(t) only on a dense set

in0 = /=l.

To avoid possible misunderstanding let us first set up the

Definition. An arbitrary function x(t) will be said to have no external

saltus if and only if at each point h, O^/i^l, x(h) satisfies the condition

lim mit^tlx(t) ^x(d) =lim sup(,<,#(/).

The class of functions having no external saltus will be designated by (N);

its intersection with (BV), by (BVN). Clearly x(t)t(BVN) implies continuity

of x(t) aU = 0 and t = 1.

Lemma 1. The relation xn(t)—+x(i) on a dense set in (0, 1), with

x(t)z(BVN), implies lim inf^^r^) = T(x).

The reader should have little difficulty in establishing this lemma.

* See p. 423 of I.

t See, for example, Saks, Theorie de l'Integrale, Warsaw, 1933, pp. 11 ff.

X Adams and Clarkson, On convergence in variation, Bulletin of the American Mathematical

Society, vol. 40 (1934), pp. 413-417; to be referred to as AC.

§ The notation (a, b) for an interval will always mean the closed interval a fS t g b.

|| In general we employ the symbol Tl(x) for the total variation of x(t) on a^l^b; in particular

the limits a, b will be omitted when it seems that no confusion can arise therefrom.
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Although we do not intend to make use of it here, we may assert for the

case T(x) = °°

Lemma V. Therelation xn(t)-+x(t) on a dense set in (0,1), when T(x) = oo

but x(t)t(N) and the set E of its discontinuities of the second kind is either vacu-

ous or possesses an isolated point* implies IimB_M7,(a;B) = oo.

Proof. For Case 1, E vacuous, a proof can be constructed essentially in

the same manner as for Lemma 1. In Case 2, E not vacuous, let t% be an iso-

lated point of E. If for example x(tx —0) fails to exist, there must be an inter-

val (to, h) which contains no discontinuity of the second kind other than h;

and T'Kx) = °o. If T\l(x) = oo for any h, to<h<h, the conclusion follows

from Case 1; otherwise, for arbitrary M there exists t2 such that Tl'fx) > M

and the conclusion is a consequence of Lemma 1.

That Lemma 1 fails to hold when x(t) is permitted to have an external

saltus at even a single point is clear from the simplest examples. That

Lemma 1' ceases to be valid when E has no isolated point is shown by

xn(t) =0 for all   all n; x(t) the characteristic function of the rationals.

The two following lemmas are immediate consequences.

Lemma 2. The relation fl\x„(t) — x(t) \ dt—>0, with x(t)t(BVN), implies

lim mU^T(xn) = T(x).

Proof. If the conclusion were false there would exist e>0 and a subse-

quence xp(t) such that T(xp) <T(x)—e for all p. This subsequence, however,

must contain a subsequence xq(t) convergent almost everywhere to x(t); hence

by Lemma 1 we have lim mit^T(xq) = T(x), a contradiction.

Lemma 2'. The relation f*\ xn(t) — x(t) \ dt—>0, when T(x) = <*> but x(t) is

qualified as in Lemma 1', implies limn^KT(xn) = <».

Definition. We shall employ xn(i) —dv^>x(t) as an abbreviation for the

two conditions: xn(i)—*x(t) on a dense set in (0, 1), and T(x„)-*T(x).

Theorem 1. The relation xn(t) — dv—>x(t) on (0, 1) [(xn, x)—>0], with

x(t)t(BVN), implies that relation^ for every subinterval whose end-points are

points of continuity of x(t).

Proof. We need only show that Tl(xn)-*Tl(x) whenever a is a point of

continuity of x(t). By Lemma 1 [Lemma 2] we have lim inf Tl(xn) = Tl(x),

lim inf T\(xn) ^ T\(x); and lim sup Tl(xn) > V0(x) would imply

* From the proof it is evident that this lemma can be strengthened a little by considering right-

and left-hand limits.
f We repeat that (x, y) always refers to the metric (2) unless otherwise specified.
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lim rj(x„) = lim sup Tl(xn) + lim inf T\{xn) > Tl{x) + t\(x) — t\{x) ,

in contradiction to hypothesis.

That this theorem breaks down for subintervals having an end-point at a

discontinuity of x(t) is apparent from simple examples.

