
THEORY OF NON-LINEAR SINGULAR
DIFFERENTIAL SYSTEMS*

BY

W. J. TRJITZINSKY

1. Introduction. The most important published paper dealing with this

subject is a recent work by the present authorf in which further references

to the literature of the subject will be found. A method, introduced for the

first time by Trjitzinsky in (Ti), which is specifically applicable to non-linear

problems lies at the basis of the developments in the present work.J

In this paper we consider the system of non-linear differential equations

(A) t-'y,™ (t) = aj(t, yi,---,yn) {j = \, ■ ■ ■ , n; p &n integer ^ 0), §

where

(1.1) ajft yi, ■ ■ ■ , yn) = hit, yu ■ ■ ■ , yn) + qAt, yh ■ ■ ■ , yn),

(1.1a)       lj{t, yu ■ ■ ■ , yn) = M#H + ■ ■ ■ + kM***

(l.lb)
(ii, *s, ■ ■ ■ , L ^ 0; h + ■ • • + in = 2; j = 1, • • • , n).

The coefficients h,,it), fCttt,--',tJ® are assumed to be analytic at t= <*> for

|/| Tzr (>0), while the series of the second member of (l.lb) are supposed

to be convergent for||

(1.2) \t\ ^r; \yi\,  \yt\, ■■■ , \ yn\^P.

Moreover, it will be assumed that the linear system obtained by letting

Qiit, yi> ' ' " , yn)=0 (j = 1, • • • , n) is actually of order n, and that it is not of

Fuchsian type (cf. §2, italics preceding (2.6)).

The analytic theory will be developed for the complex neighborhood of the

singular point t = oo. The main results of this work are embodied in the theo-

rems at the end of §§7, 9, 10, and 15.

* Presented to the Society, September 9, 1937; received by the editors December 9, 1936.

t W. J. Trjitzinsky, Analytic theory of non-linear singular differential equations, Memorial des

Sciences Mathgmatiques, Paris. In the sequel this paper will be referred to as (Ti).

i This method has been also applied in the paper by W. J. Trjitzinsky, Non-linear difference

equations, Compositio Mathematica, vol. 5 (1937), pp. 1-66.

§ p is taken as small as is compatible with the stated hypotheses.

|| p is taken sufficiently small so that the function represented by the series is analytic at every

point of the specified region.
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The system (A) contains as special cases some of the important instances

of dynamical differential systems. From the point of view of dynamical ap-

plications the real variable theory is important. However, in so far as the

problems of the present paper are concerned our interest lies in the complex

plane. A considerable variety of new situations of mathematical interest arises

in the field now under consideration.

We shall also consider systems (B), obtained from (A) by assuming that

the
li,j(t), ***,.<..—.«•(*)

are all independent of t and that p = 0. These systems are of importance in

dynamics. Our concern here, as well as throughout the paper, is with the

analytic character of solutions "in the small" and, as stated before, with the

complex neighborhood of the singular point.

Finally, in §§11-15 an investigation is given for systems (C) of the form

(C)        \-"y,w (x) = a,-(X, x, yu ■ ■ ■ , y„)        (j = 1, • • • , n; integer p =■ 0)

where \is a parameter and where the second members are analytic in X, y1( • ■ ■ , yn

at X = oo, y, = ■ ■ • = yn = 0, for x on a real interval, and continuous in x on this

interval. The theory of such systems will be given for the neighborhood of the

singular point X = ». The precise formulation of this problem, together with

some references, will be found in §11.

2. Semi-formal aspects. Formal solutions of the system (A) will now be

constructed. These will appear as series, in general divergent, whose coeffi-

cients are functions determined by a sequence of well-defined analytic proc-

esses. For these reasons the construction and consideration of these solutions

can be referred to as the domain of "semi-formal aspects" of the theory of

systems (A).

Consider now the linear system associated with (A),

(LA) r»y««> (*) = h(t, *,;*•■,*) (i=l,--- ,n)

(cf. (1.1a)). By hypothesis

(2.i) i<M))l**o.f
The general asymptotic theory of such systems has been given by Trjitzin-

sky.J It will be assumed that the reader is acquainted with the main results

t A = (öi,,) is to denote a matrix of «2 elements (i, j= 1, • • • , n) with the displayed element in

the ith row and^'th column. The symbol | (a<,,)| = | A | is to stand for the determinant of A. The in-

verse of the matrix A will be denoted by A~l( = (<Zi,,)-1)-

t W. J. Trjitzinsky, Analytic theory of linear differential equations, Acta Mathematica, vol. 62

(1934), pp. 167-226. In the sequel this paper will be referred to as (T2).
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and methods contained in (T2).

The system (LA) can be written in matrix form as

(LA,) F<»«) - F(JM(*>,      Y{t) = {yUO),

where

(2.2) A(t) = (fhjit)) (i,j = 1, • • • ,n).

The elements of a row in Y(t) will constitute a solution of (LA). The system

(LAi) has a singularity of finite rank at t = ».

The following definitions will now be introduced.

Definition 1. Genetically {tq) (q an integer = 0) is to denote an expres-

sion
p0(0 + pi(0 log f + ... 4- Pq(t) log«/,

where pj(t) (j = 0, ■ • • , q) is a series, possibly divergent, of the form

(2.3) pif9 + + /»/.IT»'* + • • •

(& a positive integer). [t]* is to stand for an expression {t}q.

Definition 2. A curve B will be said to be regular if it is analytic in every

finite part and extends to infinity where it possesses a unique limiting direction.].

Definition 3. A region R will be said to be regular if it is closed, extends to

infinity, and is such that for t in R \ t\ =n(>0). The boundary of R is to be

simple and is to consist of an arc y of the circle \t\ =r\ and of two regular (cf.

Definition 2) curves extending from different extremities of y. Generically

R(ß\, 0i) is to denote a regular region for which the two regular curves {making

part of the boundary) have limiting directions 6x and 02, respectively. The number

I öi — 021 will be termed the opening of R.

Definition 4. Generically [t]q is to denote a function of the form

Po(t) + fi(f) log t + ■ ■ ■ + pq{t) log«/,

where p,(t) (j = 0, ■ ■ ■ , q) is a function, analytic for l^ «5 in a regular (cf.

Definition 3) region R, such that

(2.4) Pi(t)~pM (tinR),

where p,(/) is of the form (2.3). f [/]* is to stand for [t]q.

f The implication is that a regular curve (|/| ^f') is representable by an equation Rf(t) = Q,

where/(<) is analytic for 11\ äf', but may possess a singularity at t= <*>.

% Unless otherwise stated asymptotic relations are asymptotic in the ordinary sense, i.e., to

infinitely many terms. Thus, if a(<)~ao+<zi£-1"+ • • • (I in a regular region R) to infinitely many

terms, one has a{t)=a0-\-+a„_1/-<"-1»*+a„(0r""(| an(t)\ <bn; t in R) for «= 1, 2, • • • . If n

cannot be increased beyond na the above relation is to n0 terms.
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One may write [/]3~{/}9and {t}* (t in R).

The system (LAi) possesses a formal matrix solution t

(2.5) S(t) = (5,-,,-W) = (^rtTMrutö)»'

where

i<—i
(2.5a)       0,(0 = S frW*-^*        (integer A, = 1; i = 1, • • • , n; U ̂  1),

r-0

the r,,f for a fixed i may differ only by rational numbers, and

(2.5b) 9tM = {*}« (*»/ = 1, • ■ • , «).}

Moreover, formally 1S(/) | does not vanish. §

In consequence of a hypothesis made in §1 the system (LA) is not of

Fuchsian type; that is, not all of the polynomials Qi{t) (i = t, • ■ ■ , n) involved

in (2.5) are identically zero. We let Biti denote a regular curve along which

(2.6) R(Q<(t) - Qj(t)) = 0.

It will be understood that there are no B,,,- curves corresponding to any pair

of values i,j for which Qiit) =Q,-(t). Let

(2.6a) R?,W, '',Rx

be regular regions (cf. Definition 3) separated by the Bit] curves (formed for

all admissible pairs of values i, j) in such a way that interior to any such re-

gion there is no Biti curve. Consider a particular region Ri of the set (2.6a).

It is of the form R{6k,i, Ok,2) (cf. Definition 3) where, let us say, 6k,i^9k,2.

Let Bk,i and B'kiT denote the regular curves forming part of the boundary

of Rk and possessing at infinity the limiting directions 6k,x and 8k,2, respec-

tively.

In view of the Fundamental Existence Theorem given in (T2) and in con-

sequence of the connection between single nth. order linear differential equa-

tions with systems, the following can be asserted for any fixed k (1 ^k^N').

If 8k,j =0fc,2, the matrix equation (LAi) has a matrix solution

Y{t) = {y<M)) d,j = 1, • • • >*),

whose elements y»,,(<) are analytic in Rk for t^ °°, while

(2.7) Y(t) ~S(t) (ßi&Ri).

t (T2), p. 171.
t It is seen that the <ri,,(/) can be so selected that the n,j are independent of/.

§ This implies that when | S(t) \ is formally computed as an expression of the type (exp. [poly-

nomial in f]) ft {t} 0 (cf. Definition 1), not all the coefficients in {/} 0 are zero.
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The implication of (2.7) is

(2.7a) jiM) = fi*wr^[t\t = 1, ■•■,»;< in R£)

(cf. Definition 4). If 8k,i<dk,2 there exist regular overlapping subregions of

Rk,

(2.8) M - iRk = R(8k,i, dk,2),

whose boundaries contain 5ft,; and-Bi,,., respectively.! The regions (2.8) can

be so selected (depending on the polynomials (2.5a); for details cf. (T2)) that

(LA!) possesses two matrix solutions,

(2.8a) rF(/) =                 iY(t) = UytM),

such that

(2.8b) r7(fl~S(0 (fmrRk'),

(2.8c) ,7(0—5(0                                                  (* in iRk).

Let P(0 stand for a polynomial (2.5a) which is not identically zero. It is

clear that one may find a regular region R' = R ((?', 8"){8'<8") such that

eP(,)<~0 (t'mR').

Since not all of the Q,(t) are identically zero it is observed that there exist

regions

(2.9) RUR2, --,RN

such that, if R stands for a particular one of them, the following statements are

true:

(i) R is a regular region (cf. Definition 3) which is a subset of a region

referred to in (2.7), (2.8b), (2.8c).

(ii) There exist polynomials of the set (2.5a), QiAt), Qi,(t)> ' " > Qim(t)

(1 = m ^ n) such that

(2.9a) 6<f.-»e>~0 (v = 1, 2, • • • , m; t in R).

As a matter of notation, which does not entail any loss of generality, the poly-

nomials referred to in (2.9a) will be designated as

(2.9b) 01(0,02(0, • • • ,Qm(t).

Moreover, without any loss of generality one may write

(2.9c) RQß) = RQ2(t) ̂         = RQn(t) (t in R).

f The other regular curve, which forms part of the boundary of ,Rk (or iRk ), is interior to Rt

and has at infinity the limiting direction of -Bit,, (or B'k.i).
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In the sequel, unless stated otherwise, we confine ourselves to a particu-

lar region R referred to in connection with (i), (ii), and (2.9b). In consequence

of (i) there exists a matrix solution of (LAi), oY(t) = (oy<,/(f))> such that

(2.10) oF(0~S(0 (t in R).

We consider now a solution of (LA) of the form

m

(2.11) ijiit) = Z cx 0yx.,<t) (j = 1, ■•■,«),

where e%, c2, • • • , cm are arbitrary constants. The non-linear system (A) of §1

will be formally satisfied by the series (in general divergent) of the form

(2.12) fM = ivM + *tM + ■■• + *?M + • • •     o- = l, • • •,«).

Here the ,y,-(0 iy = 2, 3, • • • ) will be determined in the sequel as certain

functions analytic in R(t^ =o) and of the form

(2.12a) .*«

(*i, *2, • • • , &m i= 0; h + h + ■ • • + km = v).

The functions ly^t) will be representable by (2.12a) with v = \ if we let

(2.12b) WKiM " mt.t».—.ivM (X = 1, • • • , w; j = 1, • • • , «),

where £x = l and £j = 0 for zVX.

To determine the terms of the series (2.12) these series are substituted

in (A). If we take account of (1.1), (1.1a), (Lib), it follows that, since

iy,(t) (j' = 1, ■ • ■ , n) is a solution of (LA), we have

CO CO

(2.13) Z ,yf» (0 -t'zZ h(t, vju ■ ■ ■ , »y.) = tpq, (J ** 1» ••*■**).
v=2 v—2

where

n    r   » -|ta

?»• = Z (*!,»•,&(') H Z »y-W
»i, *■*.$*» a=l L v=\ —I(2.13a)

(H, • • • ,       0;»i+ • • • + *.S 2).

The first member in (2.13) may be written in the form

00

(2.14)       Z      Z     c[x ■ ■ ■ ckmmLj{t, ,rikl,...,km.,h ■ ■ ■ , mi,—
r=2 &H-Hm—v

where
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(2.14a) Lj = „yk1,---.km-i{t) — tpl,{t, »»?*„...,*»«) • • • , »>?*„•■•,*„,»)•

We now proceed to derive a formal expansion of q,- according to powers

of c%, • ■ ■ j cm. First it is noted that, with ia>0,

\ Z »y«(01 = Z   hJ«    ■ • ■ tay«
L ,=i        J    »,,•••, l

(2.15

= Z    Z   »j« ',y« • • • H.y« (! = "i> "2, • • •).
7='a "1-1-

In view of (2.12a) it is observed thatt

'« ft0   ft J ftj3
LT »0?« =1T Z Cl ' C2'   • • • Cm \^k\,--.,kt:oL
0-1 (9-1 klß+---+kmß=yß

(2.15a) „CD  ft '+...+ft.-„ tl'+...+l,<. „ , ,

the summation symbol of the last member above being specified as follows:

Z(1' = Z (*«" = 0; W + W + ■ ■ • + A«1 = n;
(2.15b) ,»'".,«'«, , <• v

ki2 + k22 + ■ ■ ■ + km2 = v2; ■ ■ ■ ; k, + k2 + ■ ■ ■ + km= v(a).

It is next inferred that

(2.16) LT "(iy« =      Z       Cl' C2* • ' ■ Cm A„»„-%-in;«,
0-i a1+..-+s„=7

where

Blt. • • ,Sm>ia ^-*(2) r -i

(2.16a)    -W,"i.---.".v<" = ' ' ' >**1'*i<"'"''ii»<«i«J»
^ 1 >' * *.km

Z(2) = Z t*r+ ■■■+ki" = hi k2+ ■ ■ ■ + kl" - 52; • • • ;

(2.16b)    km + • • •  + k'm= 8m] ki + ■ ■ ■  + km = Vl) ki+ • ' •  + ki = V2J ■ ■ ■ \

k["+ ■ • • + C=

Substitution of (2.16) into (2.15) will yield

[oo                -l ia oo

Z »y«(<)        = Z           Z       ClC2 •■•Cm7fa
»=1 J 1=ia   J,+-hSm=T

t Here the superscripts attached to the ki do not indicate powers.
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with

(2.17a) =    2-,    »#»,.—.»,„'«■

It will be convenient to introduce the notation

(2.17b) Vy      =       2^       Cl   " • • Cm yVa
s,+---+sm=y

We may then write

(2.is)   n [ i ,ya{t)T = n ± „r = z n c
a=l L >.=1 J a=l 7a_<0 7l. • ■ ■ ,Yn 9=1

(7i = 6, Tt S« «■» * " i Y»2 Ü).

In (2.18) the terms can be grouped so that

(2.18a)    ii\t.ya®T= z     e fie
a=l L »=1 J        #=i,H-+>„ 7iH-h7»=ff 9=1

(71 ä        • ' •  , 7n =  Jn) •

Before we proceed further, the product involved in the second member

of (2.18a) will be expanded. In view of (2.17b)

Vy,    = 11 2-,        Ci    • • • Cm yqi//q
9=1 9=1  «JH-+,*m=y,

(2-19) =,a„2^Cl

,51(. • • ,,5m a5i, ■ • • ,25m :<2 .«5,, • • • ,nsm ;»„

(A + ' • •  + l5m = 7lJ 2^1 + • ' '  + 2^m = 72,' ' ' '   J nßl + • • '  + n8m = Tn) .

Substitute i59+259+ • • • +n59 = kq (q = 1, 2, ■ • ■ ,?») in (2.19). Then we have

4 r\  \   TT    9'*3 V        hl hm       V"* ^        .       ' • " >l5m .n^i, ■ • • ,nJm iin
(2.19a) 11 r;7a    =    2-,    ci   ■ ■ • Cm      2-,      VlYl ' ' ' ■y.r'n ,

9=1 *i. ■•-,hm ,J,, ••••n8m

where

,„ Z<3>= Z • • • + n«9 = Ä9(g = 1, • ■ • ,m);
(2.19b)

A + • • •  + l&m = TflJ ' " '   i n5l + ■ ■ •  + nSm = 7nJ-

Now, as indicated in (2.18a), 7,+ • ■ • -\-yn = u. Hence in (2.19a)

m m     n n

Z K = Z Z ^9 = Z 7* = b.
<p,i     9=i i=i i=i
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We shall write

(2.19c) Z(3) • • • = *ATr.:::£*'"",,\

Then (2.19a) will assume the form

(2.20) 11 777s     =     2^      ci ' ' ' c<» «Ari,...,r„
9=1 AH-\-ihn-h

Substitution of (2.20) into (2.18a) will yield

(2.2i) n
11= 1

where

oo -lia co A        A   • • • A

E =    E E     ei• • c« aA«*,'....<» ,
p=l J        »-,.+...+«, A.+ ...+A_=ff

(2.21a) hA,,','...,',-»   =    X)    ffA,T„ "   ' ■        (71 s£ *i, • * * , ?» == *»).
7iH-(-Tu—ff

Substitution of (2.21) in (2.13a) will result in

2^        •••,<»(.*) 2^    2^   ci ••'c»A„-1i.

/ .           / .       Ci   • • • Cm flA,:,- ,

s=2  if=s  AH-¥hm=H

where

(2.22a) ffAs;',:   ' " =    X)     f®*t.B&it,-;-,in
*jH-Mn—8

If we denote the expression following the second summation symbol of the

last member of (2.22) by o8,h;,; it is inferred that

oo     oo oo h

(2.23) },■ = E £ os,h.j = E Z 0SlH:j.
s_2 Ä=s Zf=2 8=2

By substituting the expression for o„,h-,j in (2.23) one obtains

(2.23a) qi=±       E J*,--'^*l"'"V
H=2 *iH-

with

(2.23b) sr*1'",*" = EHA.*r''\
«=2

In consequence of the italicized statement following (2.13a) and in view

of (2.23a) it is inferred from (2.13) that
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E E Cl   ■ ■ ■ Cm Lj(t, fflf»„■■■,At,111 '     '  ) HVhu---,hm:n)
H=2   h,+ ---+hm=H

E<T-( "l "m P
/ . Cl    • •  ■  Cm  I   Hi- j

H=2 h1+---+hm=,H

Thus the following set of differential equations is obtained:

(Sh) Lj{t, HVhl,---,hm:l, ■ ■ ■ , HVhu---,hm:n)  = tpHTjU

(j = 1, 2, • • • , n; h = Ä! H-+ hm; k, = 0, ■ • • , hm = 0)

(cf. (2.14a)). There exist systems (Sh) for h = 2, 3, • ■ • . It will be shown that

the systems (52), (S3), • • • can be solved in succession in order to determine

all the *r)ku-■ ■ ,km;j involved in the formal solutions (2.12) of the system (A),

§1 (cf. (2.12a)).

We shall now establish in detail the nature of the dependence of the sec-

ond members of (Sh) on the »tyn,...Let

(2.24) Z(4,= f;   E      £      E<3> (,i*v
8=2  >iH-H»=l   Ti+-hyn=H   l*i, • - • ,„8m

(cf. (2.19b)). Here s^h. For if j>b it would follow that 7,+ • • ■ +7n = *'i +

• • • +in = s>b, which would be contrary to the equality 71+ • • • +yn = b.

Consecutive application of (2.23b), (2.22a), (2.21a), and (2.19c) will yield

Hi j — 2-i HA-s-.j

(2.25)
s=2   *iH-|-*n=S

Ait ■ ' ' .^m :»'i.' ' '

«=2  *H-r-*n=s 7H-r-7n=#

EC4) TT        , a*l-" * --a*m :*«

a-1

In consequence of (2.17a) and (2.16a) it is finally deduced that

r*li'"i hm ■^-»(4) -pr «8,, • • • ,„Sm.ia

Hi j —2-1 11 2-,        raVri,•••■»<„!*
(2.26) -im-

=   E( ' >«*., II E E<2).       IT VrVkf.-.-.km'-.a
a~l ri+---+via=y*   *i'.---.*m*° "-=1

(h = hi + ■ ■ ■ + hm)
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(cf. (2.24), (2.16b)).f In (2.26) the expression displayed after the product symbol

with respect to a (a = l, ■ ■ ■ , n) is to be replaced by unity for every a for which

ia = 0; moreover, for every such a we have ya = 0.

Definition 5. In... ,km\a the subscript v will be called rank.

It will be now established that nTfr' "' '•*■ is independent of the vr\kl,... ,km-a

of rank =h. To prove this one notes that, in view of (2.26), the ranks of the

"•ffci. • • •      involved in bT}m< '' '•*■» satisfy the conditions

(2.27) r, + ■ ■ ■ + Via = ya = ia (a = 1, 2, • • • , n); vk = 1 (k = 1, 2, • • • );

(2.27a)  7i H-+yn = n;   n + ■ ■ ■ + in = 2;   ü = 0  (* - 1, • •• ,»).

Thus

(2.27b)   fa + • • • + vu) + ("i + • • • + *.',) + •   • +fa + ; • • + f.„) = b.

The number of terms in the first member here is «i+ • • • +in- If we had a

^ h the left member in (2.27b) would certainly be = s+1 since there are at

least two terms (we have ii+ ■ ■ ■ +z'„S:2) in this member, while all the vk

are = 1. This makes the truth of the italicized statement subsequent to Defi-

nition 5 evident.

The tj's of rank one are known; they are the functions defined by

(2.12b) where the oyi,j{t) are elements of the matrix solution oY(t) = (oy.-,j(<))

of (LA). It is to be noted that in R, aY(t) satisfies (2.10). The »IT»--

(hi+ ■ ■ ■ +hm = 2; Ai^O, • • • , hm}±0; j = \, •••,«) can accordingly be de-

termined as functions of /. One may then determine all the r/'s of rank two

with the aid of the system (52). In general, if the r/'s of ranks 1, 2, • • • , b — 1

are known, the hT/1'' '' >*" may be computed as functions of / and the rj's of

rank b may be then constructed as solutions of the system (Sh)- Thus a

mechanism has been set up for determining the functions „y,-(f) of (2.12a);

i.e., a device for computation of consecutive terms of the formal solution

(yi(t), ■ ■ ■ , y»(0) (cf- (2.12)) of the system (A) of §1.

A matrix equation

(2.28) F«)(0 = Y(t)A(t) +G(t)   (Y(t) = (yt,,(#));   G(t) = (g<M))

is satisfied by

(2.28a)       Y(t) = C(t)0Y(t);    C{t) = j GWoF-'Mdr = (ct,,ir)),

where 0Y(t) = (oy.-,3(0 is a matrix solution of

(2.28b) 0Yw(t) = °Y(t)A(t).

t In (2.16b) let 5» = a5i and7 = 7a.
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If the gi,,-(i) =g,(t) are independent of i, it is not difficult to verify that the

Ci,j{£) =Cj{t) are independent of i. The same will be true of the

n

(2.29) yUt) = yM = ZcxWoyUO.
X-l

By writing

A{t) = {t\,{t)); gtM = iM = tpHri''-'hm(t),

we accordingly infer that the system (SH) is satisfied with the aid of the

formulas

n

(2.30) HVhu-,kmM) = EcxWoyuW,
X-l

where

cx(0 = cx(/;*r1,"-\ ••• ; *r!r-*"•)

(2.30a) = £ f<TPX"'",A'"(r)oyx1,x(r)^

0" = 1, • • - , n; h + ■ ■ ■ + hm = a;     ^ 0, • ■ • , hm ̂  0).

In (2.30a) the oy»,j(r) are the elements of the inverse of the matrix (oy.-.jO"));

that is,

(2.30b) (o?i.ftV)) = (oy«./(r));1.

The above may be summarized as follows.

Lemma 1. Let R be a region referred to in connection with (i), (ii) (subse-

quent to (2.9)) and (2.9b). Let oY(t) be the matrix involved in (2.10). The system

(A), §1 is formally satisfied by series (2.12) for j = 1, ■ • • , n, in general diver-

gent. The first term, iy,-(Ö> in such a series is defined by (2.11). The subsequent

terms ,y,-(t) are of the form (2.12a) with v = 2, 3, • • • . The coefficients

"Vki, ■ ■ ■ ,km;j(t) involved in vyj(t) can be determined in succession with the aid of

(2.30), (2.30a), (2.30b), and (2.26). (In connection with (2.26) cf. italics sub-

sequent to (2.26) and Definition 5.)

Note. R can be replaced by a more general region. However, we restrict

ourselves to regions of the stated kind, inasmuch as only corresponding to

such regions will "actual" solutions of (A), §1 be obtained.

3. Preliminaries to integration. It is to be noted that

(3.1) 0yx,a{t) = W>r\[f], (t in R; X, a = 1, • • • , n).
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Thus the elements of the matrix (2.30b) are of the form

(3. la) l>yx,,xW = e-Qx(r)t-rx+"[t]* (w rational; r in R;Xi, X = 1, • • • , n)

(cf. Definition 4, §2)). In view of the notation (2.12a), we have

i*V.»..»*r,.to = exp [*,•&<,-) + • • ■ + ^^(t)]/'^"^"^],

(kxr + ■ ■ ■ + kmr = 1; kiT ^ 0; a = 1, • • • , n; t in R).

In consequence of (2.26),

(3.3)   2r^.»- (r) = L(4U,.....Jr)n        E        Z<2> it^^.-,^«(r).
a=l -h'<a—<a r=l

With the aid of (2.16b) and (3.2) one obtains

II yr1]k{,---,lcmr:a{r)= exp [(&! +•••-)- Oöl + • • •
r—1

+ (*•+••• + AJOmJ/ • [rj*
(3.3a)

= exp [5x0! + • • • + 5m(2m]rä'ri+-+{-r"[r]*.

Application of the summation

E E<2)
»H-(-»*,,—*«

(cf. (2.16b) with 8i = a8i) to the left member of (3.3a) will yield the function

(3. 3b)        F} = generic form of the last member of (3. 3a).

With the aid of (2.24) and (2.19b) it is inferred that

jjFal = exp [(,«, + ■ • ■ + „Sxjöi + • ■ ■ + (A. + ■ • • + n5m)gm]

(3-3°) (1ä1+...+nä1)ri+... + (15m+...+n5m)rm•t H*

= exp [Aj&W + • • • + Äm(2ro(r)]/ir,+ --+*"r'"[r]*.

Since ,-a,-,,... ,,„(r) = [r]0, in view of (2.24) it is concluded that

(3.4)  2lf-^) =    £ E I<3,Ct,,,v,»,...,,
<lH-Mn=.2   7iH-(-Tn-2    ,J,, ■••,„«„

where Yi=*i, • ■ • , yn = in and

(3.4a)      Fi':.'.':........ = generic form of the last member of (3.3c).
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The combined summation represented by the three displayed summation

symbols involved in the second member of (3.4) is not with respect to

(hi, • • ■ , hm). Hence, in view of (3.4a),

(3.5) 2r-'"",Am(r) = exp [k&(r) + ■■■ + ^Cv«]/'^'''^"^]* (r in R),

(3.5a)        hi H-+hm = 2,   hi 2. 0, • •• , ft* £ 0; j = 1, • • • , n.

If we make use of (3.5) and (3.1a), we infer that the integrand displayed

in (2.30a) (for e = 2) is of the form

(3.6) exp [0(7)Mr]*,

where

CW = fti&to + • • • + hmQm(r) - QxW;
(3. 6a)

r  ' hiri + ■ ■ ■ + hmrm — rx + w + p.

In view of our present purposes it will be essential to integrate expressions

of the form (3.6) (<2(r) a polynomial in rllk; k an integer ^ 1) in such a man-

ner that the integral is of the same generic form as the integrand, with r

possibly changed. This can certainly be achieved by the methods of Trjitzin-

skyt if RQ(t) does not change sign in R. Now, when one examines the par-

ticular integrand (3.6) for which (3.6a) holds, the following is noted re-

garding Q(r). If \>m we pick out an ha( >0)| and write

0(t) = [AiQiW + •••+(*.- DÖ-(r) + • • • + hmQm(r)]

+ Q«(t) -Qx(r).

Here AisiO, • • ■ , ha —1^0, • • • , hm^0; thus, since one may write in con-

sequence of (2.9a) and (2.9b)

(3.8) RQAt) ^       = RQm{r) < 0 (r in R),

it is inferred that the real part of the expression within the brackets of the

second member of (3.7) is certainly negative in R. In this connection we make

use of the fact that

*!+••• + A0_! + (ha- 1) + ha + ■ ■ ■ + hm= 1,

as can be seen from (3.5a). On the other hand, by (2.9c)

R<Q*{r) - ft(r)) ^ 0 (riaR).

Whence it is concluded that, for \>m,

t Cf. (TO.
% This is possible in view of (3.5a).
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RQ{t) < 0 (t in R) .

Moreover, by (2.9a), (2.9b), exp [Q(t)]~0 in R. Suppose now that \ ^m.

If fa > 0 we have

Q(t) = AiQi(t) + • • • + (fa - IXMt) + ■ • • + A»G;„(t)

with Äi£0, • ■ • , Äx-i-1^0, • ■ • , Am^0 and fe+ • • • ■ • • +hm

= 1. Hence exp [Q(t) ]<~0 (r in i?) in this case as well. If X ̂ m and fa = 0, the

following is noted. Some A„ (l^a<X)f may be positive; by (3.8) one then

has R(Qa(r) -Qx(r)) gO. Since

GM = [AiÖiW + ••+(*.- Dö-W + • • • + hmQm(r)] + Qa(r )- 0x(t)

(*t =1 0, ■ ■ • , *„ - 1 3; 0, • • ■ , km = 0; hi + ■ ■ ■ + (ha- 1) + • • ■ + hm = 1),

it is inferred that, for the case under consideration, RQ(r) <0 and exp [Q(t) ]

~0 (r in R). In the remaining case, when X £ m and fa = 0 one has fa = h2= ■ ■ ■

= Ax = 0. This necessitates that some ha (\<a^m)t should be positive, and

we have

Q(t) = - Qx(r) + fa+1f\+l(r) +■■■ + hmQm(r)

(fa+i ^ 0, • • • , hm ä: 0; Ax+i + • • • + hm = 2).

A7ok> RQ(t), where Q(t) is given by (3.9), «0/ necessarily maintain its sign§

in R, unless X = m, in which case some ha (1 ^a<X) would have to be positive.

If, more generally, functions are considered of the form

(3.10)     Q(r) = g1Q1(r) + g,Q2(r) + ■■■ + gmQm(r) = Z q.T«-»>,

where the g{ (i = 1, ■ ■ • , n) are real, and where, unless Q(r)=0, the leading

term actually present is

(3.10a) f^T**-'.)'* (0Sn^i-l;f„#0),

it is observed that, with

(3.10b) qjTlilki, tjoV»'*», ■ ■ • , q0mTlm,k"'

respectively denoting the leading terms in Qi(t), Q2(r), ■ ■ ■ , Qm(r), we neces-

sarily have

I — V\
(3.ioc) -gr,

f This may arise only if X>1.

t This may occur only if X < m.

§ Examples can be given when RQ{t) changes sign in R.
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where V is the greater one of the numbers U/ki (i = l, ■ ■ ■ , m). The regular

curves along which RQ(t)=0 will possess at infinity limiting directions t0

satisfying the equation

#(-T<i-*i>/*) = I q  I I r|(J-^W* cos \q,t + (—~Vol = 0
(3.10d) L     A  * /. -I

These directions have accordingly the values

(3.10e)    to = t0(m) = ——1~— + mir - (w = 0, ± 1, ± 2, • • • ).
j — vi L 2 J

Thus they differ by non-zero integral multiples of kir/Q — vi). By (3.10c)

kir 7T

(3.11) - = —
l-vx V

At this stage it will be convenient to introduce a definition.

Definition 6. Let R denote a region satisfying conditions (i), (ii) of §2.

Let Q(t) be a polynomial of the form (3.10). A region W will be said to be of the

order v( =i 1) with respect to Q(r) if the following conditions are satisfied.

(I) W is coincident with or is a regular (cf. Definition 3, §2) subregion of R.

(II) W = Wi-\-W2+ ■ ■ ■ +Wy, where Wi, ■ ■ ■ , W, are regular non-over-

lapping regions such that along Wi,i+\, the common boundary of Wi and Wi+1

(t = l, • • • , v— 1), RQ(t)=0, while interior to Wi (i = l, • ■ ■ , v) RQ(t) does

not change sign.

When v = 1 Condition (II) is to be replaced by a statement to the effect

that RQ(t) does not change sign in W.

With v> \ and denoting the limiting direction of Wi,i+i (* = 1, • • • ,

v—\) at infinity, it may be supposed without any loss of generality that

0i,a < 02,3 <•.••< 0»_i,

One may then write

kir
0.-..-+1 = 0i,2 + a - 1) -—   (»»1,2, • • •, v -1).

£ — vi

Lemma 2. JFz/A R denoting a region satisfying (i) and (ii) 0/ §2, let W be

a regular subregion of R of opening (cf. Definition 3, §2) less than ir/l', where I'

is the number referred to in the italicized statement in connection with (3.10b),
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(3.10c). The region W will then be of order ^2 (cf. Definition 6) with respect

to every Q(t) of the form (3.10).f

In consequence of this lemma, R can be covered with a finite number of

regions of order g2 with respect to every Q(r) of the form (3.10). The in-

equality " ^2" cannot be replaced by the equality " = 1" because, generally,

it is impossible to find a regular subregion W of R (of opening however small)

such that for no Q(t) of the form (3.10) is there a curve RQ(t) =0 interior

toW.
The truth of this lemma can be inferred as follows. Consider a region

W = R(ai, a2) (cf. Definition 3) for which, as required by the lemma,

0 = a2 — a\<ir/h. Unless implied otherwise we take a fixed set of numbers

gi, ■ ■ ■ , gm- If Q(t) =0, W will be of order unity with respect to this Q(t).

If Q(T)^0 let the regular curves (Definition 2) be designated by

Bi, Bt, • • • ,

and let the limiting directions at infinity be the numbers

ft, ft, • • • ,

respectively. It is a matter of notation to arrange these numbers so that

ft < ft. < • • • ; ft ^ «i

and so that Bu if not coincident with the boundary of W for which limiting

direction is a1; lies exterior to W in such a way that between Bi and the men-

tioned boundary of W there is no curve B{ (i = 2, 3, • ■ • ) for which

(3.11a) ßi<ßi£(*i.

The implication of the above is that, if (3.11a) holds for i = 2, the curve B2

must extend interior to W (in which case necessarily ft =ai).

For some subscript v (> 1) Bv will be either coincident with the boundary

of TF, for which the limiting direction is a2, or it will lie exterior to W so that

between the boundary of W, just referred to, and B, there is no curve Bi

{i<v) such that

(3.11b) a2^ßi<ß„.

If, however, (3.11b) holds for i—v—l, the above necessitates that we should

have a2 = ft_i, while       extends interior to W.

Corresponding to a particular Q(t) (^0) of the form (3.10), IF has been

covered by a succession of v — 1 adjacent regions separated by the curves

B2, B3, ■ ■ ■ , Br-i, all interior to TF. Designate these regions by

f l' is independent of the choice of Q(t); i.e., /' is independent of gi, ■ ■ • , gm.
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(3.12) IM, R**, ■■■ , R+-h*       (R'^1 = R<ßt,0mß.

With the leading term in Q(t) given by (3.10a) one has, in view of the state-

ments preceding Definition 6,

kx jr
(3.12a) pVi - ßt = (r - 3)t-       ä (*-3)—,

f — Fi £

whenever v>3.

When i/iS3 there are at most two regions (3.12), and W will be of order

g 2. If p >3 consider the region

It will be interior to W.] Now W = R(a\, a2). Thus

(3.12b) pV_i - ßt = a2 - ai < — •
^i

This, in view of (3.12a) implies that

7t it
(j< — 3) — < — %   v > 3 (nan integer).

£ /

These inequalities are, however, incompatible. Hence v ̂  3 necessarily and IF

is at most of the second order.

In the sequel, unless stated otherwise, W is to denote a particular regular

subregion of R with opening <ir/l'.

4. Integrations. Let W = R(a1, a2), ai<a2 (cf. Definition 3, §2) be a region

such that a2 — a\<ir/V. Consider the problem

(4.1) y<»$ = e^'Hra(t)

where, unless Q(i)=0,

i-i
(4.1a) Q(t) = zZ q^l-')lk       (0 ^ n g / - 1; ?„ 5= 0)

"="i

and (l — vi)/k^l'. Assume a(t) to be of the form

(4.1b) a{t) = [#]* (f t» W)

(cf. Definition 4, §2).

It is not difficult to see that Lemma 2 holds when Qif), instead of being

assumed to be of the form (3.10) is given by (4.1a). The essential fact is that

the inequality subsequent to (4.1a) holds. Thus W is of order ^2 {with re-

spect to all the Q(t) of stated type—provided, of course, that I' is fixed). In this

f That is, all of its points, with the possible exception of those on the circular part of its bound-

ary, are interior to W.
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connection "order" is specified according to Definition 6, §3. When Q(/)^0

we have W = Wi + W2, where

(4.2) = *(«!, ft), W2 = Riß», «,) (a^ft^a,),

unless

(4.2a) IF = JTi = 72(0!, a2).

The symbols involved here have the same significance as in §3. With Bt de-

noting the regular curves satisfying the equation RQ(t) =0 and p\ denoting

the limiting direction of Bt we have B2 interior to W (in case (4.2)) or there

are no curves Bi interior to W. The curve B\ is exterior to W or is coincident

with the right boundaryf of W and the curveB3 is exterior to Wot is coinci-

dent with the left boundary of W. However, in view of our present purposes,

it will be necessary to examine this case in greater detail, taking advantage

of the conditions satisfied by W.

When W = Wi the integration methods given in (T2) are applicable. In

the case of W = Wx + W2 an extension of these methods will be necessary. The

latter case will now be considered.

By hypothesis a(t)~oc(t) (t in W), where

(4.3) «(*) = {t}*

(cf. Definition 1, §2). As demonstrated in (T2) the formal equation

(4.3a) *«>(/) = eWH'ait),

associated with (4.1), possesses a formal solution

(4.4) s(t) = eO«>r+M0,

where

(4.4a) ff(t) = {<}*,   w=i-(^—^\ (i-r^w<i).

Retaining in the power series involved in <r(i) the first ßi terms only, we obtain

a certain function o-pSt)- Apply now the transformation

(4.5) y(t) = eWH'+vcTßXt) + z(t)

to the given equation (4.1). It is observed that z(t) will satisfy

(4.6) 2<»(o = rM,

where

j The "right" boundary of W is that one of the two regular curves, forming part of the boundary

of W, which appears on the right when the region W is faced from the origin.
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d r
?(t) = eQ(i)ra(0-[e^^f+^o-ßAt)]

dt
(4.6a) . .

= e^'H-ßb(t) (\b(t) I gb;tinW),

as can be seen from the developments given in (T2). The essential fact to be

noted is that in (4.6a) ß (=ß(ßi)) can be made as large as desired by choosing

ßi sufficiently great. The function bit) will, of course, be analytic in W (t^ w).

Suppose, for instance, that RQ(t) >0 interior to Wi. Let t0 denote the

point where B2 meets the circular part of the boundary of W. A solution of

(4.6) will be defined as follows:

(4.7) *(/) - f0+ f S(r)dT,

(4.7a) f□ = f \{r)dr.
J CO

In (4.7) the path of integration is interior to W2 when t is interior to IF2>and

it is interior to Wi when / is interior to Wi. This path is along B2 when t is

on B2. In (4.7a) the path is along B2. We deliberately avoid using the notation

(4.7b) z(t) = f Ur)dr (t in W)
J CO

unless further qualifications are introduced. This is because, for t in Wi, there

may exist paths (t, oo) extending interior to Wi for which the displayed in-

tegral (4.7b) diverges. Formulas (4.7) and (4.7a) define a solution of (4.6)

analytic throughout W (t^ °°).

If t is in TFi and there are no curves!

dRQ(t) lit
(4.8) —^il=,o       (t = 11\exp [(- iyi*e])t

dB

between / and B2, we shall write

(4.9) z(t)={j +f)^d7 (\t'\ = \t\).

The first integration displayed here is along B2; the second is along an arc

of the circle |r| = |/|. With the aid of (4.6a) it follows that

f The whole discussion here and in the sequel is given sufficiently far away from the origin so

that no two distinct regular curves, under consideration, intersect.

t All such regular curves have limiting directions distinct from those of the regular curves

£<?(/) =0(cf.(T2)).
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■w|s,(/."+DgfiQ(r)    T -0+2

By taking ßi sufficiently great the inequality — ß+2 3 0 will be secured. Since

RQ(r) increases monotonically as r describes the circular arc |r| = |/| from

t' to   it is inferred that

eRQM I T I-0+2

attains its upper bound, for the combined path under consideration, at t.

Thus

(4.9b) z(t) |j eQ(»r^+2
(/;+/;)

dr

^2

As established in (T2) we have, when r = r exp [('—l)u*9], is on B2,

6 - ßi = for-p<k + /ir-(*+»'* + • • •      (p an integer 3 1),

the series here involved being convergent for r^rx ir\ sufficiently great).

Hence along B2

(4.9c) I dr \ = [rHdey + (dr2)]1'2 = (1 + gif"1'* + g2r~2lk + ■ ■ - )\dr\,

so that along B2

(4.9d) I dr \ < g \ dr\,

where g (> 0) is independent of r and depends only on the curve B2. Thus

(4.10)

On the other hand,

(4.10a)

f < t—r

r I t2 I ~ J A
de

—rUt'- It) <r-r>
t\ \t\

since Z /' — Z / is obviously bounded when t' is on B2 and / (| t\ = \ t'\) is any

other point in W. By (4.10), (4.10a) it is inferred from (4.9a) that

(4.11) *(') I <(« + g')b \ <fi™r*» I

when t is in W\ while no regular curves (4.8) are between t and B2. In other

words, if no curve (4.8) extends interior to Wi the inequality (4.11) will certainly

hold throughout Wi.

Suppose now there are regular curves (4.8) interior to W\. As indicated in

(T2) there is just one curve (4.8) between Bx and B2. Hence there will be only
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one curve (4.8) interior to Wi. Let X0 be its limiting direction. Then t

(4.12) ai^X0</32

and

(4.12a) X0 = i(ft + ft).

We need to obtain an inequality for | z(t) | when t is in Wi between the curve

(4.8) (with the limiting direction X0) and the right boundary of Wi (i.e., of W).