In I we remarked that "if (x„, x)—>0 and x(t) is discontinuous at even a

single point, xn(t) may fail to converge to x(t) at every point." This can hap-

pen, however, only when x(t) has an external saltus, as we see from

Theorem 2. The relation xn(t) — dv^-x(t) on (0, 1) [(x„, x)—>0], with

x0(t)t(BVN), implies xn(/)—>x(/) at every point of continuity of x(t).

Proof. Let a be any such point of continuity. No loss of generality results

from assuming a>0; for if a = 0, we can deal with the interval (0, 1) as we

now deal with (0, a). Denial of the conclusion implies the existence of «>0

and a subsequence xp(t) such that \ xp(a) —x(a) \ >e for all p. But there ex-

ists 8 >0 such that

I x(t) — x(a) j Sj T°(x) = Tq(x) — tI(x) < e/2 for a — 8 < t < a;

and a — 8 <t<a contains a point h where x(t) is continuous. Hence, in view

of Theorem 1, we have Tah{xp)-+Tatl{x) <e/2. But the interval h<t<a con-

tains a point h for which xp(^)^x(/2), and we have for p sufficiently large

Tah(xp) = Tah(xp) = I xp(t2) - Xp(a) I > e/2.

From this contradiction the theorem is to be inferred.

Corollary 1. For x(t)t(BVN), the relations xn{t) —dv-+x{t) and (x„, x)—»0

are equivalent.

That the first condition implies the second is seen by aid of Theorem 2,

the uniform boundedness of xn(t), and Lebesgue's convergence theorem. The

reverse implication is an immediate consequence of Theorem 2.

Definition. For x(i)t(BV) we define an associated function x(t) thus:

x(t)=x(t+0) for 0 = /<l, x(l)=x(l-0).

Definition. For x(t)t(BV) we define the sum of its external salluses as

S{x) = T{x)-T{x).

If at an interior point h of (0, 1) the function x{t) has an external saltus,

the magnitude of the "external part" of the saltus (or briefly, the external

saltus) is commonly defined* as

min [ I x{tx) - x(h - 0) |,   | x(h) - x(h + 0) | J.

* See Hobson, The Theory of Functions of a Real Variable, 3d edition, vol. 1, Cambridge, 1927,

p. 334.
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Using two results given by Hobson* one may show without difficulty that

S(x) = 22~2 (external saltuses at interior points)

+ I x(0) - x(Q + 0) I + I x(l) - *(1 - 0)|.

Theorem 3. The relation (xn, x)—*0, with x(i)t(BVN), implies (xn, x)—>0

and S(xn)—>0.

Proof. Since xn(t)=xn(t) almost everywhere, we have fx\ xn(t) — x(t) | dt

—»0; whence, by Lemma 2, lim inf T(xn) = T(x). But from T(xn) = T(xn)

+S(xn)^>T(x), S(xn) ^0, we infer T(xn) —>T(x) and S(xn)—>0.

That (xn, x)^0 with x(t)t(BV) — (BVN) in general fails to imply

S(xn)—*S(x) is evident from simple examples.

Theorem 4. The relation (xn, x)—»0, with S(x„) =k>0 for all n, implies

S(x) = k.

Proof. As in the proof of Theorem 3 we have lim inf T(xn) = T(x). But the

relations

T(x) = T(x) 4- S(x) = lim T(x„) ^ lim inf T(xn) 4- lim inf S(xn)

— lim inf T(xn) + k

then imply k^S(x) + T(x) — lim inf T(xn) ^S(x).

3. Questions of category. Let us recall from I that when (x, y) =0 we say

that x is metrically equal to y and write x^y. An element of the metric space

(BV) is therefore a class of functions any two of which are metrically equal;

for xt(CBV) the class consists of only one function, but for xt(DBV) it con-

tains an infinite number of functions. Since category is essentially a metric

property, it seems desirable now to consider (BV) merely as a metric space

rather than as a vector metric space, the elements of which are single functions

(see I).

From the definition of x(t) given above in §2 it is easily seen that if two

functions x(t), y(t) satisfy the condition (x, y) =0, then x(t) = y(t) on (0, 1)

and S(x) = S(y). Hence it is proper to set up the following

Definition. If xt(BVN) and x(t) is an arbitrary function of the class

constituting x, x(t) will be called the representative of the element x. If

xt(DBV) — (BVN) and x(t) is an arbitrary function of the class constituting x,

any function x(t) =x(t) for 0 = 1, t^h; x(h) =x(ti)+k, where h is any point

of (0, 1) and k is so chosen that | x(h) —x(h—0) \ + | x(h) — *(/i+0) | exceeds

the saltus of x(t) at h by S(x), will be called a representative of x.

Lemma 3. If (x„, x)-+0 and for each n some representative xn(t) of xn has a

* Hobson, loc. cit., p. 33S.
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saltus = k >0 at one or more points of (0, 1), then some representative x(t) of x

will have at one or more points a saltus k.

Proof. Let tn be a point where xn(t) has a saltus = k; let / be a limit

point of the sequence /„; and let the subsequence tp-^l. In case S(x)>0

let x(t) be the representative of x obtained by taking h in the fore-

going definition as /. Then, 5 being positive but arbitrarily small, set

as = £(/ — 8 ̂ t^l + 8) E(0 = t^ 1) and designate by b5 the closure of the com-

plement of <z{ with respect to (0, 1). Since bs consists either of one closed

subinterval of (0, 1), or of two disjoint intervals of this nature, on each of

which x(t) has no external saltus, we have lim inip^„Tbs(xP) = Tbs(x) by

Lemma 1. Hence the relation

lim sup Tas(xp) + lim inf Tbs(xp) ^ lim [Tas(xp) + Tbs(xp) ] = lim t\(xp)

= t\(x) = tH(x) + th(x)

implies

lim sup Tat(xp) g Tas(x) + Tbs(x) — lim inf Tb>(xp)     Ta}(x).

But since tp—>l we have lim sup Tas(xP) =k; whence Tai(x) for all 5>0

and l[ms„oTas(x) = k. And this last limit is precisely the saltus of x(t) at /.

Theorem 5. (DBV) is the sum of a countable number of sets each closed and

non-dense in (B V).

Proof. Let Em be the set of points xt(DB V) each of which has a representa-

tive x(t) possessing at some point a saltus S: \/m. Clearly (DBV) =2~lm=i^m-

By Lemma 3 each Em is closed in (BV). That each Em is non-dense in (BV)

now follows from the fact (see I, §1) that (CBV) is dense in (BV).

Since (BV), being complete (see I, §1), is of second category in itself,

(CBV) is of second category in (BV), and we have in the terminology of

D enjoy

Corollary 2. (CBV) is a residual set in (BV).

Corollary 3. (CBV) is of second category in itself.

Corollary 4. (DBV) is of first category in itself.

Otherwise, for the decomposition (DBV) =^"=rE™ employed in proving

Theorem 5, the closure in (DBV) of at least one set Em would contain a

sphere K(x0, r) c (DBV). Since (DBV) is dense in (BV), the closure in (BV)

of this set Em would then contain the corresponding sphere K~i(xq, r) c (BV),

thus yielding a contradiction.

We next consider the set (CS) of continuous singular functions; i.e., of
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functions x(t)t(CBV) for which the derivative x'(t) vanishes almost every-

where* on the interval (0, 1).

Theorem 6. (CBV) — (CS) is the sum of a countable number of sets each

closed and non-dense in (CB V).

Proof. For brevity we call the sum of a finite number of disjoint closed

intervals a, = ^i,- (* = 1, 2, • • ■ , p) an elementary figure, designate such a

set generically by R and its measure by \R\, and let TR(x) stand for

EL.*»»-
For each integer m>0we define the subset Am of (AC) as follows: a(t)tAm

if and only if we have

T\(a) £ l/m,       and       TR(a) = \T\(a)

for every elementary figure R c (0, 1) with \R\ ^l/m. Then the subset Em of

(CBV) - (CS) we define thus: x(t)tEm if and only if

a(t)zAm,      where      a(t) = I x'(s)ds.
J o

Denoting by Em (m = 1, 2, 3, • • • ) the closure of Em in (CBV), we propose to

show that
oo

(CBV) - (CS) = 2Z Em.

It is clear that each point of (CBV) — (CS) belongs to Em for some m.