(4.7), (4.7a) will now be written in the form

(4.13) z(t) = fo + fi+(      + \f^Ur)dr (\t'\ = |/|).

Here

(4.13a) ri= f \(r)dr

with the integration extended over the circular part of the boundary of Wi

(t0 and to representing the points where B2 and the right boundary of W

meet the circular arc). The first integral displayed in (4.13) is along the right

boundary of W. The second is along an arc of the circle \ r\ = \t\. If Bi had

the same limiting direction at infinity as the right boundary of W, that is,

if ßi = «!, a contradiction would necessarily follow, since it has been previously

assumed that ax<ß2^a2. In fact, one would have ß2—ßi ( = A —«i) ^a2 — cxi

<t/1'; on the other hand,!

kir tt
A - A --3 -•

l — Vi I

Hence, whenever there exists a curve RQ(t) =0 interior to W, «i >ß\. We will

have necessarily

a = cos iqVl -\-—cti 1 > 0.

t RQ(t) = \qn\\t\<l-^l*cos(qri+l—^B)+--- (8= Zt)
k

and

36

Thus the limiting directions of the curves RQ (/) = 0 are the values of 8 for which cos {qn+((/—ci) /k) 8)

=0, while those of the curves (4.8) are the values of 6 for which sin (qn+((l—vi)/k)8)=0.

t This is a consequence of an inequality stated in connection with (4.1a).
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Accordingly along the right boundary! of W

(4.14) RQ{r) =<.!?„! I T|«-'.»*(l + g() («|?„|>0),

where gr—>0 as |t|—><». In consequence of (4.14) it is inferred that there

exists a number riß) so that, for all t' on the right boundary of W and such

that 11'\ 3r(j3), we have

(4.14a) I eQ(-)T-« I £ I e<2<''>(0~'311

when r is restricted to the part of the mentioned boundary between t0' and t'.

Whence, in view of (4.6a),

(4.15)

f(T)<Zr   = b I    | | \ dr\ = b \ e'^1"» (t')~B \ I    | dr \

< 6i| eW\t')-ß+1\ i\t'\ = <ß)).

Take b' (3 oi), depending on ft sufficiently great so that

< b'\ e^''KtTß+l I (I *'| < '(ft)-

We then have

(4.15a) J*    < 6'I e«<''>|tOrw'1|

for all t' on the right boundary of W.

On the circular arc (t', t) constituting the path of integration in the second

integral displayed in (4.13), RQ{r) attains its upper bound at / (t between the

right boundary of Wi and the curve (4.8) extending interior to Wi). Thus by

the same reasoning as before one obtains

(4.16) f(r)rf 5; bg' I e<?«>r"+1

If we apply the relations

I t'\ = I t\,      I eQ(1,)| g I e«(()

to (4.15a), in consequence of (4.16) we infer that

(4.17) + k(rV
(/,>/,:>

< b" eö(»r^+11,

where b" may depend on ft When t is between the right boundary of W and

the curve (4.8) (extending in Wi), we have

f Use is made of the fact that, if 6=f(r)(j = r exp[( — l)1/20)]is the equation of this boundary,

one has lim f(r) = a, as r—> °o.
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(4.17a) i e-Q(t)tß+i \ ^ | e-QO'>(;'y>+i| = 0l» (|/'|=|/|),

where t' has the significance indicated before and b{' may depend on ß. With

the aid of (4.17) and (4.17a) from (4.13) we obtain the inequality

(4.18) I z(t) I < 021 e«(t>r<i+1| (b2 dependent on ß)

Jor t in the region specified in connection with (4.17a). In view of (4.11) it is

seen that (4.18) is valid throughout Wi in any case.

When t is in W2 there are the following four possibilities.

Case 1. The regular curve (4.8) whose limiting direction is (ßi+ß2)/2 is

coincident with the left boundary of W2 or extends interior to W2.

Case 2. The curve (4.8) mentioned in Case 1 extends exterior to W2, while

<X2>|82.

Case 3. a2=ß2 and there exists a regular curve

(4.19) RQ(t) = - h« 0),t

with limiting direction ß2, which is coincident with the left boundary of W2

or extends exterior to W2.

Case 4. «2=182 and for no h (>0) is there a curve (4.19) satisfying the

conditions laid down in the formulation of Case 3.

In Case 1 one has

(4.20) RQ(t) = - a'\ rI«'-')'*( 1 + gr) (a' > 0)

where gT—>0 as | -7-1 —> 00 along the curve (4.8) under consideration. The func-

tion z(t), as defined by (4.7), can be expressed as follows:

(4.21) z(t) =(/ + J')fWdT (N = M).

Here the first displayed integration is along the curve (4.8); the second is

along an arc of the circle |t| = 11 \. With the radius of the circular part of the

boundary of W sufficiently great (but independent of ß), the upper bound of

I e<3(,)T-0+2|

is attained at h when t is the variable of integration in the first displayed in-

tegral of (4.21). This follows from (4.20). On the other hand, along the arc

(h, t), |exp [Q(r)] I increases monotonically, attaining the upper bound at t.

Thus an inequality like (4.9b) is obtained. With the aid of a reasoning closely

analogous to that employed in deriving (4.11) it is inferred that in Case 1

(4.21a) I z(t) I < ai I e^H-ß+l \ (t in Wt).

t Regarding such curves cf. (T2).



1937] NON-LINEAR DIFFERENTIAL SYSTEMS 249

In Case 2, a relation like (4.20) will hold along the left boundary of W2.

This follows from the inequality ß3 >a2>ß2. We express z(t) as in (4.21) with

the first integration involved there along the left boundary of W2. Making an

assumption as stated in italics subsequent to (4.21) we conclude, as in Case 1,

that (4.21a) holds (for / in W2) in Case 2 as well.

In Case 3, -h^RQ(r) ^0 for r in W2. Thus

(4.22) e~h g I e«<'> | g 1 (r in W2).

On writing (4.21) with the path of integration as in Case 2, we note that

I gQ(r)T-S+2 I  <; I l |-0+2

when r is on the combined path of integration. In view of (4.21) one accord-

ingly has (cf. (4.6a))

(4.23) I z{t) I g b\t\-f>+2(^ J* '+ j ^ |^|.

Inequalities (4.10), (4.10a) will hold with g and g' having a meaning analo-

gous to that previously assigned. Whence it is concluded that

(4 • 23a) I z(t) I < (g + g')b \t |HJ+i (t in W2).

In view of (4.22) it is inferred that (4.21a) holds in Case 3, provided that we

take
at = e»(g + g')b.

In the remaining Case 4, RQ(t) will be monotonically decreasing along the

left boundary of W2 (as | r | —> °o along this boundary), provided that the

radius of the circular part of the boundary is taken sufficiently great. Along

any circular arc
(fa, t) C|*»I-I'I-)j

where h is on the left boundary of W2 and t is in W2, RQ(r) will attain its

upper bound at /. The repetition, then, of the argument of Case 2 will yield

an analogous inequality for | z(t) \.

In view of the statement previously made in connection with (4.18) it is

now seen that (4.18) (with a suitable b2, dependent on ß) will hold throughout

W = W\+Wt. If we write

(4.24) z(t) = e<^tHr+"Zi(t)

it is accordingly observed that

(4.24a) I zi(t) I <b2'\t |-f        (ß' = ß - 1 4- r' + w)f

t r' = real part of r.
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for t in W1 + W2. Moreover, ß'-+<x> with ft-^oo. By virtue of (4.24) and (4.5)

it is concluded that the following is true for every positive integer a.

The problem formulated at the beginning of this section possesses a solu-

tion ya(t), analytic in Wi+W2 (t?* »), of the form

(4.25) ya{t) - *««r+«i>.(0,

where

(4.25a) va(t) ~ <r(f) (t in Wt + Wt)

to a terms (cf. (4.4a)). Let ax be any integer >a. One has

(4.25b) yai(t) - ya{t) m cai,a = e^>H'+"(r,ai(t) - Va(t)) ■

With the aid of (4.25a) (stated for a and for «i) it is concluded that the con-

stant c„, ,„ must be zero. To demonstrate this it is sufficient to let t recede to

infinity along the curve RQ(t) =0, separating Wi and W2, and to note that

the last member in (4.25b) will then manifestly approach zero. Thus all the

solutions ya(t) are identical. Whence it can be asserted that (4.1) has a solu-

tion y(t), analytic in W1+W2 (t^ =°), of the form

(4.26) y(t) = eW>tr+ari(t),

(4.26a) y(t) ~ a(t) (t in Wi + Wt)

(cf. (4.4a)), the asymptotic relations being valid in the ordinary sense. The above

will hold also when RQ(t) >0 interior to Wi and RQ(t) <0 in W2.

We shall now consider briefly the case of (4.2a). The curves B%, B2 will

both be exterior to W = Wi, or one of them will be coincident with a boundary

of W\, while the other one is exterior to Wi. One now has

(4.27) ftg «j<«»£& (at - «1< y £ ßt - ß\

Suppose first that RQ(t) <0 (interior to Wi). If the regular curve (4.8)

with the limiting direction (ßi+ß2)/2 is not exterior to Wi the function z(t)

(solution of (4.6)) will be expressed as an integral extending from infinity

along the curve (4.8) to a point h (\ti \ =\t\) and from h to t along an arc

of the circle | r | =\t\. If the mentioned curve (4.8) is exterior to Wi, an in-

equality for I z(t) I is obtained with the aid of an integration, extending from

infinity to h(\ti\ =\t\) along that one of the two regular boundaries of W

which is nearer to the curve (4.8); from fa the path of integration is continued

(away from the curve (4.8) towards t) along an arc of the circle | r | = 11 \.

With the radius of the circular part of the boundary of Wi sufficiently great

(this choice can be made independently of ß, p\) it is observed that
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I eQ<.r) I j I gQ(T)T-» I

will be monotonically increasing along the specified paths, from infinity to t.

With the aid of the reasoning previously employed in proving (4.26), (4.26a)

for / in W\-\-Wi the truth of (4.26), (4.26a) is again made evident in the new

case under consideration as well; the remarks regarding the choice of path

are to be noted.

Suppose now that interior to W\, RQ(t) >0. The following is observed. If,

for instance, the right boundary of Wi is considered, either

(4.28) I eP^r-fi I -* oo (for every ß > 0)

as I t| —> oo along this boundary, or

(4.28a) I eO^r-o | -* 0 (for some ß)

as I t\ —> oo along the mentioned boundary. We have ß\ gai <a2 Hkßt- It is ob-

served that (4.28) will holdf when ai>ft; (4.28) may hold even when ai=pV

However, with a, =ß\, the case (4.28a) will sometimes occur. Since the equali-

ties

ai = 01,      a2 = ß2

cannot be satisfied at the same time, only one of the following two cases may

present itself (when RQ(t) >0 interior W = Wi).

Case (ai). Along both regular boundaries of Wi (4.28) is satisfied.

Case (a2). Along one of the boundaries of Wi (4.28) holds, while along

the other we have (4.28a).

In the Case (ai) if the curve (4.8) (between Bi and B2) is exterior to Wi

or is coincident with one of the regular boundaries of W1} the path of integra-

tion is to be taken from a point on the circular part of the boundary of W\

along that one of the regular boundaries of W\ which is further removed

from the mentioned curve (4.8). Along this boundary of Wi integration is

to be extended to fa (| fa | = | /1). The path is further extended along an arc of

the circle \r \ = 11\ from fa to t (l in Wi). If, in the Case (ai), a curve (4.8)

extends interior to Wl; the path is taken from t0, the intersection of (4.8)

with the circular part of the boundary of Wi, to When t is, for instance,

between the curve (4.8) and the right boundary of Wi, the path is deformed

so as to extend from t0 along the circular part of the boundary of Wi to the

intersection with the right boundary of Wi; the path is further continued

along the latter boundary to fa (| Ji| = 11\) and from fa it is finally extended

along an arc of the circle | r | = | /1 to t. An analogous deformation is made

when t is in Wi to the left of the curve (4.8) under consideration. Given a,

t Along the left boundary of Wi (4.28) will certainly hold if a2<ß2.
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however large, a solution (4.25), (4.25a) (t in Wi) can be obtained. The vari-

ous solutions ya(t) will in general differ by constants distinct from zero. How-

ever, any particular one of the ya(t) will maintain in the ordinary sense and

throughout Wi the asymptotic form of the formal solution. The latter fact

is due to the relation

~ 0 (tin Wi)

which certainly holds in Case (ai). The above choice of the path having been

made, the following property will hold. If |/| }zrß (r$ sufficiently great), the

upper bound of | r~ß exp [Q(t) ] \, for r on the path under consideration, will

be attained at r — t.

Consider now Case (a2). Suppose, for instance, that (4.28a) holds along

the left boundary of W\\ let ß (>0) be sufficiently great so that we have

(4.28a). In this case integration will be precisely as in the previously dis-

cussed case when W = Wi + W2, where Wi and W2 are separated by the curve

Bi along which RQ(t) = 0, RQ(t) >0 in Wi, and t is in Wi (cf. the developments

stated in connection with (4.8)-(4.18)). One needs only to replace B2 by the

left boundary of Wi. The result will be precisely analogous to the one ob-

tained in the previous case.

Consider now the following modified problem:

(4.29) y^(t) = e9^tTa(t),

(4.29a) Q(t) = polynomial intUk,

(4.29b) a(t) = [t]*                                      (tin R'),

(4.29c) f<3«>~0 (tinR').

Here R' = R(ai, a2) (cti <a2) is a regular region (cf. Definition 3, §2). In view of

(4.29c) it is not difficult to infer that not more than one curve (4.8) may ex-

tend interior to R'. Hence the reasoning of the type employed in the text be-

tween (4.27) and (4.28) is again applicable leading to an analogous result.

An examination of the preceding developments of this section enables us

to assert the following.

Let the region W = R («i, a2) be subject to the condition

(4.30) 0<ai-as<—;>

and let the radius r' of the circular part of the boundary of W be suitably

great. With t in W and h (| k \ = 11 \) on a regular boundary of W or on a regu-

lar curve RQ(r) =0 or on a regular curve (4.8), as the case may be, the path

of integration indicated in the previous discussion extends towards h

along one of the mentioned curves either from infinity or from a point
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on the circular part of the boundary of W (as the case may be);f from

h the path extends towards t along an arc of the circle |r| = \t\. The upper

bound of |exp [Q(r) ] | r| "^l (y>0), when r is on such a path, is attained at

r = t (at least for \ t\ = r">r'). A similar statement (with y = 0 and W replaced

by R) will hold, with the condition (4.30) deleted, when the problem (4.29)-

(4.29c) is under consideration.

Lemma 3. Consider the problem represented by (4.1), (4.1a), (4.1b) with V

fixed. A solution of this problem can be evaluated as follows:

(4.31) y(t) = j e^MTr[r}*dT = eV^t^t]* (t in W)

(cf. Definition 4, §2), where

(4.31a) 1 - V < w = 1 -- < 1,
k

unless (2(0=0, when w = l. For the problem (4.29)-(4.29c), with the leading

term in (2(0 given by qt"'lk (q^O; v'>0), a solution of the form (4.31) will exist

for tin R'; in this case

(4.31b) w = 1 - — < 1.

5. Formal solutions. Let R be a region of positive opening, referred to in

§2 in connection with (i), (ii), (9a), and (9b). Thus, when r is interior to R,

we have

(5 .1) RQAr) ^        g RQm{r) < RQm+l(r) g        g RQm(r).

Also

(5.1a) eeiU)~0 (i = 1, ■ • • , m; r in R).

Let /' be the number denned in the italicized statement made in connection

with (3.10b), (3.10c). Finally, let W = R (a1; a2) (0<a1<a2; ^-a^Tr//') de-

note a subregion of R.

Our purpose will now be to determine the coefficients of the series (2.12)

(cf. (2.12a)), that is, the

(5.2) HVh1,---,hm:j(t)

{hi, ■ ■ • , km g 0; h + • • • i- 4* =» b; j = 1, • • • , »; a — 1, 2, • ■ ■ ).

f In a certain case the path extends from a fixed point on the circular part of the boundary of W,

along this part to the intersection with one of the regular boundaries of W and from there on along the

latter boundary towards h; from h it is continued to / along a circular arc.
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For h = 1 the functions (5.2) are seen to be of the form (3.2). With the aid of

(3.2) the relations (3.5), (3.5a) were obtained; that is, the form of the

(5.3) riui'''%) (rin it)

was determined.

Before proceeding further we note that, in consequence of (3.1), (3.1a),

(2.30), and (2.30a), one may write

(5.4) HVH,,..= E ex(*)«<*(Or*7x./0),
X=l

where

(5.4a) c,(t) = ±f tMTkC'',\r)e^(T\^'r\Mdr,

(5.4b) 7x,,(r) = [r]*,       fx,>W = [r]* (r in R).

Here the yx,,(r) and yx,,x(r) are independent of a, hi, • • • , hm. For h — 2 the

integrand displayed in (5.4a) has the form (3.6), (3.6a). Lemma 3, §4 is seen

to be applicable for evaluation of all of the integrals involved in (5.4a) for

h = 2 when t is in W. The integral displayed in (5.4a) for h = 2 will be of the

form

(5.5) exp [faQxit) + ■ ■ ■ + hmQm(t) - Qx(t)]t^^+-+^-^+^[t\*

when t is in W. Here w2 is taken the same for all of the involved terms in

(5.4a) for n = 2; w2 is rational and w2g 1. It can be asserted that cx(/) has the

form (5.5) when / is in TF (and h = 2). Substitution of these forms in (5.4) (for

h = 2) will yield, in view of (5.4b),

m,....= exp [ÄiÖiW + • • • + hmQJt)]i"^+-+^^[t]*

(fa, • ■ • , hm 3 0; Äi+ • • • + hm = 2;j = 1, •••,«;/ in W).

Here w2 =ii}-\-p-\-w2. On taking account of (3.2) in view of (5.6) one may

write

exp (Wr)4 • • • +^v?m(r)]rfc'r'+-+i'"rr'"+('r-1,'";[r]*

(5.7)
(rinlF;^!', • • • , kmr 3 0; kiT+ • • • + kmr= vr;a = 1, • • • ,n;vT = 1,2).

We shall now substitute (5.7) in (2.26) (for h = 3). If the equalities of (2.16b)

and (5.7) are used it is inferred that

(5.8)    Ü • • • = exp [5!(2i(r) + • • • + SmQm(T)]TVi+---+W^«-i°>^]*,
r=l
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where

(5.8a) v(ya, ia) « £ (vf — 1) = ya — ia.
r=l

The symbol

E     ,E<r (5< = «so

(cf. (2.16b)) applied to the product (5.8) will yield a function

(5. 8b) Fa' = generic form of the last member of (5.8) (t in W).

In view of (2.24) and (2.19b) (where h = 3)

iSq + ■ ■ ■ + A = hq (q = 1, • • • , m);
(5. 8c)

Ti + ■ • • + T» — 3; ii + • • • + in = 2, 3.

Accordingly, in consequence of (5.8b) (with 5,- = a5t) and (5.8a), one has

n

.. = exP [hiQiir) + ■■■ + A»qm(t)]t*.'i+-+»-^t<»-)-'.[t]*
(5.8d) „_i

(5 = »i + • • • + in; t in W).

Since without any loss of generality one may consider that w{ 3 0 and since

the only values that 5 may assume (when h = 3) are 2 and 3, it is concluded

thatf

n

(5.9) 11^' = exp [A1v2i(t) + • • • + /imem(t)]rÄ.^+--+w™T-'![r]*.
Q=l

We next write

A1,     * ,hjn "w—w" ^

,c 1ns ^••..•••.»'»:7i.---.7»m«i. •••.„«!» = ja»'l. ■••.*» 11
(.O.IU) a_l

= generic form of last member of (5.9).

Next it is noted that the first summation symbol of the last member of (2.26)

is defined by (2.24), (2.19b); this summation is extended only over the sub-

scripts of the left member of (5.10). The generic form displayed in (5.9) does

not contain these subscripts. Hence, for r in W,

(5.11) 3r*"   'hm = !Fl(4y«.'.'...i...i... = generic form of last member of (5.9).

Assume now that, with arational ze4-i=w2' {w'h-\ ==w+/>-f-l) andforrinW,

one has

j t(3-.)»2' = t»,' . T(2-.)«,,' =t«,'[t]0 since (2-s)wi is rational and £0.
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(5 12)     9+l1^"    ^ =       ^lÖl(r) + ' " ' + hmQm(r)]Th^+---+^r^^[T]*

(hu ■ ■ ■ , hm >_ 0; hi + ■ ■ ■ + hm = q + 1; j = 1, ■ • ■ , »),

(5 13) **>-—>w(r) = exP [*»0iW + • • ■ + ]r*"'+-' [T]*

(£i, ■ ■ ■ , km ^ 0; ki + ■ • ■ + km = q; a = I, ■ • ■ , n)

for q=>l, 2, • • • , (»33). For a = 3, that is for <? = 1, 2, relations (5.12)

and (5.13) have been established previously in (3.2), (3.5), (5.6), and (5.11).

Substitute (5.12) with q=H — 1 in (5.4a). The integrand there displayed

will be of the form

(5.14) e^'VH* (t in W),

where

(5.14a)     Q(r) = hiQi(r) + ■■■ + hmQm(r) - Qk(r),

(5.14b) r = hiri + ■ ■ ■ + hmrm — r\ + <a + p + ifl — 2)w'H-\

with

(5.14c) hi, ■ • ■ , Äm30;   *»+ • • •+*«,-* ( = 3).

In view of (5.14c) and (5.1) it is inferred that, for \>m, one certainly has

e<2<'>~0 (rinJf).

When X^m, Q(t) will be a linear combination (with constant coefficients) of

(5.15) QM,-■ ■ ,Qm(r)

only. With (3.10b) denoting the leading terms of the polynomials (5.15)

it is recalled that /' was defined as the greater one of the numbers U/ki

(i = l, ■ ■ ■ , m). Thus, when X^m, Q(r) is of the form (3.10) and, unless

Q(t) =0, there will be a leading term,

j>,T(,-">/Ji (?„ * 0; I - vi > 0),

present in Q(r); moreover, we shall have (l — v,)/k^lr. It is accordingly seen

that, when X^m, Q(t) will be a polynomial of the variety of polynomials

involved in the integration problem (4.1), (4.1a), (4.1b). On the other hand,

when \ >m, since exp [Q(r)]~0 (r in IF), it is observed that Q(t) will be a

polynomial of the type which could occur in the problem (4.29)-(4.29c), pro-

vided one lets i?' = IF. Thus Lemma 3, §4 is applicable for evaluation of the

integrals involved in (5.4a). With the aid of this lemma and in view of (5.14)

we conclude that we may write

(5.16) J (integrand displayed in (5.4a)) = eP<'Hr+^[t]* (tinw),
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where wH is rational and w^^l. The functions c\(t) (cf. (5.4a)) will be all

of the generic form of the last member of (5.16). Hence, in view of (5.14a),

(5.14b), one obtains from (5.4) and (5.4b)

HVh„---,hm-i{t)

n

(5.16a) = 2Z exp [*i(M0 H-h hmQm(t)]t"^+-■■+*m^r¥<M-»^Wl; [t]*

(t in W; hx + • • • + hm = h;j = 1, • ■ • , n),

where w'H' =o}+p-\-wH ^co+p+1. Letw'H be the greater of the numbers w'g

and w'n-i. Necessarily w'H will be rational and %^u+/i+l. On noting that

li.H-1)'wH^-wg)+wH-w'H = ^J0)

in view of (5.16a) it is inferred that, for tin W

(5.17) #»*,....,»,,$)= exp [h&it) + ■■■ + hmQm(t)]th^+---+^+w-»K[t]*.

This, however, implies that (5.13) holds also when h is increased by unity;

that is (5.13) holds for q = l, 2, ■ ■ • , h, provided that in (5.13) we write w'H

in place of w'H-i. This is possible for q = 1, 2, • • ■ , h — 1 because w'H-\ — w'H is

rational and non-positive.

To determine the form of H+\Tjhl-"-'hm use will be made of (5.13), with

w'h-i replaced by w'h, and of (5.17). Substituting the known forms of the

qQ- ■ •;/(') (<Z = 1> 2, • • •   ,) in (2.26), where h is replaced by h + 1, one obtains

»CT

(5.18) LT " " " = generic form of the last member of (5.8) (w2' replaced by wH).

Here (5.8a) will hold. The summation symbol, displayed subsequent to (5.8a),

applied to the product (5.18) will yield

(5.18a) Fa' = generic form of the last member of (5.18).

By virtue of the relations (2.24), (2.19b), where h is replaced by »4-1, one has

•  <oLS !*.+ ••• + «5, = K (q = 1, ■ • • , «);
(s. 18b)

Ti + ■ ■ • + 7n = b + 1; ü + • • • + in = 2, 3, • ■ • , n + 1.

Thus from (5.18a), where we put 5, = a8,-, and in view of (5.8a) it is inferred

that

fl

II>a   = exp [AiQi(r) + • • •  + hmQm{r)\th^+-+^^b+^<[t\*
mml

(5.19) = exp [AiQi(t) + • • • + hmQm(t)]thsl+---+h™r"t«'-1'>v>' [r]*

(s = ii + ■ ■ ■ + in = 2, 3, • ■ • , s + 1; t in W),
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since z%>_0 and w'H is rational. The functions (5.10) will have the generic

form of the last member of (5.19). In view of this fact

(5.20) = exp [hQi(r) + ■ • • + ÄmQm(t)]rAir.+ ---+''»"-™r^-"^[r]*

(t in W),

since the summation here involved is only with respect to the subscripts of F.

We accordingly conclude that relations (5.12) and (5.13) will be certainly

valid for h = 3, 4, • • • when r is in W. The numbers w'H are rational and

(5.21) 0 g w2' g w£ g • • • g co + p + 1.

Lemma 4. Let R be a region of positive opening (cf. Definition 3, §2), re-

ferred to in §2 in connection with (i), (ii), (5.9a), (5.9b). As a matter of notation,

within R we have (5.1) and (5.1a), the Qi(r) (i = l, ■ ■ • ,n) being the polynomials

involved in the formal matrix solution (2.5) of the linear differential system(LA\),

§2.f The highest power of r actually present in (?.(r) being designated as T1*1**

we let V denote the greatest of the numbers h/k, (i=l, ■ ■ ■ , m). Let W be of the

form R(ai, a2) (cf. Definition 3), where

(5.22) 0 < a2 - en < t/V,

and be a subregion of R. The system (A), §1 will possess a formal solution

(5.23) $M = iyM + *yM + • • • + ,yM + ■■■    (j = 1,2, ■ • •,»),

where, with Ci, <*,•••,£* denoting arbitrary constants,

,c      , -Jiit) =   Z)   c\'cl' ■ ■ ■ cm **„*,....,»»i»<0
(5.23a) *„•■•,*„

(kh ■ ■ ■ , km 3 0; &i + k2 + • • • + km = v; j = 1, ■ • • , n).

In (5.23a) the coefficients are functions which for t in W, have the form

(5.24) Xku-.^tM = exp [k&V) + ■ ■ ■ + kmQm{t)]t"^+-+^H^< [t]qW

(cf. Definition 4, §2). J The wl satisfy the conditions stated in connection with

(5.21) .
Note. A function \t\q',-) involved in the second member of (5.24) satisfies

an asymptotic relation

t This system is identical with (LA), §2 and is the linear system associated with the non-linear

problem (A), §1.

t It might happen that q{v)—> °o as v—> °o.
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(cf. Definition i, §2). The formal expression {<}9<„) contains power series

(generally divergent) of the form

Po + pit'1""' + p2t-2lk<> + ■ • •       (k, an integer > 0).

The k, (v = \, 2, ■ ■ ■ ) may approach infinity with v.

In general the series (5.23) will diverge.

6. Transformations. With Lemma 4, §5 in view, consider the trans-

formation

(6.1) ytf) - (/ - I, ■••,»),

where

(6. la) Yfif) = xyM + *yM + • • • + m-ijtf,.

Here the „y,(/) (p = 1, • • • , N — \;j = \, ■ • ■ , n) are the junctions (5.23a) and

(5.24). N is a fixed positive integer (which may be taken as large as desired).

This transformation is to be applied to (A), §1.

We let

(6.2) I C, I < c' (c' > 0; j = 1, • • • , m).

Denoting the part of a region Gfor which \t\ ^r' by G (\t\ ^r') we observe that

(6.3) I FKD I Ü P' [j = \,- ■ ■ ,n;fmW{\t\^r')},

where

(6.3a) 0 < p' < p,

where p is the p of (1.2), if r' (depending on N and c') in (6.3) is taken suffi-

ciently great. In order that (6.3) hold r' may be taken independent of N,

provided c' (depending on N) of (6.2) has been taken sufficiently small.

Substitution of (6.1) in (A), §1 will yield

r<W" (0 - hit, *,•;•,*)- - r»f/» (t) + h(t, Yu ■ ■ ■, f„)
(6.4)

+ qj(t, Fi + Ph ■ ■ ■ , Yn + p„) (j = 1, ••,«),

where
qi(t, Fi + pi, ■ • ■ ) = q,{t, Yl, -    ' , Yn)

(6.4a) + £ «^..„....„„.KOpr'W • • • pT(<)

(^1= 0, • • •  , Vn 3 0; 9% + h + • • ■  + fn =  1, 2, • ■ • ),

ki! ■ • ■ »»»!«,„...,«,;,(<) =-—qi(t, yu ■ ■ ■, yn)\
d'iyi ■ ■ ■ d""yn

(yi = Fi(D, • • • , y» = Fn(0)
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(cf. (1.1b)). In view of (6.3) and the convergence conditions satisfied by the

series (1.1b), the series (6.4a) with j = \, ■ ■ ■ , n are absolutely and uniformly

convergent for t in W, provided

(6.5) \Pl(t)\, ■■■ , \Pn{t)\ ^ P"

where

(6.5a) 0 < p" < p - p',

with p' defined as in (6.3a).

We may write (6.4) in the form

t~pPiw (0 - hit, pi, ■ • • , p„) - üiit, pi,-- - , p„) - FM

C/-1, ••• »).
(6.6)

where

(6.6a) q\j =   £    <x>,.---,'n-i{i)p'\ ■ • • Pn"

(cf. (6.4b)) and

(6.7) FiOO = W/'KO - W*. Fi. - ' • , FB) - 9j(i, Flf • • • , Fn).

To determine the form of Fj(t) we first note that, by (2.23a),

(6.8) q,(t, Fx, • ■ • , Fn) = £       E     d*' ■ • ■ c^bT?1*"*"®.
b-i al+---+/>„=h

We now recall that the functions

(6.9) *r*'" ■••**'•«,

referred to in §5, depend only on the functions

(6.9a) ,ru„. ...*„:,•(/)

o/ less than b (cf. Definition 5 and (2.26)); the functions (6.9a) have in

W the form (5.24). It is clear that the function (6.8) can be given by the ex-

pression qj{t, yi, • • • , y«) (yi(t)=Si(t), ■ ■ ■ , yn(t) =s„(t) the formal series

(5.23)) provided that in the latter expression all the functions (6.9a) with

rank equal to or greater than N have been replaced by zeros. Hence, in (6.8),

one has

(6.10) - mT?•

in the second member of (6.10) the functions (6.9a), for which v^N, are replaced

by 0. In view of the statements in connection with (6.9), (6.9a), and (6.10)

we have
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(6.10a) „Y'-l-',hm{t) = HV;r",hm(t) (a = 2, 3, ■ •• , 2V).

For h>N (6.10) will, in general, not hold. However, in view of (2.26) and

in consequence of the indicated connection between the coefficients in (6.8)

and the functions (6.9), it is inferred that, for t in W,

riTj (t) = generic form of HTj (t)
(6.10b) , . ,

= exp [h&it) + • • • + hJ3m(t)]th^+---+h^H^-^»-1[t]*

for all values of the subscripts and superscripts (cf. (5.20) and (5.21)).

In view of the developments of §2 and in particular in consequence of

(2.13) and (2.14) we see that if in the second member of (6.7) one replaces

the F, by the yt(t) (formal solutions referred to in Lemma 4, §5), respectively,

this member can be formally expanded as follows:

(6-11)                            £      £ Gi*' • "• Cm £*t,...,*m<Ä*)>
»=2 fc,H-+**,■=>•

where

(6.iia)   ,x*,,...*„i:)« = f'^i"....>.,#) - hit, ■■-)- ,r-,,""*mw.

From the definition of the functions (6.9a) it follows that

(6.11b) Mu.-,km:i(t) = 0

for all values of the subscripts.

If in (6.11) the functions (6.9a) of rank >. N are all replaced by zeros we

obtain an expansion of (6.7),

(6.12) Ftf) - £     E    ctll --Cmm^l..-.km,Kt),
I—2 *,H-+km=v

(6.12a) X„...,tm:,(0 = r\vZ~,k„;<t) ~ hit, ■■■)- jf"'"''*"^),

where the functions (6.9a) are replaced by zeros for vtN. Thus, by (6.10a),

(6.11a), and (6.11b),

(6.13) A*',,....*„„•(/) = ,X*„...,*„,;,(<) = 0 (p - 2,3,- • • , N - 1),

(6.13a)       X„...,*m:/(0 = - ,T'-i,'",km{t) (v= NjN + \,. ■ ■).

Thus Fj(t) is representable by

(6.14) - FM = £     £    c*'. • • Cm*j',lt"",>m(t),

In view of (5.21) one may replace va'B-\ in (6.10b) by
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(6.15) 5+ 1.

Since

where £ is positive, however small, the inequality being inferred from Defini-

tion 4, §2, we accordingly obtain

(6.16) I ,r;*'""'*m(0 I < I t\-^b,' (/ in W),

where

,£ 1A ,     f»,.-.*.(0 = I exp [*i0,(0 + • • • + *JÖ»(#)]^'+-+*^j
(6.16a) _ _

(fi = fi + ü, ■ • • , rm = rOT 4- co).

Hence by (6.2) and (6.14) we have, for t in IF,

(6.17) I Fj{t) I < I 11-2"+«     £ g*t....,U<)

(cf. (6.16a) and (6.15)), where k0 is a constant independent of c'.

In the series (6.6a) the coefficients are given by (6.4b). In view of (1.1b)

it accordingly follows that

(6.18) =  Z   ^.......„^«Cx?*1 • • • cZ+UY?\t) ■ ■ ■ Yn\t),

where

(6.18a)       Xi 3 0, ■ • • , X„ 3 0; Xx + ■ • • 4- X„ = 2 - fa + ■ ■ ■ + Vn).

Since, in W, F,-(0~O (i=>l, •■•,«) and since by (6.18a) forpi-|- • • • +vn = l

we have Xi+ • ■ • +X„ ä 1, it is inferred from (6.18) that

(6.19) «,....,*../(<) ~0 (tmW;v1+---+vn=l).

Furthermore

(6.19a)        <*„„...,„„:,■(*) = ,a,„...,,n(/) + (>H-+ fn 3 2),

where

(6.19b) Ai.-.Jfi"   Z   ■••~0 (/ in TF).
x,+-..+x„äi

By (6.19) equation (6.6) may be written in the form

(6.20) r+ri» it) - rm pi, • • •, pn) = qf(t, pi, ' ■", Pn) - FM

(j = 1, • • • , n),
where
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(6.20a) qf(t, pt, • • ■ , p„) «=   £    otv„...,y»;j(t)p"i ■ • • p»
»h-brni2

(cf. (6.19a), (6.19b)) and

(6.20b) l*(t, Pl, • ■ ■ , Pn) ~ lj{t, pi, ■ ■ ■ , p„) (in t for t in WQ.t

Lemma 5. TAe transformation (6.1), (6.1a) applied to the non-linear system

(A), §1 w7Z yzeM a system (6.20). In (6.20) /,* is linear in pi, ■ • • , p„, the

coefficients of pi, • ■ • , p„ oez'wg analytic, for t^ =°, i» IF; moreover, (6.20b)

AoWs. 2"Ae q* are given by (6.20a) and have coefficients analytic for t in W

(t^ <»). The series (6.20a) converge absolutely and uniformly (for t in W

(\t\ >_r') and provided (6.2) is satisfied) whenever the inequalities (6.5), (6.5a)

hold. The Fj(t) are analytic inW (t^ «>) and the \Fj(t) \ satisfy in W inequali-

ties (6.17). These assertions are made under the supposition that p', r', and c'

(of (6.2)) have been selected so that inequalities (6.3a) and (6.3) hold.

7. The First Existence Theorem. We shall write for brevity

(7 ^ 9*»-Jkma(t, " exp [kiQM + ■ ■ ■ + kmQm(t)]tk^+--+k-'-

(r* = n + h)
and, with v>0,

,„ , , qnk(t) = £ I g*„...,»»«*(<) I
(7.1a) »„•.*»

(*i 3 0, • • • , km = 0; *, H-+ *„-,).

// we recaW Q,(r) =q,rlilki+ ■ ■ ■ (i = l, • • • , w), wAere g^O a«ti

li/ki>0, and take account of

(7.1b) 2?Qx(t) g RQt(r) ^        ^ RQm(r) (r in R), J

»7 w inferred that necessarily

(7.2) p = — = — = ... = -i>-=Ü 3 ••• = —,

where 1 ̂ m^m. In fact, if the contrary were the case, for some v(l ^v<m)

one would have

ly ly+\
(7.2a) — <

We shall write r = angle of r. Let t = t0 be some ray, interior to R, with f0

f (6.20b) is to mean that /,■*—// = ii(/)pi + • • • -(-in(i)pn, where 6<(/)~0 for t= 1, • • - , n and for

fmW.

t R is the region of Lemma 4, §5.
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distinct from the limiting directions of the regular curves bounding R. Such a

ray exists since by hypothesis R is of positive opening. We have

X, = cos I qv 4-t01 < 0, X„+1 = cos I qr+i H-r0 I < 0
(7.3) \        kv   / \ k,+i /

(qt = Z at; i = 1, • • • , m)

since the above cosines can vanish only when r0 is replaced by the limiting

directions of the regular curves

RQM = 0,      RQ,+i{t) = 0,

respectively, and since in R

g<Mr),^0, (fiy+iM ~ 0.

Now (7.1b) necessitates that along t=t0 we should have

I q. I X/ I r|V*» f • • • $ j qr+l I x',+11 r|W*H + . . • ;

that is,

I q, I X/ I r |-<- + • ■ • £ I ?„+11 X'„+i + • • • (a > 0),

which can be seen in view of (7.2a). In the limit, as |t|—»» along the ray

t =t0, this will yield the inequality

0    I q,+i j X„+i,

which contradicts (7.3). Hence (7.2a) is impossible and the truth of (7.2)

has been made evident.

Definition 7. Let R be a region of the type specified in Lemma 4, §5. Let

W be a subregion of R of the character indicated in the same lemma. Thus,

W = R{a1, a2) (cf. Definition 3, §2), whereO<a2-a1<Tr/l' (cf. (7.2)). Let Wt

denote a subregion of W of the form

(7.4) W% = R(ai + I, <*2 — £) (I > 0 and sufficiently small)

where the two regular curves bounding     are the rays

d,*- «t+|,       At = a2-k (M i r«')»
respectively.]

In consequence of the definition of W( we have

(7.4a)

for t in W(.

q( I cos (qt + -j- i^j ^ e = «(£) > 0    (i = \, ■ ■ ■ ,m)

j The rest of the boundary of     consists of an arc of the circle \t \ =r£'.
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Definition 8. If G is a regular region such that, whenever t is in G, all the

points of the ray Zr = At (|r| 3 |/|) necessarily belong to G, and if q(r) is

positive and defined in G, it will be said that q(r) is monotone in G, provided the

upper bound of q(r) (Z r = At; |r| 3 \ t\) is attained at tfor every t in G.

Lemma 6. Let W$ be a region as given in Definition 7. With

QM = q<rv + • • •     (I <fr\ * 0; i = 1, • • • , m)

(cf. (7.2)) and with e = e(£) denoting the number involved in (7.4a), let v(£) be

the least integer equal to or greater than

(7.5) (X=l,---,m-l).
€

Write

(7.6) xAk„...,k-:k(r) = I qk„.-..k-:k(r) | | r^T* |

(cf. (7.1)), where

(7.6a)   I, t %• • • , *-IS &5   *i + • • • + k- = v ̂  K«);  X = 1, 2, • • • , n.

There exists then a number r' = r'(%, h), independent of\, ki, ■ ■ ■ , k„, such that

the functions (7.6) are all monotone (cf. Definition 8) in Wt (\t\ 3r').

To prove this lemma first take r' = r\,u sufficiently great so that the functions

(7.7) I <ßk*jk\ (j = 1, • • • , m),

(7. 7a)                           I exp [q{(t) - Qx(t) ]rv-* | (# S? *; « < f)

are all monotone inW((\t\ trr). The possibility of such a choice follows with-

out difficulty if we note that in W(

(7.7b) RQ£t) < 0,      R(Q<(t) - 0x(t)) < 0

for the values of the subscripts indicated in (7.7), (7.7a), while on the other

hand the following is true. If 7i denotes the limiting direction of any one of

the regular curves

(7.7c)    rqAt) - o,     r(q<(t) - Qx(t)) = o *;*'<>:

then, for r (with Zt =?) in JF£, we have \ fx—r| >_f(£)>0.

In view of the statement in connection with (7.7) we infer that the func-

tions

(7-8) l^.-.^Wl ("i 3 0, • • •       3 0)

(cf. (7.1)) are monotone in W% i\t\ ~^r'),\ these functions being expressible

t The statement in connection with (7.8) can be made also when m is replaced by nti



266 W. J. TRJITZINSKY [September

as products of non-negative powers of functions monotone in      (\t\ 3r').

Let \>m. By (7.6a) some kt (i^m) will be positive. Thus, if we write

(7.9) xA*,....,*-;^) = I <?*„....,*-iÄ(r) I I ̂ M-Ox^-x I,

we observe that the statements made in connection with (7.8) and (7.7a)

are applicable to the two factors of the second member of (7.9). Hence the

functions (7.6) with \>m are monotone in      (\t\ 2?r').

Suppose \Sm and k\>0. Then

(7.9a) \Akl,...,k-:h(r) = \ qkl,---,kx-i.-...k-:h(T)\.

The statement in connection with (7.8) is again applicable, and the functions

(7.9a) (X^m, &x>0) are seen to be monotone in Wt (\t\ ^r'). £§»

Suppose X^I, k\ = Q, and some kt>0 (i<X). We then write (7.9) and

demonstrate, as before, that the functions (7.6) are monotone in W$ (under

the conditions just stated).

It remains to consider the case when \^m and ki = k2= ■ ■ ■ =k\ = 0. Nec-

essarily one must have \<m since otherwise ki+ ■ ■ ■ +£- = 0, contrary to

(7.6a). One may write

(7.10) xA,„...,,-:A.(r) = I *«r**«W»-4**|. I <7o.....o:,x+.-Ax+1.-.MW I,

where

(7.10a)     Ax+i = 0, • • • , h- >_ 0; fa+1 + ■ ■ ■ +     = KÖJ *< g

(i = X + 1, ■ • • , in)
and

(7.10b) Q(r) = - Qx(t) +Ax+iQx+i(r) + • • ■ + *50s(t).