From the fact (see I) that the polygonal functions are dense in (CBV), it

is easily apparent that (CS) is likewise. Therefore if for some m>0, Em were

not in (CBV) — (CS), there would exist a point yt(CS) and a sequence xntEm

such that (xn, y)->0. Let <xn(t) = ft,xn' (s)ds and ßn(t) =x(t)-an(t). The rela-

tion yt.(CS) implies the existence of an elementary figure R such that

TR(y) = T\(y) - [JR|£ —

In view of the corollary to Theorem 2 of AC and of the fact that T(xn)

= T(an) + T(ßn) on every elementary figure, we should then have

2T\(y) - —    2TR(y) = lim 2TR(xn) = lim [2TR(an) + 2TR(ß„)\
2m

_ ^ lim inf [T\(an) + 2Tl(ßn)]

* See, for example, Saks, loc. cit. If one chooses to exclude the functions x(t) = const, from the

set (CS), the proof of Theorem 6 can easily be modified to show that (CBV) —(CS) is still the sum

of non-dense closed sets in (CBV).
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=■ lim sup [2rJ(a„) + 2T\(ßn)] - lim inf Tl(an)

i ill
= lim sup 2T0(x„) — lim inf T0(an) = 2ro(;y)-»

m

a contradiction which implies the decomposition above stated. That ~Em

(m = 1, 2, 3, • • • ) is non-dense in (CBV) follows from the fact that (CS) is

dense in (CBV).

From Theorem 6 and Corollary 3 follows

Corollary 5. (CS) is a residual set in (CBV).

Corollary 6. (CS) is of second category in itself.

An immediate consequence of Theorem 6 is

Corollary 7. (AC) is of first category in (CBV).

Since (AC) is dense in (CBV), reasoning of the sort used in proving

Corollary 4 may be employed to prove

Corollary 8. (AC) is of first category in itself.

A complete classification of functions of bounded variation according to

external saltus, continuity, absolute continuity, and singularity leads to a

decomposition of (BV) into the following seven disjoint sets each of which

is easily seen to be dense in (BV): (DBV) ■ (S) ■ (N), (DBV) -(BV-S)-(N),

(DBV)-(S)-(BV-BVN), (DBV) ■ (BV-S) ■ (BV-BVN), (AC), (CS), and

(CBV—AC — CS). Combining these sets in all possible ways one obtains 126

distinct proper subsets of (BV) concerning each of which several questions

of category and Borel character can be raised. Many of these combinations

appear decidedly artificial;* nevertheless it may be worthwhile to point out

that all questions of category concerning them can now be answered. For in

proving Corollary 4 we have essentially established the lemma: Q c R and Q

dense in R imply that the category of Q in R is the same as the category of Q

in itself. By repeated application of this lemma we infer from the above re-

sults that (CS) is a residual set in (BV). Hence any one of the 126 subsets

which contains [does not contain] (CS) is of second [first] category in (BV),

in itself, and in any other of the subsets in question of which it is a part.

That 04C) is not a Gs in (CBV) may readily be inferred; but whether it

is an F„ remains among the numerous open questions concerning Borel char-

acter. We may remark, however, that not only (CBV) but also (CS) is a Gs in

* Curiously enough, our first application of the results of this paper will involve one of these

"artificial" combinations.
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(BV) and is therefore homeomorphic to a complete metric space, according

to a theorem of Alexandroff.*

4. Bases. A sequence of elements xf of a vector metric space S is called

a base for 5 if and only if to an arbitrary element xtS- there corresponds a

unique sequence of constants c, such that CC ^)^0 with \/n. For the

space (C) of continuous functions Schauderf has constructed a base consisting

of a sequence of polygonal functions. His argument makes clear that this se-

quence also constitutes a base for both (A C) and (CB V) with our metric; that

it is not a base for either (BV) or (BVN), however, may readily be seen.

In contrast with the point of view in §3, we must now regard (BV) and

(BVN) as vector metric spaces, whose elements are single functions. As a first

step toward the determination of a base for (BV) we shall prove that Haar's

system of orthogonal functions^ serves as a base for (BVN). We recall that

each Haar function Xi(t) is continuous at the end points of (0, 1) and that

otherwise Xi(t) = [xi(t—0) +Xi(t-\-0) ]/2, whence xtt(BVN) and any linear

combination ^. c&ft(B VN).

Now let x be an arbitrary element of (BVN). The function x(t) is one of a

set which constitutes an element of the space (L) of Lebesgue integrable func-

tions. Since the Haar system provides a base for (L), there exists a unique se-

quence of constants c, satisfying the condition, /J^Z,-^.-*,- —#| <f<—»0 with

1/w; and these c; are the coefficients in the Fourier expansion of x(t) in the

Haar functions. § But the partial sum sn(t) of this expansion is a step-function

which, on each of its intervals of constancy, is the mean value of x(t) on that

interval.|| From the following lemma the fact that T(sn)^>T(x), whence

(?.   CiXi.     >0, is to be inferred.