Sets of integers (äx+i, • • ■ , fc), satisfying (7.10a) exist if (7.6a) is assumed

(as it now is). Moreover, there is only a finite number of such sets. The second

factor in the second member of (7.10) is monotone in W( in consequence of

the statement in connection with (7.8). It will be necessary to consider the

other factor. The real part of the function (7.10b) is of the form

(7.11) RQ(t) = ?(t)|t|'' + • • ■ ,

where

s   ~       = Ux I cos (gx + Vf)
(7.11a)

+ [— h+11 qx+11 cos (qx+il'r) - ■ ■ ■ — hm \ q„ | cos (q„ + l'f)].

By (7.4a) and (7.10a)

[•••] = (Ax+i + • • • + fc)£ - K0«.
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Thus from (7.11a), in view of the definition of v(£) given in Lemma 6, we get

(7.11b) - q{r) 3 KD« ~ I gX 1 = ' + ^      ~ I <?x I = e        (r in W().
t

If (7.11) and (7.11b) are used it can be shown that

RQ(r) = q(r) I t       + T( I r |, f)) | r |h> (0 > 0),

where | y(\ r \, f) \ <y(r in W(). Hence there exists a number

(7.12) r — r(£, h; k\+i,...,hm)

such that the factor of the second member of (7.10) is monotone in W(

(\t\ }zr). By virtue of the italicized statement subsequent to (7.10b) it is

concluded that the lemma holds, with r' = r' (£, h) defined as the greatest of all

numbers (7.12) (X = 1, • • •, m — 1; h\+\, ■ ■ ■, such that h\+13 0, ■ • •, hm ̂ 0

andAx+i+ • • ■ +fa = ?(£)).
Consider now the functions (6.20a); they are represented by series satisfy-

ing the convergence conditions stated in Lemma 5, §6. Write

(7.13) I p,-1 g p*, \ Wi\ ̂  w* (i = 1, ■ ■ • , n),

where

(7.13a) p*+w*^P".

We then have |p,-| gp", |p<+w,-| gp" (#«!, ■ ■ , ti). With the conditions

of Lemma 5 satisfied one may write

" dq f
q*(t, Pi + v>i, ■ ■ ■ , Pn + wn) — q*Q, Pi, ■ ■ • , p„) = 2-, -»<

•=i dp%

(7.14) +  zZ  ?ji^.---,v„wi"1 • • • wT
"l.••• ,Vn

{vi = 0, ■ • • , vn 3 0; * + ■ ■ ■ + vn = 2),

where the functions     ,...,,„ satisfy

(7.15) I I**.-*, S *\

provided (7.13) and (7.13a) hold. In view of the character of the coefficients

a'i. ■ • •.'« j'W in the- series (6.20a), it is seen that q' can be selected as a con-

stant independent of t. Since in (6.20a) vi+ ■ ■ ■ +c„^2 it follows that

dq

and, by (7.13),

1 ■r-> 1.1 *i *n

-=        2-1 «*,,•■•,*nWPl   •  •  • Pn
OPt      i,+ ... + i„gl



268 W. J. TRJITZINSKY [September

\aqr
(7.15a) < q"p* {q" independent of t).

By (7.15), (7.15a), and (7.13)

(7.16)      I qf(t, pi + v>u • ■ ■ ) - qf(t, Pl, ■ ■ ■ ) I < nq"p*w* + q(w*)*

(q independent of t). Thus the following is true.

Let t be in W (\t\ >_/•') (cf. Lemma 5, §6). Assume that (7.13), (7.13a) are

satisfied. Then

j7j I if(ßl Pl + WU ■ • '  » Pn + «*) - 1?(t, PU ■ ■ ■ , Pn) I

< (q'p* + qw*)w*,

where q', q are independent of t. These inequalities will continue to hold when

the pi and the wt are functions of t, provided that the inequalities (7.13),

(7.13a) continue to hold.

With the aid of the systems

,„ t   "Pi: l(t) — Ifit, Pl: k, ■ ■ ■ , Pn: k) = qfif, Pl; k-1, • • ' , Pn: k-l) ~ F j{t)
(7.18)

(j = 1, • • • , n; k = 0, 1, ■ • • ),

we shall seek to determine in succession the functions p,-.k (j = 1, • • ■ , n;

k = 0,l,--- ). In (7.18) let

(7.19) Pr.-i = 0 C/-1, •■*»«>«

Write

(7.20) pj:h - pj;k-i = wj:k (j = 1, • • • , »; k = 0, 1, • • • ).

Thus

(7.20a) pj:k = W*l + Wj:i + ■ ■ ■ + Wj-.k.

The set (7.18) is equivalent to the sequence of systems

(7.21) f- h*(t, »**•••, Wn-.o) = - Fj(t) (j = 1, • • ■ , n),

t PW^l(t) — lf{t, Wi; k, ■ ■ ■ , Wn: k) = U. k
(7.21a)

(/-1, ■■•,«;*-1, 2,-••),

where

gj:k = qf{t, Pl:k-2 + Wl:k-1, 1 • ' , Pn: t-2 + ^n: *-l)

— q?(t, Pl: ' ' ' , Pn:*-2).

Under suitable convergence conditions the series

(7.21b)
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(7.22) Pj{t) = Wj-.o + »,■:!+••■ (J » i, : - • ,*)

will constitute a set of "actual" solutions of the transformed system referred

to in Lemma 5, §6.

In view of (6.20b) it follows that, from an asymptotic point of view, the

solutions of the linear system, obtained from (6.20) by replacing the second

members by zeros, are identical with the solutions of the system (LAi), §2.

Thus the systems (7.21), (7.21a) may be written in the form

(7.23) w,k(t) = £ cV{t)eQ^t V'y(0 (j = 1, • ■ • , »; k = 0, 1, ■ • • ),
x=i

where

(7.23a)   ct\t) - £ r'gxi:Ae-^(V^+"+J,7X"X(r)
x,=i J

Here

(7.23b) gi-.o=-Fj(t)

and

(7.23c)   tx>,'W = W*,      7X"XW = W* (*in W).

In view of (7.23c)

(7.23d) |yM*)|, \yx'-Ht) \ < \ t\''y («' > 0; I in W).

Thus from (7.23) and (7.23a) it follows that, if \gj-k\ ^gk (i = 1> "•'»*)»

(7.24) I wj:k(t) I < «72£ I e«x<'>fx+«' | I   gk \ e-^<-rh~^+"+^' \ \ ̂ -''dr \
x-i J

for / in W and provided the integrals involved in the second members of (7.24)

exist.

Henceforth, unless the contrary is stated, / and r will be in Ws (cf. Defini-

tion 7) and we shall suppose that all the previous results (including equations

(7.21), (7.21a)) have been established with m replaced by m, where in is the in-

teger occurring in (7.2). Moreover, we shall take TV >_»>(£) (cf. Lemma 6).

By (7.1a), (7.1), and (6.17),

(7.25) I F,{r) I < g0*(r) = ka{c')N \ r h^A^r) (« = co + p + 1) .

In view of (7.25) and (7.23b) it is seen that the function, obtained by dis-

regarding the factor |r_1_J'tir| in the integrand displayed in (7.24) (k = 0),

is less than

(7.26) [k0(cT I r l^'H^sto I e-exC'V-<'x+=> | ] = ix*(T)        (t in Wt).
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In consequence of (7.1a), (7.1)

(7.26a) t?<f) = k0(cYgN:ho(r) \ e^V"^*.' |,

where

(7.26b) h0 = w + a0,       a0 = (£ + 2e')/(Ar - 1).

By (7.6)

i*(T) = ko(cT   £ xA*,,....*-^)

(h + ■ ■ ■ + km = N >_ j/(£)).

From (7.26c), with the aid of Lemma 6, it is inferred that i*(r) Is monotone

(cf. Definition 8) in W( (\t\ >V(£, fa)).
In the sequel, whenever t is in TFj and r is the variable of integration, the

path will be selected along the ray

Zr=Zt (|r|fc|fj?.

The integral displayed in (7.24) (for £ = 0) is less than

im j I r h1"«' \dr\= — h*(t) I / |-'(7.27) a

whenHs in TF{ (|/| >V(£, fa)). With the aid of (7.24) (for£ = 0), (7.27), and
(7.26a) we obtain

w272

(7.28)

Write

wr. o(t) I < w0*(/) = W0\t \~h°qN: *„(<),       Wo = —7- *o(c')JV

(;= 1, ■■■ ,n;t in TF{ (| i [ fc V«, *„))•

1
(7.29) *,»*, + ax, en = — (- a0 + 2e')

2V
(cf. (7.26b));

M272

(7.29a) Wl = —— b (b = q'(l + p") + q)

(cf. (7.17));

(7.30) r(0 = w0wiqN:hl(t)

(cf. (7.28), (7.1a), and (7.1)).

One will have

(7.31) w0*(t) ̂  ——, T{t) 5S —— (t in 1F£( | 11 3 r*)),
1 + p 1 + P
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where r* is some number 3r'(£, fa), 3r'(£, fa); (7.31) can also be obtained for

t in W[ (\t\ =r'(£, fa)) provided c' is taken sufficiently small.

Since (7.21b) (for * = 1), (7.19), and (7.28) are valid, and since, by (7.31),

w0*(0 <p"> it follows from (7.17) thatf

(7.32) I gt iW I < b(w0*(t)r = g?(t) (t in Wt(\ t\ Z r*)).

It will now be proved that

(7.33) I wit!(/) I < T(t)w0*(t) = w?(t) (t mWt(\t\ ä r*)).

In fact, if we disregard the factor {r-^'dr], the integrand displayed in

(7.24) (for k = 1) is less than

0(wo*(t))2| e-^T-^+"+2'' I = tW| t|-*»+=+2«V:a„(t)
(7.34) ;

By (7.26b) and (7.29), - fa+ü+2e' = Nan. Hence, for fa=fa+a, one has

I t|-ä0+=+2«'9ar.a()(t) = qif.hi(t).

Thus the function of (7.34) is equal to

(7.34a) JwoV:i,(t)     £     xA*,,...,*^:A|)(t) .

In view of the inequalities satisfied by r* and in consequence of Lemma 6

it is observed that the functions (7.34a) X = l, • • • , n are monotone in

(\t\ >_r*). Hence the integral displayed in (7.24) (for k = l) is less than the

product of the function of (7.34a) (with r replaced by t) by

(7.34b) J I T-l-''dr\;

that is, by (I/O 1t\ Making use of this fact, we infer from (7.24) (for k = 1)

that

2 n

I Wf. i(t) I < ~ zZ bw02qN: »,(/)     E     xA*,,...,*- ,»,(0 • I eöx^rx | = Wl*f».
«    x=l *h-Ykm=.N

By (7.6) and (7.29a)

w?(t) = {w0w1)qN:h,{t){w0\t\-h<')      2~Z qti.~-.ii;hM-

With the aid of (7.30), (7.1a), and (7.28), the truth of (7.33) is deduced from

this relation.

t In the second member of (7.32) b could be replaced by q(<b); this, however, is avoided in

order to simplify subsequent developments.
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By (7.33) and (7.31)

(7.35)      mf® ̂  (tt-sY = W*W + < p"
VI + p /

for/in Wt >r*).

In consequence of (7.21b) (for £ = 2), (7.35), and (7.17)

I = I qf{t, wuo(t) + wul(t), ■ ■■) - qf(t, w1:0«, • • • ) I

< (q'w0*(t) + qw?(t))w?(t) ^ bw0*(t)wl*(t) = gf(t)

for tin W( (\t\ >r*).

Assume now that for t in W^(\t\ 3r*) and for i = l,2, ■ ■ ■ , k (32) we have

(7.37) \uM < gtm = bw0*(t)wU(t),

(7.37a) I %hU(Ö \ < «£■!<*) = t*-Kt)w?(t) (j=l,---,n).

In (7.32), (7.36), and (7.33) this has been established for k = 2.

By (7.37) and (7.37a) (for i = k)

(7.37b) gk*(t) = bvk-Kt)(wa*(t))2-

Thus, by (7.37) (for* = *)

I gi-.kir) I I «-«xWr-'i+»+!'' I < or^rHWM)2 | e-Qx<'">r-rx+»+2<' |

*_1 2 2 i    _Qx(r) _(rx+A0)||    * *

= bw02(w0wi)k 1qN:l1(t)     Jl_   xA*1,...,*=1Ä0(t)( I t\" +2 *fj?:*,(r)).
M-hi-—JV

Making use of the formula subsequent to (7.34), one obtains

U/:*(r)|| e-0xMr-x+=+2.'|

('7"38) ^ i.    k+X   k~X k    I \        V"1 * / v

The functions ?w**t(r), xAt,.....^^^ are monotonef in B7£ (|<| 3 r*).[Hence

the integral displayed in (7.24) is less than the product of the second member

of (7.38) (with t replaced by t) by the function of (7.34b), that is, by (1/e')

11\In view of this fact and (7.6) it is deduced from (7.24) that

(7.39) i wj:k(t) I < (f^b)wk+1w!T1qA1(() \*\~k'    Z \lk»":*-*JM\-
\  «       / i,H-+IQ—N

By (7.29a) and (7.1a)

(7.40) I wj:k(t) I < wk*(t) = (woW1qNihl(t))k(wQ\t\->"qff:hAt))

t Because r*£r'(|, A0), f^r'ft,
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for /in W( (\t\ 3r*) and for j = 1, • • • , n. Making use of (7.30) and (7.28) one

obtains

(7.40a) wk*{t) = Tk(t)w0*(t).

Furthermore, by (7.31), (7.37a) (for i-l, •••,*), and (7.40a)

(7.41) wf(t) ^ »f(t) (* - 0, 1, • • • , k).
M + p I

Hence

(7.42) ptM = w0*(t) + ■ ■ ■ + w£.i® < (1 4- p")*»<>*(*)■

Alsot

(7.42a) wk*{t) ̂  (   P    \ wf(t) < w0*(l) (t Ltt W£\ t\ = r*))
M + p" '

and, by (7.31),

(7.43) ptM + w?(t) = V*(t)lZ(Tl—^i < (! + p'>°*» = p".
;_o \1 + P /

By (7.21b) (cf. (7.21a)), in consequence of the statement in connection

with (7.17),

I gi:k+l(t) I  = I q*(t, Pi: k-l(t) + W1:k(t), ■ ■ ■ ) - qf{t, Pl:i_l(/), • • • , pn:k-l(t)) \

< {q'Pk*-M + qwh*(t))wk*(t).

Thus, by virtue of (7.43) and (7.42a), we have in 1F{ (|/| >_r*)

(7.44) I gf.k+iW I < [?!(! + p'>o*« + qw0*(t)]wk*(t) = gk*+1(t).

Whence, in view of (7.29a),

(7.44a) gk*+1(t) = bw0*(t)wk*(t).

In consequence of (7.40), (7.40a), (7.44), and (7.44a) it is observed that

the relations (7.37), (7.37a) will necessarily hold when k is replaced by k + l.

It has therefore been proved that these relations hold for k = 2, 3, ■ ■ • . Thus, in

particular, in view of (7.31) one has

(7.45) l^l<^-(^)W)

_ 0"= 1, • • •       k = 0, 1, • • • ;fm Wf(\t\ 3 r*)).

j (7.42), (7.42a) may be replaced by more precise inequalities and the developments could be

given with a smaller b.
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Accordingly it is seen that the series (7.22) are absolutely and uniformly

convergent, and

(7.46) I pM I < (1 + p")WM( = p") (j = 1, • • ■ , n),

when t is in W( (111 3 r*).

From (7.21a), in view of (7.37), (7.37b), (7.40), (7.40a), we obtain

I t  PW,-"(<) I = I gj:k(t) + lf{t, Wi:k, ■ ■ • , Wn:k) I g I gi:k(t) I
n

+ K2ZI »/=*«)I < [ir*->(<)wo*(0 + tf»r*(i) ]»»•(/).
•=i

Thus, by (7.31),

——W(«) (6' = 6 + ff»).t
1 + p /

Hence the derived series

CO

(7.48) £»A«) 0'=1, •■-,»)

are absolutely and uniformly convergent in W(. These series represent the

derivatives of the functions pj(t) (involved in (7.46)), respectively. By (7.47)

(7.49) I Pf\t) \ < b'(l + p")w0*(t) \t\" (tin Wt(\ t \ = r*»«

We are now ready to formulate the following existence theorem.

The First Existence Theorem. Let R be a region referred to in §2 in

connection with (i), (ii), (7.9a), (7.9b). With Qi(r) (**=!,•••,») denoting the

polynomials involved in the formal matrix solution (2.5) of the linear system

(LAi), §2, as a matter of notation we have in R

RQ\{t) = RQ»(t) =       = RQM;   eQi(0 ~ 0 (i = 1, • • • , m).

Moreover, the Qi(r) will be supposed to be so selected that, on writing

Qi(r) = qiTlilki+ ■ • ' («->l, q<^0), we have

l\ Ii lm        lm+l lm
V = — = — = •••=—> -—— = ••■ ^ — (lgffig m).

k\ &2 km       km-{ 1 km

Let W be a subregion of R of the form R(oti, a2) (cf. Definition 3, §2) where

0 <a2 — ai <ir/V. With £>0, however small, fF{ will denote a subregion of W

t Here K is a number equal to or greater than the absolute values of the coefficients of the linear

differential operators /,* (/=1, • • • , n); these coefficients, being asymptotically identical with the

corresponding ones in the /, are therefore bounded for t in W^.
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of the form Wi = R(ai-\-^, a2 — £) (cf. Definition 7). Let N be an integer =K£),

where p(£) is the number defined in Lemma 6.

The non-linear system (A), §1 will possess a solution y,(/) (j =1, ■ ■ ■ , n),

whose elements yj(i) are analytic for t^ °° in W( (\t\ ^r*), while at t= °o they

will generally be singular. Moreover,

(7.50) yjfo ~ sM (j = 1, • • ■ , n; t in W({ \ t | 3 r*)).

Here the s,(t) are the formal series given by (7.23), (7.23a), (7.24) of Lemma 4, §5

under the supposition that in that lemma m has been replaced] by m. The

asymptotic relations (7.50) have the following significance. The y,(t) are func-

tions of the form

(7.50a)       yft) = Z      Z     Cits'- ■ ■     «*»,,.-.15+ P/W>

where Ci, • • • ,     are arbitrary constants (\ci\ ^c'; i = \, ■ ■ ■ , fn) and

m = exp (kiQi(t) + ■ ■ ■ + kmQ^(t)]th^+---+h^'-^[i]qW
(7.50b) , ,

(/ in Wt(\t \ 3 r*))

(cf. Definition 4, §2, and (5.21)), where w' gjw-f p + l. Furthermore, the func-

tions pj(t) —Pi (ci, ■ ■ ■ , Cm, t) are analytic for t^ <*> in W^(\t\ 3r*) and satisfy

in this region the inequalities

I p0) I < h'{c')N\t\<-N-v»

•     Z       ! exp [kiQi(t) + ■■■ + k-Q-Jt)]t^-+^ I = NP*(t),
(7.50c) t1+...+*-_Ar

I pf(t) I < h"\t \'NP*(t) (7 - 1, • • • , «; he-m a + p + 1 + a,)

(cf. (7.26b)), provided \ d\ ^c' (i = 1, ■ ■ ■ , m). The above holds under the sup-

position that c' has been taken sufficiently small and that r* is sufficiently great.

Note. The term "asymptotic relations" applied to (7.50) is justifiable be-

cause in the neighborhood of /= 00 the "remainder" term in (7.50a), that is to

say, Pj{t), is essentially of the same order of magnitude as

Z Cl   • •  •  Cm NVkl,---,k-:j(t)-
*1+---+A--=A'

In fact, for / in W^{\ t\ =r*), the absolute value of the above function is less

than
h" I t \-t-*<'NP*(t).

We consider it extremely likely that facts of the type of those stated in the

t This obviously has no effect on /'.
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above theorem will hold in the region W itself, even if in the formal series (in-

volved in Lemma 4, §5) m is not replaced by m, this being true at least when W

is subject to the condition that its opening (cf. Definition 3, §2) is less than

tt/(21'). An attempt to prove this conjecture leads to analytic difficulties even

greater than those encountered so far.

8. Formal solutions for systems (B). The First Existence Theorem (§7)

is of course applicable to systems (B), §1. However, in view of the specialized

(as compared with systems (A), §1) character of these systems, results of a

more precise character, valid in more extensive regions, can be obtained by

treating (B) directly. We have

(B) yf\t) = aj(yu ■ ■ ■ , y„) (j = 1, • • • , »),

(8.1) aj(yu ■ ■ ■ , y„) = tfyt, ■ ■ ■ , yn) + qAyi, ■ • ■ , y„),

(8.1a)        lj(yi, • • • , y«) = h.0i + • • • + tm-jy»,

(8.1b)       qj(yi, ■ ■ ■ , yn) = £*»*,,...,».yi1 • • • y»

(ii, it, ■ ■ ■ , in = 0; ii + ■ ■ ■ + in = 2; / = 1, • • ■ , n),

the series in the second member of (8.1b) being convergent for

(8.2) I y\\, ■ ■ ■ , I yn\ = p.f

Associated with (B) there is a linear system

(LB) y-\t) = Uju ■■■ ,yn) (j - 1, •   • , »)

which is equivalent to the matrix equation

(LBO Y^(t) = Y(t)B,      Y(t) = (yUt)),

where
B-ih.t) (t,j = t, • • • , »h

Here elements of a row in Y(t) will constitute a solution of (LB).

The characteristic equation^

(8.3) E(a) = I (/,„■ - $itia) I = 0

has roots

(8.3a) cti, a2, ■ • ■ , a\ (1     X ^ n; ak 9^ a, for k ^ v)

of multiplicities

mi, m2, ■ ■ ■ ,mx (mi + m2 + ■ ■ ■ + mx = n),

t The same remark is made as in the footnote in connection with (1.2).

% Here (5,-,,) is the identity matrix; i.e., 5i,,= 0, for iy^j, and S,-.<= 1.
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respectively. The equation (LBj) will possess a matrix solution

(8.4) rm = (t^MO)        a,j = i, • • •,»),

where

, , = «i = ' ' " , m0; ?< = «2 (i = «i + 1, • • • ,«! + ms); ■ ■ • ,
(8.4a)

t/i = ax (* = »!+•••+ mx-i + 1, •••,»),

and the pi,,-(t) are polynomials in t of degree at most

nti — 1    (for t = 1, • • ■ , mi),

,„ „ v »s — 1    (for t = w! + 1, • • • , mi + m2),
(8.4b)

m\-i — 1 (for i = mi + • • • + wx-i + 1, • • ■ , w).

It will be assumed that not all of the roots of the characteristic equation (8.3) are

zero. Thus in (8.4) at least one of the q{ will be distinct from zero.

In the sequel there will be occasion to consider the matrix

(8.5) Y-\t) = Y{t).

Since it satisfies the equation

Y^(t) = - BY(t),

whose characteristic equation is E(—a) =0 (cf. (8.3a)), if we take account of

the interchanged role of the rows and columns we conclude that

(8.5a) Y-KO = iSUO) = {fUOe-'i')

where the pi,j(t) are polynomials in / of degrees at most as stated in (8.4b)

(with i replaced by j). Moreover,

(8.5b) (ßiMKpt,M) = (M = r.

Definition 9. S(ai, a2; r) will denote the sector

«i = Z t d a2 (\t\i.r).

Let the Bi denote the rays along which R{q,i) =0 (whenever the constant qt,

under consideration, ^0). Let

(8.6) Si,S2, •••

denote the sectors separated by the Bi rays and not containing any of these rays

in their interiors.

In the above set of sectors (8.6) there is certain to exist at least one sector

S such that the following holds.
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In the set of numbers q{ (z = 1, • ■ ■ , n) there are some, say

(8.7) ?<„ f% (1 = m ^ «),

all distinct from zero, corresponding to which

(8.7a) R(qiTt) ^ 0 (t = 1, ■ • ■ , m; t in S).

As a matter of notation the functions q4 involved in (8.7a) will be designated

as

(8.7b) qj, q4, ■ ■ ■ , qmt.

Henceforth, unless the contrary is stated or implied, we consider a particular

sector S of the above description. It will be designated as

(8.8) 5fa, a,;r) fa < at)

(cf. Definition 9).

Let ci, • ■ ■ , cm denote arbitrary constants, and consider a solution of

(LB) of the form

m

(8.9) iyi(t) = £ c%0^fpx,M (/-!»•••» »)•
x=i

We shall seek to satisfy the non-linear system (B) with the aid of the

formal series

(8.10) ylt) = &M + tf 4) + • • • + *?M + ■■■ (j = 1, •••,»),

where

(8.10a)
(*i, • • • , km >. 0; ki + ■ ■ ■ + km = v).

For v = \ the coefficients in (8.10a) are already known. In fact, by (8.9),

(8.10b) e^'px.jit) = i7j*„...,*„:,(*) (X = 1, ■ • • , m;j = 1, • • • , n),

where k, = 0 for i^\ and k\ = l.

On substituting (8.10), (8.10a) in (B) it is found that the coefficients

involved in (8.10a) satisfy the linear non-homogeneous systems (Sh), §2

(h=2, 3, • • • ). Furthermore, in place of (2.30) and (2.30a) we now deduce

in consequence of (8.5a) and (8.4)

n

(8.11) snkw ••,**> M = E cx(t)e^'px,i(t),
x=i

where
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(8.11a) ex«) = Z f Hrxftr"'*™(r)px',x(7-)e"^r.

Here the

are given by (2.26).

Lemma 7. Consider the problem (B) a/ /Ae beginning of this section. Let

Y(t), as given by (8.4), be a matrix solution of (LBi). A mechanism for construc-

tion of formal solutions (8.10) (cf. (8.10a)) of the system (B) is given by (8.11),

(8.11a) (cf. (8.5a) and (2.26)).

It will be convenient to introduce the following definition.

Definition 10. Generically [t, v] is to denote a polynomial in t of at most

the vth degree.

By (8.10b)

(8.12) a.kl:m(r) = exp [{klqi + ■ ■ ■ + kmqm)r][T, m'\

(m' the greater of the numbers (8.4b)). In view of (8.12) the left member of

(3.3a) becomes

(8.13) exp [(SiOi + ■ ■ ■ + dmqm)T][T, iam'].

Applying the summation displayed subsequent to (3.3a) to (8.13), we get

(8.13a) FJ = generic form of (8.13).

In view of (2.24), (2.19b) we have

n

(8.13b) YLF«' = exP + ' " " + hmqm)r][T, sm'] (s = ix + • • • + in).

By (3.4)

(.O-l4) <1+.-.+i„-2 7l+...+T„=2   ,«,,---,„äm a=l

= exp [(kiqi + ■ ■ ■ + hmqm)r][r, 2m'].

Since

Pt.i(r) = [r,m'] « 1, • • • , n)

in consequence of (8.14), it is observed that the integrand displayed in (8.11a)

is of the form

(8.14a) exp [{faqi 4- • • • + hmqm — c7x)t][t, 3m'].

Hence the integral displayed in (8.11a) is expressible as
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(8.14b) exp [(%! + • ■ ■ + hmqm - qAt] [t, 3m' + l],

where 3m'+l may be replaced by 3m' whenever hiqi+ ■ ■ ■ + hmqm — q\5^0.

One further finds that c\(i) has the generic form of (8.14b). Hence, by (8.11)

(for h=2),

(8.15) 0»»,,..•,*»>*(*) = exp [(Ait/i + • • • + hnqm)t][t, 4m' + lj.

In view of (8.12) and (8.15)

yVki,-.-,km:a(t) = exp [(hqi + ■ • • + kmqm)T][r, p„]
(8.16)

(p„ = v{3m' + 1) - (2m' + 1); v « 1, 2).

On writing ki = kir (i = l, ■ ■ ■ , m), v = vT, substitute (8.16) in (2.26) (forH = 3).

The product (5.8) will now be of the form

(8.17) exp [(5it7t + • • • + 5mqm)r][t, pa' ],

where

(8.17a) pj =f p. - 7a(3w' + 1) - ia(2m' + 1)
r=l

(cf. (5.8a)). Applying to (8.17) the summation symbol subsequent to (5.8a)

one obtains

(8.18) Fa' = generic form of (8.17).

In view of (5.8c)

n

(8.18a) II Fl = exp H-+ hmqm)A [t, ps" ],

where, by (8.17a),

(8.18b)     Ps" = 2Zp1= 3(3m' + 1) - s(2«' + 1)     (5 = i, + • . . + Q.

Here s may assume only the values 2 and 3. Hence in (8.18a) we may replace

[t, pi' ] by [t, 5m'4-l]. Thus the functions involved in the left member of

(5.10) will possess the generic form of (8.18a) (where the indicated replace-

ment has been made). If now the first summation symbol of the last member

in (2.26) is extended over the functions (5.10), it is seen that the generic form

will remain unaltered. Thus

(8.19) 3Thju"',hm = exp + • • ■ + hmqm)r]\r, 5m' + lj.

Assume that, with pq = q(3m'+l) — (2m'+l),
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q+iTj = exp [(A1C71 + • ■ • + hmqm)r] [t, pq + m ]

(8.20)
(hi, ■ ■ ■ , hm >_ 0; hi + ■ ■ ■ + hm = q + l;j = 1, • ■ ■ , n),

and

(8 20a)   q'nk^----k™:a^ = exp K*1?1 + " " ' + kmqm)r][r, pq]

(ki, • • • , km 3 0; ki + • • • + km = q; a = 1, • • • , n)

forq = l, 2, ■ ■ ■ , h-l (h33).

Substitute (8.20) (for q = n — 1) in (8.11a). The integrand involved in

(8.11a) will be of the form

exp [(Aic/i + • • • 4- hmqm — ?x)t][t, pH-i + 2m'].

Thus the integral displayed in (8.11a) is

(8.21) exp [(&1C71 + • • ■ + hmqm — q\)t][t, pH-i + 2m' + l].

Here 2m'+1 may be replaced by 2m' whenever Ai<7i+ • • • +hmqm — q\^0.

Whence c\(t), as given by (8.11a), will be of the form (8.21). Finally, from

(8.11) one obtains (8.20a) with q replaced by h. By making use of the relations

(8.20a) (for q = 1, • • • , h) we are going to prove that (8.20) holds for q = H.

For this purpose use will be made of (2.26) (with h replaced by h + 1). In

view of the equalities of (2.16b) it follows that

•a

(8.22) II exp [(8iqi -)-+ Smqm)T j [r, pj ],

where, since vi+ ■ ■ • +via=ya (cf. (2.26)), p„' is given by (8.17b). Next it

is inferred that

(8.23) £       T,mia II • • • = generic form of (8.22).

Denoting the first member above by FJ, in view of (2.19b), it is deduced that

n

(8.23a) = exp [(hiqi + • • • + hmqm)t][t, ps" ]    (s = ii + ■ ■ ■ + in),
a=l

where, by (8.17a)

p." = E p« = (3m' + 1)Et«- (2m! + 1) E ia.

Now, since h in (2.26) has been replaced by h + 1, in consequence of (2.24)

one has7i+ • ■ • +y„ = h + 1. Thus p8" = (3m'+1)(h + 1) -(2m'+l)s, where

5 = 2, 3, • • • , h + 1. Whence ps" ^p2" =pH+m' and, accordingly,
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iaH. ■■■.in IT F°' = exP [(fall + • • • + hmqm)r][r, pH + m'\.

Extending over the left member of the above relation the summation symbol

with the superscript (4), one finally obtains

B+iTj"   ' m = exp [(hiqx + • * • + hmqm)r][r, pH + m'\

{hi, ■ ■ ■ , hm = 0; hi + ■ ■ ■ + hm = h + l;j = 1, • • • , »)•

Thus it is seen that the relations (8.20), (8.20a) hold for q = 1, 2, • • • . The

following result has been established.

Lemma 8. Consider the non-linear system (B), the associated linear system

(LB) (matrix system (LBi)) and the matrix solution (8.4) of (LBi) (cf. (8.3),

the statement regarding the zeros of E(a), (8.4a), (8.4b)). With (8.6) denoting

the sectors in each of which the R(qif) (i = \, ■ ■ ■ , n) do not change sign,

let S be a particular sector of the set (8.6) such that there are some q,, say

Q<D <7<!> • * " i ?»m dl distinct from zero, for which R(qirt)^0

(r = 1, • • • ,m;tinS). As a matter of notation designate the qirt involved in these

inequalities as qit, q2t, ■ ■ ■ , qmt- The system (B) possesses a formal solution

(8.24)      s j(t) = iy At) + tyi(i)+ •• • (/-I, •••,»)

where

*yM =   iZ   ci ■ ■ ■ cm exp [(kiqi + ■ ■ ■ + kmqm)t][t, pA

(8.24a) *"
(*i = 0, • • ■ , km 3 0; ki + ■ ■ ■ + km = p; v = 1, 2, • • ■ ).

Here Ci, ■ ■ ■ , cm are arbitrary constants, p, = v(3m' + 1) — (2m'+ 1) (m' the

greatest of the numbers (8.4b) and [t, pA represents generically a polynomial in t

of at most the pvth degree.

Note. For v^v' (v' sufficiently great) the p, can be taken smaller compared

to the p„ given in the lemma. In fact, one may take pv = v(3m')-T-a'(v'^v').

This is because hiqi+ ■ ■ ■ +hmqm — q\ (hi^O, ■ ■ ■ , hm30; hi+ ■ ■ ■ +hm = v)

will certainly be distinct from zero (for X = l, • • ■ , n) whenever v is suffi-

ciently great.

9. The Second Existence Theorem. In general, the series (8.24) will not

converge in 5 or in any given regular subregion (cf. Definition 3, §2) of S.

However, as seen from the Existence Theorem of §7 there exist "actual solu-

tions," asymptotic to the formal solutions (7.24) (in the sense of that theo-

rem) in certain regular subregions of S.

We shall follow up the method previously employed in establishing the
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theorem of §7, in order to obtain certain simplifications not directly obtain-

able from that theorem; more precisely, in order to obtain better results for

the problem now under consideration.

The d will be again subjected to the inequalities (6.2). Applying trans-

formation (2.1) and (2.1a) to the system (B) of §8 the inequalities (6.3) and

(6.3a) should be satisfied. Now, in general, for t in 5 (6.3) will not hold, no

matter how small c' is taken (unless Ci=c2 = • • • =cm = 0, which is a case of

no interest). This statement is seen to be true because of the presence of the

polynomials p„]. When the roots of E(a)=0 (cf. (8.3)) are all distinct,

(6.3) can be made to hold in S by taking c' sufficiently small. We have

S = S(ai, a2; r) (Definition 9, §8). There exists a regular subregion of S,

(9.1) R' = R(au a2)

(Definition 3, §2), such that

(9.1a) I I <\ 1 (i = 1, • ■ • ,m; t in R').]

In R' (6.3) can be satisfied with c' (>0) sufficiently small. Assume, for the

present, that c' has been so chosen. In place of (6.10b) one now has

(9.2) sT?1'"'**"(<) = exp [C&fi + • • • + hmqm)t][t, pH-i + m'j.

Thus (6.14) will become

— Fj(t) = X      X     ci' ' " • Cm exp [(feitfi +

(9.3)
+ kmqm)t\[t, p„_i + m \

= r*»'-*D      £     cV ■ ■ ■ cT exp +
viN -\-k„=v

+ kmqm)t]t'^'+^j, • ■ • 1

where the [(1/t), • • • ] are polynomials in (1/t). Hence, in view of (9.1a),

(9.4) \FM\ < k0(cY\t\-im'-2 £ gk,-.km(t) (tin If)

with

(9.4a) g*„...,*jM = I exp [(ktfi +"••• + kmqm)t]t™™'+» |

(*!+'•■•+*»- A).

For / in R', in place of (6.19), (6.19a), and (6.19b) one may merely assert

that the

(9.5) <*„.■.,,„:,•« (*+•••+*-«

f The second member in (9.1a) can be replaced by any constant (^ «).
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and the

(9.5a) <&,.....,„«) (^.+ •••+^2)

are bounded.

However the following is noted. There exists a regular sub-region R of R'

(cf. the statement made in connection with (9.1) and (9.1a)) of the form

(9.6) R = R{auat)

(cf. Definition 3, §2) such that

(9.6a) e"i' ~ 0 (i = 1, • • • , m; t in R).

Since in R, F,(/)~0 (j = 1, •••,») it is observed that the functions (9.5),

(9.5a) are asymptotic to zero for / in R.

Lemma 9. The transformation (6.1) and (6.1a) applied to the system (B)

of §8 will yield a system

(9.7) pf(t) - l?(t,     ■ ■ ■ , P„) = q*(t, pu ■ ■ ■ , Pn) - Fi{t)     - i, «),

/n  „  v    ?J*(*, Pi, ' ■ - , Pn) ~ ?j(Pl, • ' •  > Pn),   lf(t, Pi, • • • , Pn) ~ *i(Pl, ' * '  , Pn)
(9.7a)

0' = 1, • • • ,n;tin R)

(cf. (9.6)).f For t in R and \et\ ^c' (i = l, ■ ■ ■ , m) the Fj(t) satisfy (9.4) and

(9.4a). Also, for tin R(\t\~^r) and | c,| ^c' the series (6.20a), representing q*,

converge absolutely and uniformly. J

In order to obtain a solution of the system (9.7) by methods of the type

of those used in §7, it is necessary to apply the methods of Trjitzinsky (cf.

(T2)) to establish the character of the solutions (within appropriate regions)

of the linear system

(9.8) p{-\t) - lf(t, Pl, • • • , Pn) = 0 (j = 1, •••,«).

Now (9.8) is equivalent to the matrix equation

(9-8a) (p^OO) = (piMi.M (i, j = 1, •■•,»),

where, by (9.7a),

(9.8b) (**<(*)) ~ (**./) (tinR).

t In (9.7a) for instance, is to mean that in }* and q,- the corresponding coefficients of the

powers of pi, • • • , p„ differ by functions of /, asymptotic to zero in R.

t With proper choice of r and c'.
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In view of (9.8b) the formal matrix solution of (9.8a) is the same as that of

(LBi) of §8; that is, it is given by (8.4). While the matrix (9.4) happens to

constitute an "actual" matrix solution of (LBi), in general of course it is not

an "actual" solution of (9.8a). Regarding "actual" solutions, we recall the

pertinent facts derivable from the Fundamental Existence Theorem of (T2)

and briefly outlined in §2 (cf. the text in connection with (2.6)-(2.8c)). To

make applications to (9.8a) one needs to write

(9.9) S(t) = (e^pUt)) = (o^pUt))

and let Q,(t)=qit (i = l, ■ ■ ■ , n). Here the r, are certain integers and the

ipi.i(t) are polynomials in (1/0- All the Bitj curves, that is the regular curves

along which

(9.10) R[(qi - qj)t] = 0 (whenever qi ^ q,)

and the 5, curves

(9.10a) R(qf) = 0 (whenever q( ^ 0),

are rays of the form Z/=a constant.

Definition 11. S' is to denote any sector which can be constructed as fol-

lows. Consider the sectors separated by the rays (9.10) (i,j = \, • ■ ■ ,ri),no such

rays extending interior to any of those sectors. There will be some sectors (of the

above set) containing subsectors, interior to each of which a number of the func-

tions R(qit) is negative.] Take a particular such subsector S",

S" = S"(Ti, 72; r) (it < 72)

(cf. Definition 9, §8). As a matter of notation we may now write

(9.11) R(qtt) £        = R(qJ) = R(qm+xt) 5 • < • 2 R(qj),

(9.11a) R(qit)^0 (qi^0;i=l,---,m;tinS').

A sector S'=S(7i + ei, y2 — e2; r) is defined as follows. If the ray Zt =yi

(ray Zt=y2) is not coincident with any of the rays

(9.12) R(q{t) = 0   (t = 1, • • • , m), R[(q< - qAt\ = 0      (ß g m),

take 61 = 0 (take e2 = 0); in the contrary case we take ex (take e2) positive, however

small.

It is observed that in S' (9.11) holds and

(9.13) e«'~0 (i = 1, - • • , m; t inS');

moreover,

f This is because, by hypothesis, not all   are zero.
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(9.13a) I q{ \ cos (g< + t) ^ - « < 0 (i = 1, • ■ • , m; t in 5').

In following the developments of §7, as applied to the present problem,

with t in the sector S', it is noted that the number m, introduced in connection

with (7.2), can now be taken equal to m. The inequalities (9.13a) will corre-

spond to (7.4a). Lemma 6, §4 (with m=m) will be valid for t in S' (\t\ =

where r' =r'(t\, e2, h)). The latter fact can be inferred by noting that the

functions (7.7) and (7.7a) (for m = m) are monotone (cf. Definition 8, §7)

in S' (sufficiently far from the origin). This fact is deduced by observing that

the statement made in connection with (7.7b) holds for the problem under

consideration when / is in S' if we take into account the remarks made in

connection with the rays (9.12).

With S' = S(St, 52; r) (5i<52) denoting a sector satisfying the conditions

of Definition 11, in consequence of (T2) one may assert the following.

The system (9.8a) possesses the matrix solutions

(9.14) UM), (p"M),

with elements analytic in S' (for t?± <*>), such that with e>0, however small,

(9.15) {p'UO) ~ 0in « = S(h, 52 - •; r)),

(9.15a) (p7,i(t)) ~ {e^pi,M)     0 in Si = Sfa + t, 52; r)).

Here the pi,,(t) are the polynomials of (8.4).

The existence theorem of §7 is applicable to the problem (B) for t in St

and, also, for t in S2 . However, with the aid of the following lemma it will

be shown that an existence theorem for the problem (B) can be stated for t

in the more extensive region S' as well.

Lemma 10. Let S' be a sector of the type specified in Definition 11. The

system (9.8a) possesses a matrix solution (p.-,,(/)), with elements analytic in S'

(tp6 oo), such that on writing

(9.16) (pUt)) = (e^'bUt)),

(9.16a)                   (Pud))-1 = (?;„■(») - (f^

(m' = greatest of numbers (9.4b)) we have

(9.16b) I it.M I < 7,    I KM I < 7 (*,/ - 1,  • • , n; t in S').

To prove this we note that the matrix solutions involved in (9.15), (9.15a)

are connected by the relation

(9.17) (p'ao) = (dMp'i'M)) = ( S Ci^M



1937] NON-LINEAR DIFFERENTIAL SYSTEMS 287

where the citj are certain constants. Let o(t) generically denote a function which

in the indicated region is asymptotic to zero. By (9.15a) and (8.5a) we have

(9.17a) (P." «)-1 = (ß't'M) = (<ß<M + o(t))e-^) (in St').

From (9.17) and (9.15), in view of (9.17a),

(9.is) (cu) = (pUtWi'M) = («<«-«>«[ E pUt)h,j + *(o])

(inS,' =S(Si + e, «,-e;r)).

By (8.5b)

(9.18a) (ct,f) - («««-«»«l«*.,+ #(/)]) (in&).

Letting /—>oo in S3' we infer that c,-,» = l(i = 1, • • • , n). Moreover, by (9.11)

Cij—*0 (i <j) when 111 —»» in 57 ; that is,

4i = 0 (* < j).