Lemma 4. If x(t)z(BVN) and apq is any set of numbers satisfying the condi-

tions mpq^apq^Mpq (p = l, 2, ■ ■ ■ , 2«; q = 0, 1, 2, • • • ), where

x(t))
)'} for (p- l)/2« = t = p/2«;

x(t))

mpq = inf x(t))

MPq = sup

then SpLj^p+i.s-aPi\~^Tl(x) as >oo.

This is a consequence of a theorem of Hobson, loc. cit., p. 332.

* See, for example, Kuratowski, Topologie I, Warsaw, 1933, p. 200.

f Schauder, Zur Theorie stetiger Abbildungen in Funktionalräumen, Mathematische Zeitschrift,

vol. 26 (1927), pp. 47-65; especially pp. 48-49.
% Haar, Zur Theorie der orthogonalen Funktionensysteme, Mathematische Annalen, vol. 69 (1910),

pp. 331-371; especially pp. 361 ff.
§ See Schauder, loc. cit., pp. 50-51.

II See Haar, loc. cit., p. 367.
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If to Haar's system of orthogonal functions we add the function xo(t) =0 for

0 = £<1, =1 for t=\, we obtain a base for (BV). For an arbitrary function

x(t)t(BV) is metrically equal to x(t)+s(t), where s(t) =0 for Q = t<\, =S(x)

for 2 = 1. From the above reasoning it is clear that constants c, (i = 1,2, 3, • • • )

can be uniquely determined so that (/. CiXi. x)—»0 with \/n, and from the

relation r£._(Ci*i) = TQLi^&i) + T(c0x0) = T(£ c&t) +c0 it follows that

with and only with c0 = S(x) shall we have Q£. CiXi, x)—>0. The uniqueness

of the entire sequence c, (i = 0, 1, 2, • • ■ ) may now be deduced without diffi-

culty.

The question as to whether (BV), or perhaps more likely (BVN), has a

base consisting wholly of continuous functions remains open.

5. Concerning the functional L(x). We now consider the question of

analogues of the above results when T(x) is replaced by L(x), the Peano

length of x(t), and the metric (2) by

(3) (x, y) = f I       - y(t) \dt + \ U(x) - L\(y) \.

The reader should have no considerable difficulty in establishing for L(x) the

analogue of Lemma 1, which provides a basis for drawing conclusions parallel

to those described in §§2, 3 prior to Theorem 6. Although the employment of

the metric (3) leaves unaltered the category and Borel properties set forth

in Theorem 5 and its corollaries, it does effect a change on the subsets of

(CB V). Employing as in the proof of Theorem 6 the notation

xn = ot„ + ßn, X = a + ß;   an, at(AC);   ß„, ßt(CS),

we have

Lemma 5. The relation (xn, x)—»0, with T(ßn)^k>0 for all n, implies

T(ß) £ k.

Proof. According to I, §1 we have in the notation of "convergence in

length" xn — I—>x, a — l—^a; from a theorem of Morse* one may then infer

(xn — a) — I—>(x — a). By Theorem 1 of AL it follows that (xn — a) — fl—>/3, in

the notation of "convergence in variation." Hence we have T(xn— a)

= T(an—a)-{-T(ßn)-+T(ß), and from T(an—a) i^O the conclusion follows.

Theorem 7. (CBV) — (AC) is the sum of a countable number of sets each

closed and non-dense in (CB V).

Proof. Allowing Em to denote the set of points xt(CBV) — (AC) each of

* Morse, Convergence in variation and related topics, these Transactions, vol. 41 (1937), pp. 48-83,

Theorem 5.4.
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which satisfies the condition T(ß)^±\/m, we clearly have (CBV) — (AC)

=YJm_lEm. By Lemma 5 each Em is closed; since with the metric (3) the set

(AC) is dense* in (CBV), each Em is also non-dense.

Corollary 9. (AC) is a residual set in (CBV), and is of second category

in itself.

Corollary 10. (CS) is of first category in (CBV), and is of second category

in itself.