Thus, by (9.17) and (9.15a),

«—1

Pi,j(0 = Pi.M +zZ Ci,xpx',-(0

(9.19)

= *«'[*,/(') + o(0 + S c^<n-«)'(^f<<0 + p(|))J    (in £»')>

In consequence of (9.11)

I e(«x-«)'| gl (X = l, ■ • • , i - 1; * inS/);

moreover, the pi,,(t) (i, j = l, •••,«) are of the form [t, m'\. Hence the

(hM are of the form (9.16), (9.16b) for t in SI. By virtue of (9.15) it is seen

that they are of the form (9.16), (9.16b) in S' as well. With e sufficiently

small S' = S{ +S2 . Accordingly, for t in S', the matrix (p'i,j(t)) will satisfy

the conditions (9.16), (9.16b) of the lemma.

By (9.15), (9.15a), and (8.5a)

(9.20) (p'Ut)ri = (PiM) = ((*.<&) + ff«)«"«4) (in SO,

(9.20a) (p'ijit))-1 = (p."M) = ((PUt) + o(t))e-v<) (in S,').

If we write

(c;,;)-1 = {tu),

it follows that
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n

(9.21) £;,,■ + £ Ci.xCx,/ = 8i,j.
X=j+1

From (9.21) (ioxj =n) we deduce thatcn,„ = l andc,,„ = 0 (i<n). For j = n — 1

(9.21) will yield c„_i,„_i = l, Ci,n_i = 0 (i<» —1); and so on. Thus

(9.21a) Ci.i =1 (t = 1, • • • , n), citi = 0 (» < j).

By (9.17)

(9.22) (pUt)) = (ßi.mm.i) = ( E p.'.'xWc-x.y).

In view of (9.21a) and (9.20a)

n

P.'.jW = E (Pi.xW + oW)e-9x'cx,,-
X=)+l

= er«' Ipi.iU) + o{t) + 2Z (PiM + o(t)) exp [(?3- - ?x)/]cx.A
L X=;+l J

for /inS2'. Here, by (9.11),

(9.22b) I exp [(qi - qx)t] I £ 1 (X = j + 1, • • • , n; t in 52').

Now, as we have noted before, the pi,,(t) are of the form [t, m']. Hence, in

consequence of (9.22a), (9.22b), it is observed that

(9.23) I p,';(<) I < y'\t\m'e-«* (i, j = 1, • • • , n; t in S2').

By (9.20) the | pi,j(t) \ satisfy inequalities of the same type in 5/. Hence, with

a suitable y' (9.23) will hold in S'. This completes the proof of the lemma.f

A solution of the system (9.7) will be obtained in the form of a convergent

series (7.22), the terms of this series being defined by the relations (7.19)—

(7.21b) (with p = 0). In place of (7.23) we now have

(9.24) wi:k(t) = zZcx\t)pxM),
x-i

where

(9.24a) ftMC0-E f'^MpxM»
x,=i«^

(cf. (2.28) — (2.30b)). Here the p,-,,(/) and the p,-,,(t) are the functions referred

to in Lemma 10. With the aid of (9.16), (9.16a), (9.16b) one obtains from

(9.24), (9.24a), provided |jfcfe| ggf»,

t Either of the matrices (/>,',), (p,'J) can be taken for the matrix (pf ,) of the lemma.
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(9.25) I wj: k(t) I < ny2zZ I e"\Hm'   I   | g* | | e-"\TTm'+l+t' \ \ r^—'dr \

for / in S' (provided that the involved integrals converge).

It is essential to note that, for t in S', the inequalities (9.25) are of the

same type as those of (7.24) and that Lemma 6, §7, as we remarked subse-

quent to (9.13a), is applicable. Repeating the processes of §7, integrating

along rays Zr = Z/(|r| 3 | /1 ;t'm.S'), the following theorem is now deduced.

The Second Existence Theorem. Consider the system (B), §8. (LBO, §8

will represent a related linear system. Let the qi denote the roots of the character-

istic equation (9.3) (a root of multiplicity m; repeated m, times). It is assumed

that not all the q, are zero. Let S' denote a sector satisfying the conditions of

Definition 11. Thus, as a matter of notation, in S' we have (9.11), (9.13), (9.13a).

Let N be any integer ^v(e); here, with e denoting the number in the second mem-

bers of (9.13a), v(e) is the least integer equal to or greater than (e+|<7x|)/e

(X = l, ■ • • ,m-i).

The system (B), §8 possesses a solution, y,(t) (j = l, ■ • • , n), whose elements

are analytic in S' (t^ ■»). At t = <x> they will be singular. Moreover,

(9.26) yft) ~ $M (j = 1, • • • ,n;tinS'(\t\^ r*))

where the s,-(t) are the formal series (8.24) (cf. (8.24a)) of Lemma 8, §8. The

asymptotic relations (9.26) are to be interpreted as follows. The y,(t)are functions

of the form
N-l ^ k

(9.26a) yj(t) = 2~2      iZ    ci ■ ■ • cm exp [(kiqi + ■ • ■

+ kmqm)t]ypiCl,. ■ ■ ,hm.j{t) + pj(t)

where Ci, • ■ ■ , cm are arbitrary constants (|c<| gc'; i = l, ■ ■ ■ , m) and the

,pk„. ■ -,km;i(t) are polynomials in t of at most the [v(3m'-\-l) — (2w' + l) ]st de-

gree^ The Pj(t) =p,(ci, ■ ■ ■ , cm; t) are analytic, for t^ °°, in S'(\t\ >_r*) and

satisfy in this sector the inequalities

(9.26b)   I Pi(t) I < h'(c')N I t \N™"      X)      I exp [(fcitfi + • • ■ + kmqm)t] |,

provided |c,| gc' (i = l, ■ ■ ■ , m); here m" is a constant independent of N. In

the above we have assumed that c' is sufficiently small and r* is sufficiently great.

Note. In this theorem the term "asymptotic" is justified for reasons of the

same type as stated in the note subsequent to the theorem of §7.

10. Uniqueness theorem. Turning our attention to the theorem of §7 we

observe that there is a manifold of solutions, depending on m parameters c,-,

f m' is the greatest of the numbers (8.4b).
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such that the elements of the solutions, as well as all the derivatives of these

elements, approach zero as | /1 —> =o within Wf. This set of solutions has been

constructed corresponding to some N( = »»(£))■ We shall write

(10.1) yfä~Sj(t)    (J = 1, • • • ,n;tin W((\t\ >_ rN); \ ct\ ^ c'),

where ^ is to signify (7.50a) and (7.50c); this symbol will be read as "asymp-

totic to N terms." It appears at the first glance that the y,-(t) may depend

on N.

Let the yj (t) be elements of a solution of (A), §1 such that

(10.2) y!®~stf)       (j= 1, ••• ,n;t in W((\t\ £ f*+1); \ a\ ^c').

We may have rN+x >. rN. Form the difference

(10.3) Zj-(0 = y!(t) - yffl = iryM + P<(t) - Pi(t);

here Nyj(t) is given by (5.23a) and (5.24a), and p/ (t) are the ps(t) of the theo-

rem of §7, formed with N replaced by A+l. If we take account of (7.50c)

and of the note of §7, from (10.3) we infer that

(10.3a)      I zM I < h*NP*{t) + N+iP*(t)      (t in W(; \ t \ 3 rN+l; \ a |

By (10.3a) and (7.50c)

I 3/(0| < t-NP*(t)

= ffW M^"1^2*'     £     I exp [k&W +■■■
(10.4) *,+••■+*=-*

+ JfesQsW I = zf (0       (/ in Wt( 11 [ £ rN+1j);

also, by the theorem of §7,

(10.4a) I y4(t) I < vw*(t) I t I"5"2'' = y*(t)      (i in Wt(\t\^ rN+1)).

It will be assumed that rN+i has been taken sufficiently great so that

(10.4b) «?(<) + y*(t) ^ p* <p (tmW(;\t\ H rN+1)

(cf. (1.2)).

By (10.4), (10.4a), (10.4b), in consequence of the statement in connection

with (7.17),J we have

(10.4c) I qj(t, yi + Zi, ■ ■ ■ , yn + z„) - qj(t, yh ■ ■ • , yn) \

_ < Gry« + fKWf®

t TakerAr+iSnv.

I One now has }, in place of qf; however q, is of the same description as qf.
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for the indicated values of the variables. Hence

(10.5) I q,(t, y, + *u • • • ) ~ fyfe yu ■ ■ ■ ) | < aVWVW \ t1"5"2''
(/ in Wi) 111 1 rjv+i).

Subtracting the corresponding members of the relations

(10.6) r»yiW>(*) - hit, yi, ■ ■ ■ , yi) = <?,(*, y{, ■ ■ ■ , yi),

(10.6a) t-"yj(t) ~ h(t, yi, ■ ■ ■ , yn) = q,{t, yu ■ ■ ■ , y„)

V = h ■ ■ ■, »)

(cf. (A), §1, (1.1a), (1.1b)), we find that in consequence of (10.3)

(10.7) tf\t) - Mfc, Hfl), • • • , zn(t)) = l*TM U =1, • •,«),

where

(10.7a) TM = qj{t, yi +     • • • ) - „(*, yu • • • ).

Thus, by (10.5),

(10.7b) I r/4 I < a\p*(t)NP*(t) I /1-«-2«' (I in Wt; j <| £

It is noted that the left members in (10.7) are of the form

LS, 21W, • • • ,*»«)),

where the differential operator Z, is precisely the same as the one so denoted

in [SH), §2 (also cf. (2.14a)). If we note that (SH), §2 can be solved with the

aid of (2.30) and (2.30a) and that these formulas may be written in the form

(5.4), (5.4a), and (5.4b), the relations (10.7) may be written as follows:

n

(10.8) 2,{i) = E^('^7x,iW,
x=i

where

n      /» t

(10.8a) c^t) = X I n^e-^h-^+Pyx^dT,

(10.8b) 7x,,<r) = [r]*,   7x„x(t) = [r]* (r in W(; \ t\ 3 rN+l) .

The formulas (10.8), (10.8a), with the integrals taken as indefinite, would

give a general solution of (10.7) if Zj(/), ■ • • , z„(t) were considered as the un-

knowns and the Tj(t) were considered as known functions of t. In the case

on hand, however, the Zj(t) by definition are known functions. Hence (10.8),

f Throughout the discussion we keep | a\ ^c' (i=l, • • •, in).
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(10.8a) will be equivalent to (10.7) only if the integrations in (10.8a) are

suitably specified. One may write

(10.9) cx(0 = <*,.x + E T^T)e-^MT-r^+pyx^{T)dr,
X,=l J oo

where the path of integration (for / in W() is within and the dj,\ are

certain constants. The integrals here involved exist in view of (10.7b). The

integrand displayed in (10.9) being analytic in W( (t^ »), the path of in-

tegration will be chosen as the ray

Z t = Z t (I r I 1 I 11; / in Wt).

Substituting (10.9) in (10.8) one has

(10.10) Zj(t) = +

where
n

(10.10a) U W - E dy.xe«x(»^7x.,-(0 0' = 1, ■ • • , »);
x=i

on the other hand the f,(0 will satisfy inequalities,! provided | Tx/t) | <T(t),

n /» f

(10.10b) I f,-(') I < «7o2E I eQx<()/rx+'' j I  I r(r)e-«x
X=l J 00

(r)r-rx+a,+2,'      r-l-«'^r .

In consequence of (10.7b) and in view of the notation introduced at the be-

ginning of §7 (cf. (7.1)-(7.6))

I r(r)e-<2xMT-'-x+=+2<' I < a'lP*{T)NP*(r) I t H"2«' I e^x^r-V^2«' I
(10 11) '

= a'(nKc')N+1qir„+2Ar)      E     xAtl,...,*-:%(r),

where hN = ö3+(%+2e')/(N — 1). Hence, by Lemma 6, §7, the second member

of (10.11) is monotone (cf. Definition 8, §7) in

(10.11a) W( i\*\t       h) ^ r*+d,

where h is the greater one of the numbers cö+2e' and hN. Hence the integral

displayed in (10.10b) is less than the second member of (10.11) (with r = t)

multiplied by |/|-e'/e', provided Z is in the region (10.11a). Thus, by (10.10b),

(10.12)       I Ut) I < I t \z-ilP*(t)Np*(,t) = z2*(t) = g(t)znt),

(10.12a) g(t) = a"i/|=-flP*(0, a"-
a'«27o'

t Note that, by (10.8b), |t«,j(0|,\v*.ffl\ <M ''to (e'>0) in the indicated region; ä = u+p+l)
as in §7.
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for t in the region (10.11a). In (10.11a) take /(£, h) also sufficiently great

so that in the indicated region

(10.12b) g{t) gKl.

Since, except for a constant factor, g{t) is of the form

(cf. (7.1a)), by virtue of the definition of h it follows that g(t) is monotone in

the region (10.11a).

If we make use of (10.10), (10.4), (10.12), and (10.12b) we conclude that

(10.13) I f/ (t) I < (1 + S)z?(t) (/ in Wf) I 11 >_ r'(S, h)).

Let R be some fixed ray interior to W(. On R

RQ^  = = RQnM  < RQni+lit)  =  • • •   = RQn,(t) <

< RQn,_1+1it) = • ■ • = RQn,_,(t) < i?Ön,-1+i»-= RQn.it)

in, = n)

and

(10.14a) exp [Qi(t) - Qj(t)} ~ 0 (/on it)

for i<j, whenever Q%(t)^Qj(t). In view of (10.10a) one may write

(io. is)   r/ (o = ̂ <«f !„(/) + «<w>r'^i(o + • • • + ̂ nU*),
where

(10.15a)   r!>(0 =    Z rf/.x^Tx./W (% = 0;x = 1, • • • , a).
\=nv—i+l

With o(/) denoting generically a function ~0 (for the indicated values of /),

in consequence of (10.14a), (10.15), and (10.15a) we have

(10.16) f/(/) = *KW[tUt) + oit)] it on R).

By virtue of (10.13)

(10.16a) I t'Ut) + o(t) I < (1 + 8)Zl*{t)e-Q-^ (t on R).

If note is taken of the properties of the functions (7.6), for kt+ • • • -f-fo = v

= /V = i>(£), it follows that the second member in (10.16a) is ~0 along R.

Hence the function of (10.15a) for v =o- must be ~0 for / on R. In view, how-

ever, of the origin of the functions involved in the second member of (10.15a)

for v = a this would imply that necessarily

(io.i6b) rU*) = o O'-i*---»•).
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We substitute (10.16b) in (10.15) and prove that &,~tf»**0 0' = 1, • ' • , »I

in a way analogous to that used in establishing (10.16b). Thus, step by step

it is shown that the f,',v(Z) are all identically zero. Hence, from (10.10) and

(10.12) it follows that

(10.17) I z&) I < g(f)zf(t) = rfW (j=\,--- ,n)

in the region (10.11a) (where r'({, h) is assumed to satisfy the condition

stated in connection with (10.12b)).

We repeat the procedure beginning with (10.4), replacing (10.4) by

(10.17) , and letting t remain in the region (10.11a). It is observed that (10.4b)

will be satisfied, with zf(t) replaced by z2*(t), since g(t) < 1. Moreover, (10.4c)

with Zi*(t) replaced by z2*(t) will hold. Now

(q'y*(t) + qzt(t))zf(t) < [(q'y*(t) + qz?(t))*?(t)]g(t),

so that (10.5) becomes

(10.5')    I f& 7i + «i, •; • ) - q,<t, yu • • • )| < a\p*(t)Np*(t) \t\-^'g(t).

Whence in the second member of (10.7b) we may introduce g(t) as a factor.

The argument is the same until we obtain the relation (10.11). The second

and the third members of (10.11) are to be multiplied by g(t). Designate the

resulting inequalities by (10.11). Now, as remarked before, g(r) is monotone

in the region (10.11a) (with r'(£, h) chosen so that (10.12b) holds). Along

the path of integration indicated in (10.10b) g{r)tkg{t). Hence in place of

(10.12) one now obtains

(10.18) I f ,•(/) I < g2(t)Zl*(t) = z3*(t) (t in the region (10.11a)).

As established before, we have ff(t)m0. Thus in (10.18) f,(0 may be re-

placed by Zj{t).

It is not difficult to prove by induction that

(io. 19) I tM I < gk(tW(t) (j = l, • • • ,»; k = l, 2, • • •)

for t in the region (10.11a) (such that (10.12b) holds). The latter region is inde-

pendent of k. Let t = t0 be any point in the above region; since by (10.12b)

and (10.19)

I Zjih) I < 6*z?(to) (j = 1, " ■ • , n; k = 1, 2, • • • ),

where the second member can be made as small as desired by a suitable choice

of k, it follows that z,-(/0) =0 (j = 1, • ■ • , n). Thus

(10.20) z,-(/)s0 •••.»>.

Whence, by (10.3), it is concluded that the solutions referred to in (10.1) and
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(10.2) are identical. It is thus inferred that the elements of the solution de-

scribed in the First Existence Theorem are independent of N so long as

A3 »>(£). The same result will hold for the theorem of §9, even though the

latter theorem is not a special case of the first. One needs only to apply the

result established for the theorem of §7 to a suitable subsector (a ray, even,

is sufficient) of the sector for which the theorem of §9 has been stated;

(10.20) will then hold in the original sector in consequence of a well known

property of analytic functions.

Uniqueness Theorem. The solutions of the existence theorems of §§7 and 9

are independent of N. Thus, if

yi(t), y*tö, ■■■, y»tiO

are the elements of a solution of the non-linear differential system under con-

sideration, and if

*M, s*$, • ■ ■, sn(t)

are the corresponding elements of a formal solution, we have

(10.21) yj(jt) ~ Sj(t) (J = 1, • • • ,n;t in the indicated region),

where N = v(g), KÖ + l, "(Ö+2, ■ ■ ■ ■ For any fixed N (fe*(t)) the "asymp-
totic" relations (10.21) are to signify that the yj(t) are functions possessing the

properties described in the existence theorems referred to above.

Note. The above theorem, then, implies that the solutions mentioned in

the theorems of §§7 and 9 are asymptotic to the corresponding formal series

not merely "to N terms," as stated in those theorems, but also in the ordinary

sense; that is, to infinitely many terms.

11. Systems (C). Our purpose will now be to investigate in the complex

neighborhood of the singular point x = <x> the analytic character of some of the

solutions of systems (C), mentioned in §1. A system (C) will be assumed to

be of the following form:

(11.1) \-py,xl) (x) = o,-(x, x, yh ■ ■ ■ , y„) (j = 1, • • • , n; p an integer >_ 0),t

where x is a parameter and

(11.1a)   a,-(x, x, yw • • , fm) = ttQk x, yu ■ ■ ■ , yn) + qA\ x, yu ■ ■ ■ , y„),

(11.1b)   i,(x, x, yh ■ ■ ■ , y„) = h.tfk, x)yx + ■ ■ ■ + ln,A\ x)y„,

,  9j(x, *, yi, • • •, yn) - zZ *«<,.—.<.(*» x)yi •«• y»
(11. lc)
_ (ii, • • • , L = 0; h + ■ ■ ■ + in ^ 2; j = 1, ■ • • , n).

f Indicated derivatives are with respect to x.
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Here the h,j(K, x), jaiu.. .,<„(A, x) are functions representable by series of the

form

(11.2) c0(x) + d^X"1 + c2(*)\-2 H-,

where the cv(x) (j> = 0, 1, • • • ) are continuous, together with their derivatives

of all orders, for x on the closed interval (a, ß). Moreover, the series (11.2)

are assumed to converge absolutely and uniformly f for x in (ah ft) and for

(11.3) I \| 3 r.

The series involved in the second member of (11.1c) are assumed to be

absolutely and uniformly convergentj for

(11.4) «i ^ x S ft; I X| >_ r; \ yt\, | yt\t • • • , | ym\ 2#»

Moreover, it will be assumed that the system obtained by replacing the q}

by zeros is actually of order n.

Associated with the problem (11.1) there is a linear system

(11.5) \~*yf" (x) = lfc x, yt, ■ ■ ■ , yn) (j = 1, • • • , n).

A general analytic theory for systems of this type has been given by Trjitzin-

sky.§ It will be assumed that the reader is familiar with the results and meth-

ods contained in (T3). In connection with the earlier contributions to the

theory of linear systems containing a parameter, we shall mention papers of

outstanding importance by G. D. Birkhoff,|| J. D. Tamarkin^f and P. Noail-

lon.ft Some additional references to the contributions of these and some other

writers may be found in (T3).

t The functions under consideration will be analytic in X for | x| ä>" (X= 00 included) when x

has any fixed value in (ai, ft), if it is assumed (as it is) that r is sufficiently great. For every fixed X

(| x| gjr) these functions are continuous in x for x in («i, ft), in consequence of the assumed uniformity

of convergence of the series (11.2). This continuity is uniform with respect to X (| x| &r).

% r is taken sufficiently great and p sufficiently small so that, for x in (oi, ft), the functions

?i(X, x, yu- ■ ■ , yn) are analytic in (X, yx, ■ ■ ■ , y„), at (X= «=, y! = y2= • • ■ =y»=0), for (|x|

I yi\> I v4 > ' ' " , I y»\ =p)- For any set of values, such that (11.4) holds, the <?,■ will be continuous in x

for x in (oi, ft).

§ W. J. Trjitzinsky, Theory of linear differential equations containing a parameter, Acta Mathe-

matica, vol. 67 (1936), pp. 1-50. In the sequel this paper will be referred to as (T3).

|| G. D. Birkhoff, On the asymptotic character of solutions of certain linear differential equations,

these Transactions, vol. 9 (1908), pp. 219-231.