Proof. In fact (CS) is a closed non-dense set| in (CB V). For, by Theorem 1

of AL the relation xn — I—>x implies xn — v—>x; therefore, if xnt(CS) for all n,

we have for all /

t t t t t t
L0(xn) = L0(0) + T0(xn) = t + T0(xn) —> L0(x) = t + T0(x),

whence {1 + [x'(t) ]2} 1/2 = 1 + | x'(t) | almost everywhere and x'(t)=0 almost

everywhere; so that if xe(CBV), it also is in (CS).

It is easily seen by example, however, that (CS) has limit points in

(DBV). Let (CS) be the closure of (CS) in (BV). Since (CS) is a closed set

in a complete space (see I, §1), it is of second category in itself. We consider

then (CS) - (CS) c (DBV). Let (DBV) =Y?m=lEm be the decomposition used

in showing (DBV) to be of first category in (BV), i.e., the analogue for L(x)

of Theorem 5, and let Gm = Em - [(CS) — (CS)]. Since for each m the set Em

has no limit point in (CB V), Gm has no limit point in (CS). But (CS) is dense

in (CS); therefore Gm, the closure of Gm in (CS), contains no sphere of (CS).

Thus (CS) — (CS) is of first category in (CS), and (CS) is a residual set in

(CS). (CS) is therefore of second category in itself.

By aid of Theorem 5.2 of Morse (loc. cit.) it can readily be proved that

(CS) is dense in (S), so that (CS) = (S); reasoning similar to that of the pre-

ceding paragraph then shows that (S) is of second category in itself. That (S)

is of first category in (BV) is easily seen. It may be remarked that (AC) is a

residual set in (BV); that, of the 126 sets mentioned at the close of §3, any

combination including (AC) [not including 04C) and not contained in (S) ] is

of second [first] category in (BV), in itself, and in any other combination of

which it is a part; and that most, if not all, of the questions concerning the

category of (S) and its subsets can be answered by the aid of results now in

hand. We observe also that not only (CBV) but also each of the sets (AC),

(CS), and (CBV) — (CS) is a Gs in (BV) and therefore homeomorphic to a

complete metric space.

* See I, §1.

f By aid of Theorem 8 below one may show similarly that (SN) is a closed non-dense set in

(BVN).
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With the metric (3), Schauder's base for (C) is again a base for (AC) and

for (CBV); and by aid of Theorem 5.2 of Morse (loc. cit.) it follows that the

base obtained above in §4 for (BV) with the metric (2) is also a base for (S)

with the metric (3). But Haar's system of orthogonal functions is not a base

for (BVN), and the question of bases for (BVN) and for (BV) we leave open.

One may use the notation x„(t) —dl—*x(t) on (0, 1) to stand for the pair

of conditions xn(t)^>x(t) on a dense set in (0, 1) and L(xn)—>L(x). It is natural

to inquire whether xn—dl-+x implies xn — dv^x. This question may be an-

swered with the aid of the following lemma, whose proof will be left to the

reader.

Lemma 6. For x(t)t(BVN) it is possible to approximate x(t) in length by

an inscribed broken line whose "corners" are at points of continuity of x(t).

Theorem 8. The relation xn(t) —dl-*x(t) on (0, 1), with x(t)t(BVN), im-

plies x„(t) —dv—+x(t).

Proof. By Lemma 1 we have lim inf T(xn) ^ T(x). For given e > 0 there ex-

ists a broken line B of the sort specified in Lemma 6 such that L(B) >L(x) — e.

By aid of the analogue for L(x) of Theorem 1 we may now pursue the argu-

ment used in establishing Theorem 1 of AL to complete the proof here.

In Theorem 8 the qualification x(t)t(BVN) cannot be dispensed with, as the

following example shows: x(t) = 0 for 0 ^ t < J, = 1 for / = f, = \ for \ <t ^ 1;

xn(t) =§ for \ <t^ 1 and all n; on (0, §), xn(t) a sequence of polygonal func-

tions all having the same length -| and the same total variation 21/2, converg-

ing uniformly to x(t) =0 and with xn(0) =xn(%) =0 for all n. We observe that

an example of the same type shows that when x(t) has an external saltus at

even one point, the condition xn(t)—>x(t) on a dense set in (0, 1), plus semi-

continuity of T(x) at x, does not imply semi-continuity of L(x) at x.

We conclude with the following

Corollary 11. The condition (xn, x)~^0 in the metric (3), with xt(BVN),

implies that condition in the metric (2).

Brown University,
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