U J. D. Tamarkin, Some general problems of the theory of linear differential equations and expan-

sions . . . , Mathematische Zeitschrift, vol. 27 (1927), pp. 1-54.

ft P. Noaillon, Developpements asymptotiques dans les equations differentielles lintaires d parametre

variable, Memoires de la SociÄte' des Sciences de Liege, (3), vol. 9 (1912), 197 pp.
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12. Preliminaries for systems (C). The linear system (11.5) is equiva-

lent to the matrix equation

(12.1) F<»(*) = Y(x)A(\, x), Y(x) = (yM),

(12. la) ^(X, *) = (\nitj(\, x)) (i, /-!,•--,•)

(cf. (11.1b)). A solution of (12.1) will consist of the n elements in a row of

Y{t). Now, this system is of the type to which the results of (T3) apply. It is

to be noted that the linear system on hand possesses a singularity at X = °o .

It will be convenient to introduce the following definition.

Definition 1. Genetically {\,x) (integer q^O) is to denote a series possibly

divergent for allX^ °°, of the form

<ro(x) + 0-1(x)X-1'* H-+ o>(*)X-"» -I-

(integer k>0). Here a,(x) (p = 0, 1, • • • ) is, together with the derivatives of all

orders (which are assumed to exist), continuous on some real interval.

The system (12.1) possesses a formal matrix solutionf

(12.2) S(X, x) = (Si,i(\, *)) = («e«i.*V,,,(X, x)).

In"(12.2)
U-l

(12.2a) (MX, x) = zZiAxW1^1"* (integers kt = 1),

(12.2b) <r<,/(X, *) - {X, *} (»,; = !,•••,»)

(cf. Definition 1), the functions of x in the second members of (12.2a) and

(12.2) being, together with the derivatives of all orders, continuous on a sub-

interval (a2, ft) of («i, ßi) 4 Henceforth, unless stated otherwise, attention will

be confined to a particular such interval (a2, ft) and its subintervals. The inter-

val (a2, ft) is taken so that for no x in (a2, ft) do any two roots of the character-

istic equation of (12.1) coincide, unless these two roots coincide throughout

(a2, ft).§ The intervals under consideration are closed.

By the Fundamental Existence Theorem of (T3) in particular the follow-

ing can be asserted.

Let (a2, ft) be an interval as stated above. Let the B\-f designate curves in the

\-plane, extending to infinity, along which

f That is, the determinant [ S(x, X) | does not formally reduce to zero.

t It is to be noted that (act, ft) may contain values of x=Xo, such that in two intervals contained

in (ai, ft) on different sides of x0 the system (12.1) will possess distinct formal matrix solutions (12.2).

§ That is, (cc2, ft) is such that roots which are distinct for some x in (<*2, ft) remain distinct

throughout (ai, ft); while any two roots coincident for some x in (a2, ft) will coincide throughout this

interval.
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(12.3) RQim(\ x) = RQ^HX,

There exist subintervals of (a2, ft) such that, when x is restricted to one of them,

there exists a regular (cf. Definition 3, §2) region R in the \-plane so that there

are no curves B)% interior to R. Let (a', ß') denote any particular subinterval

mentioned above. As a matter of notation we may write

(12.4) RQ^ (X, x) ^ RQ2m (X, *) g •-: • 2 RQnW (X, *)

(x in (af, ß'); X in R).

Let a be an integer, however large. The system (12.1) possesses a matrix

solution „F(X, x), with elements analytic inX (X^») and continuous in xfor x

in (a', ß') and Xin R ; moreover, for the indicated values of the variables%

(12.5) aY(X, x) ~5(X, x)
a

(cf. (12.2)).

Consider a matrix solution satisfying (12.5). Form another matrix solu-

tion

(12.6) Y(\, x) - (y{,i(\, x)) = («4.^i»'«'>)«F(X> *),

where (5,,,) is the identity matrix. We shall have

(12.6a)        Y(x, X) ~ S*(X, x)
a

(cf. (12.2b)), and

(12.6b) Gi(\, x)

Since,§ by (12.6b),

Gi(\, x)

and

RGi(\, x)

f Whenever C,(X, i) = Q,-(X, x), the corresponding 2?V* curves will be said not to exist. Through-

out it will be understood that these curves extend to infinity and that sufficiently far from the origin

they are simple; moreover, at infinity they will possess limiting directions. A particular curve (12.3)

will depend on x; as x varies in the interval this curve may vary, remaining always interior to a sector;

the angle of this sector can be made as small as desired by taking the interval for x suitably small

(cf. (T3)).

t ~ is to denote an asymptotic relation in the ordinary sense (unless the contrary is stated);

that is, to infinitely many terms.~ denotes an asymptotic relation, to a terms. These relations are

with respect to X and are "uniform" with respect to x (x in (a', ß')) (cf. (T3)).

§ Throughout, differentiation is never with respect to X.

= (eO*<x.*>ffx)) (x in («', ß'); X in R)

= Qi(\ x) -Ci(X, a').

= f Gi^{\,u)du
<* u=a'

= f    RQim(\ u)du,
J u=a'
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if it is noted that

R(G,(\, x) - Gk(\, x)) = f    R(Q,m (X, «) - Qk™ (X, u))du,

in view of (12.4) it is concluded that

RG,(\, x) ^ RGk(\, x),

whenever v <k, x is in (a', ß') and X is in R. Thus, for the indicated values of

the variables

(12.7) RGi(\, x) S RG2(\, *)=■•= RGn(X, x);

moreover, if for x in (a', ß') and X in R and some i, we have RQia)(\, x) ^0,

it will follow that for the same values of the variables

(12.7a) RGi(\, x) g 0.

The case of interest is when not all the £?;(L)(X, x) are identically zero. This

will be assumed.

Definition 2. r(a', ß'; R) will denote the aggregate of the values of x and X

such that

(12.8) a' ^ x g ß* and X is in R

(a' <ß'; R a regular region (cf. Definition 3, §2)) r(a', ß'; R) will be said to be

proper if

(i) The interval (a', ß') possesses the properties attributed to (a2, ß2) in the

italicized statement subsequent to (12.2b).

(ii) With suitable notation, we may assert the validity of (12.4) in

T(a',ß';R).

It is observed that if we take the interval for x sufficiently small, proper

regions T(a', ß'; R) can always be constructed. By the Fundamental Exist-

ence Theorem of (T3) it follows that, given any particular proper region

T(a', ß';R) and any a, however large, there exists a matrix solution of (12.1),

say aY (\,x), which satisfies in T(a', ß'; R) the conditions of the italicized

statement made in connection with (12.5).

Since not all the RQia) (X, x) are identically zero, in view of the statement

in connection with (12.7a), it is inferred that there exist proper regions with

the additional property

(12.9) 7?<2i(1) (X, *)2 •••2 RQmm (X, *) g 0;

that is,

(12.9a) RGi(\, *) 2 • • • 2 RGm(\ x) ^ 0,
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satisfied in the region under consideration (l^m^n).

Hence it is not difficult to see that there exist regions satisfying the

following definition.

Definition 3. A region T(c, d; R') (notation of Definition 2) will be said

to be admissible if it has the following properties:

(a) There exists a region T(a', ß'; R), proper according to Definition 2, such

that the interval (c, d) is contained in (a', ß') and R' is contained in R. With

suitable notation we may then write

(12.10) RQiw (X, x) S RQ2m (X, *) £ • > - £ RQnw (X, *)

in T(a', ß'; R) (we may also write (12.7); cf. (12.6b)).

(b) For some m (i^m^n)

(12.10a) RQim (X, x) ^ 0 (i = 1, • • • , m; in T(c, d; R')).

It is observed that (12.10a) implies

(12.10b) RGi(\, x) g 0 (i = 1, ■ • ■ , m; in T(c, d; R')).

(c) Whenever the number m employed in (b) exceeds unity we also have

(12.10c) RQim (X, *) 3 2RQm™ (X, sc) (in T(c, d; R')).

Admissible regions for which m = 1 (that is, (a) and (b) are satisfied and

(c) is deleted) can be always constructed. Admissible regions with m > 1 will

exist in a wide variety of problems.

Consider now a particular admissible region T(c, d; R'), subset of a proper

region T(a',ß';R). Let

(12.11) Y(\, x) = (oyUX, x))

be a matrix solution of (12.1) satisfying (12.6a) (cf. (12.6b)) and (12.10) in

T(a',ß';R); moreover, in T(c,d;R') we shall have (12.10a), (12.10b), (12.10c) .t

On turning to the system (11.5) it is noted that a solution can be taken in

the form
m

(12.12) iy,(X, x) = X c" oy,,j(\ x) (j = 1, • • • , n),
<r=l

where C\, c2, ■ ■ ■ , cm are arbitrary constants (which may depend on X). We

shall seek to satisfy the non-linear system (11.1) with the aid of the formal

series

(12.13) yi(\, x) = ,y,(X, *) + 2y,(X, x) + • • • + ,;y,(x, x) + • • •

_ (/"l, ■••,»).

t (12.10c) is deleted if m=l.
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where ry,(A, x) is given by (12.12). The ,y,(A, x) will be determined as func-

tions of the form

(12.13a) ,y,(X, x) -   x       • • • cm *»„... *)

• • • , ^m 3 0; ki + ■ ■ ■ 4- km = v).

For c = l we may write

(12.13b) oJV.XX, x) = iVk1,....km:j(\, x),

where

= 0   (for       a), K = I.

Substitution of (12.13) in (11.1) will result in a set of differential rela-

tions; the coefficients involved in the second members of (12.13a) must

satisfy these relations. Formulas of this kind have been calculated in §2.

It will be convenient to collect together, with some slight modifications, those

of the formulas which will be needed in the sequel. We have

(12.14) Lj(\, x, HVht.---.hma, ■ ■ , mhl,--,hmm) = xpHr*" '

(j = 1, • • • , w; b = hi + ■ ■ ■ + K; h0 3 0, ■ • • , hm 3 0; h= 2, 3, ■ ■ •),

where

(12.14a)     Lj = Hi?*',,.— A^)(X, x, «»,....^.a, • • ■ , BVh„---,hm:n)

(cf. (11.1b)) and

(12.15) uThi""km^ e<4)^,....jx,*)n  d    e(2>. n^i.-.o.
a_l ,lH-+'ia=ya k,\---.km'ar=l

(fa + ■ ■ ■ + hm = b; hx = 0, • • • , hm 3 0).

In (12.15)

(i2.i6)     z<4>=e   z      £ e(,)(7.^n,---,7»^«
«=2 i,+-M„=s  7,H-hT„=H ••■.„«„

with

(12.16a)

moreover,

23 * = X) f's3 + • ■ • + n5, = A9, (? = 1, ■ ■ • ,»);

i5i + • • ■ + Hm = m; ••jA+-,,+Ai*t.];



302 W. J. TRJITZINSKY [September

EC2,= £ t^i1 + • ' • + ^ = hi W + • • ' + # = S2; • • • ;

(12.17) kml + ■ ■ ■ + kl° = sm; V + • • • + km* = n; ■ ■ ■ ;

k'l   + ■ ■ ■  + kl? = Via\.

Also, formally,

(12.18) yf\x) - \Faj(\, x, yu ■■ • ■ , y») « E E Ci *• • ' e«a#*„....«i,t;,

where

(12 . 18a) Hphi,'' • ,hm'*j = £j(X,       H1J*„...,V1, * ' ' ) HT)hl.---,hm.n) ~ ^"hT '

Consider a non-homogeneous system corresponding to (11.5),

(12.19) (*) - X%(X, #, yi, • • • , yn) - fi 0' = 1, ■ ■ ' , »)•

We then have
n

(12.20) y*(X, x) - E c0(x> x)0yß.j(\, x) (j = 1, • ■ • , w),
0=1

where

n     /» a:

(12.20a) Cp<X, x) = X I gr(«)oyr,3(X,

provided that the integrals here involved converge. Here the o)V,3(X, x) are

from the matrix solution (12.11), and the o3V,.-(X, u) are the elements of the

inverse of the matrix F(X, u); that is,

(12.20b) (<#<,i(X, «)) = CoKf(X> »))-».

An application of (12.19)-(12.20b) to (12.14) yields

(12.21) ^...jwA *)

(12.21a) HCß(\, x)

13. Formal solutions for systems (C). We shall proceed now with

r(a', 0'; ic), T(c, J; it') and F(X, x) having the meaning assigned to these

symbols in the italicized statement made in connection with (12.11). Thus

(13.1) oJß.AK x) = eaf>(x'x)yß,j(k, x),

where

E HCß{\, x)0y$,i(\, x),

= E I   XPi/l\."   ,hm(u)oyT,ß(\, u)du.
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(13. la) 7/s.f(x, x) ~ {\, x]

(cf. Definition 1, §12) in T(a', ft; R). Definition 1 here is applied, of course,

for the interval (a', ft). Taking account of (12.20b) and noting (formally)

that \ S*(\, u)\ ^0 (cf. (12.6a)), we have

(13.2) tfrrfh •) = e-Gß«^\°yT,ß(\, u),

(13.2a) 7r,(3(X, u) ~ {x, u\ (w an integer >_ 0),
a ■

where ä^a and ä—><» with a. Also

(13.3) \yß.A\,x)\,    I yT.ß(.K x) I < 7 (mY{a',ß';R)).

In place of (12.21) and (12.21a) we now may write

n n     /» x

(13.4) mf»„....v*(X( «) - £ «°"(X,x)7f».i(X, *) E I   ir/r.fl(X, «)<*«
0=1 T=l J

(cf. (13.1a)),

(13.4a) „JT>#(X, «) = ffrrA,,'",Äm(M)e-^^.«)X"+"7r,S(X, «)

0' = 1, • • • , n; b = fa + ■ ■ ■ + hm; hx >_ 0, • • • , hm = 0; b = 2, 3, • • • )

(cf. (13.2a)).

For b = 2 (12.15) becomes

»1, ■■■.l>m, ■.
2r,- (m)

(13.5) (4) „       N-(2)TT ft -s

a=l v1+...+»,-a=i(j r=l

On the other hand, in view of (12.13b),

(13.6) l77*',...,)^;a(X, «) = exp [ä^ ri(X, «)+•••+ k^GmiX, u)][\, u]a

(hr+ ■ ■ ■ + kmr = 1; ol = 1, • • • , »; X, « in T(a', ft;

Here and in the sequel [X, u]a is defined as follows.

Definition 4. Genetically [X, x]a (X, x in a region T(a, b; R); cf. Defini-

tion 2, §12) is to denote a function defined and such that

tx> x\a~ |X, x\

(cf. Definition 1, §2) /or X, x in the above region.^

t That is, [X, x]a=o<>{x)+ai{x)\-Vl-\-Y<ra-i{x)\-<f-^k-\-<Ta<,x, X)X^", where | «r«(*, X)| <b

va.T{a,b;R).
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Generically [X, x]a [X, x]a= [X, x]a and [X, x]a+[X, x]a= [X, x]a.

In consequence of (12.17) from (13.6) we obtain

>a

(13.7) n ,rVk\,...C.a(\ u) = exp [bxG,{\, «) + •••+ 5mGm(X, w)][X, w]„.

Designate the expression displayed in (13.5) subsequent to the first product

symbol as FJ. In view of (13.7)

(13.7a)      Fa' = generic form of (13.7) (with S{ = «&).

Thus

n

(13.7b) n^a' = exp [dSx + • • ■ + JOGxiX, «) + •••

+ (An 4- • • • + nSm)Gm(\, u)][\, u]a

and, by (12.16) and (12.16a),

n

(13.7c) II>» = exp [AiGi(X, u) + • • • + hmGm(\, u)][\,u\a.
a=l

Now, we may write

**i,.—.<.(X, «) = [X, «]«,

(cf. (11.2)). Also we observe that [X, u]a [X, m]m = [X, u]a. Hence

n

(13.8) itti„---.i„(X, M)U^a = generic form of (13.7c).
a-l

It is noted, next, that in (13.5)

El4)=       zZ zZ 1ZW (7l =  »1, • • • , 7n = Ü).
•l+---+»n=2 ri+--- + 7n-2 1*1. ■ ■.n>m

Whence, by (13.5) and (13.8),

(13.9) 2Thju'"'hm(u) = exp [kfixfc ») + ••• + A»Gm(X, »)][X, «]«

for X, w in r(a', ß'; R). Thus, in view of (13.4a) (for a = 2) and (13.2a),

(13 10) 2/t'^X' M) = CXP ̂ lGl(X' M) -+ Ä™Gm(X' m) - G^X' u)]\p+a[\u]-a

(*», • ■ • , A. 3 0; hx+ • ■ ■ + hm = 2)

when X, u is in r(a', /3'; R).

The following lemma will now be proved.

Lemma I. Let T(c, d; R') denote an admissible region (cf. Definition 3,

§12). Then, with suitable notation, we have in it (12.10), (12.10a), and (12.10c).



1937] NON-LINEAR DIFFERENTIAL SYSTEMS 305

Let

(13 li)   e(x'x) = Älöl(x' x) + Ä2°2(x' x) + ■ • ■ + MM*. *) - e<i(x, *)

(Ai, ■ • • , Am 3 0; Ai + • • • + hm = v 2: 2; the A,- integers).

Assume, moreover, that in Qa)(\, x) {unless Q(1)(X, x) = 0) the coefficient of the

highest power of X does not vanish in the interval (closed) (a, b). We then can

evaluate the integral below so that, with w >J +1, we have

(13.12) f e<2<x^> [X, u]wdu = e«».*> [X, *]„_,

(cf. Definition 4), provided that the displayed integrand is of the staled form in

T(c, d; R'). Formula (13.12) will be valid for X, x in T(c, d; R'). Furthermore,

if the highest power of\in Qm(X, *) is the (l/k)th (l/k>0; i.e., Qa)(\ *) ̂ 0)

the coefficients of\~"lk (v = 0, • ■ • , I — 1) in the second member of (13.12) will

all be zero.

Note. If we assume that this lemma is true, it will follow that the facts

stated therein will continue to hold when the Qi(\, x) are replaced by the

G,(\, x)( = Qi(\, x)—Qi(K, a')) (i = 1, • • • , n), respectively.

The truth of the above lemma would follow from the developments of §4

of (T3) if it were shown that

(13.13) RQ{1)(\ x) ^ 0 (\, x in F(c, d; R')).

Suppose ß>m. Some hi will be positive. We then have

QW(\, x) = [hQ?\\, x) + ■ ■ ■ + (fa - 1)q!%, x) + ■ ■ ■
(13.13a) (i)       _     r (i) Mi

+ hmQm (X, *) ] + [Q\ \\, x) - Ql \\, x) ];

and (13.13) will follow in consequence of (12.10a) and (12.10).f

Consider now the case when ß ^ m. If hß > 0 and if we write

6(1>(x» ») - ^"(X, x) + ■ ■ ■ + (hß — l)QßW(\, *) + •••
(13.13b) (I,

+ hmQm (X, x),

the truth of (13.13) will be inferred in consequence of (12.10a). If hß = 0 but

some hi, with i<ß, is positive, write (13.13a); the validity of (13.13) is then

deduced in view of (12.10) and (12.10a). The remaining case is the case when

Q(X, x) = - Qß(\, x) + hß+1Qß+1(\, *)+••• + hmQm(\, x)
(13.14)

(hß+i, hß+2, ■ ■ ■ , hm 3 0; Ao+i + ■ • • + hm = v = 2; ß < m).

f R(Qi^-Qß^)S0 since i<ß.
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In treating the case when (13.14) holds we make use of (12.10c). In view

of (12.10) and (12.10c), whenever

(13.15) 1 ^ ß < i ^ j ^ m,

one has

RQß\\ x) 3 [RQ[l\\, x) = ^"'(X, x) + RQmiX, x) 3 ]RQ?\\, x)
(13.15a) C«

+RQj (X, x) (in r(c, d; R')).

Since in (13.14) hß+l+ ■ ■ ■ +hm^2   (kß+1, • • • , hm^0),

<2C1)(X, x) = [- ^"(X, x) + f2,(1,(X, *) + <2,a)(X, *)] + kß+1Qel\\, x)

(13.16) a) a,
+ kß+2Qß+2(\, *)+■• + kmQm  (X, x)        (kß+x, ■ ■ • , km 3 0)

for some pair of integers i, j satisfying (13.15). By (13.15a) the real part of

the expression within the brackets displayed above is equal to or is less than

zero for X, x in T(c, d; R'). Hence, in view of (13.16) and (12.10a), (13.13)

will necessarily hold. Thus (13.13), as well as the lemma, has been established.

Henceforth the developments will be given for a region T(c', d'; R'), where

R' is the same as in T(c, d; R'), and where (c', d') is an interval contained in

(c, d) such that in each of the expressions

QW(\, x) = hxQx\\, *)+••• + hmQm\\, x) - Qß\\, x)

(hi 3 0, • • • , hm 3 0; hi + ■ ■ ■ 4- hm = v; the hi integers; ß = 1, ■ ■ • , «),

formed for v = 2, 3, • • • , N, the coefficient of the highest power of\ is either =0

or 5^0 throughout (c', d').] The choice of (c', d') may depend on N.

In view of Lemma 1 and of the relation (13.10) it is concluded that

J* *Jt,s(X, u)du = exp [AiGi(X, *) + ••••

+ hmGm(\ x) - Gß{\, x)]X"+"[X, x]ä-x

in T(c', d'; R'). Substitution of (13.17) in (13.4) (for h = 2) will yield, in

consequence of (13.1a),

(13.18)    m,,..;^ x) = exp [hxGi(\, x) + ■ ■ ■ + hmGm(\ x)]\"+u[\, x]ä-i

(hi + ■ ■ ■ + hm = 2; X, x in T(c', if; R')).

By virtue of (13.6) and (13.18)

f When the coefficient of the highest power of X is =0 throughout (c', a"), Qw{\, x)=0 (for x

in c', d').
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f,Vhv»'.*m>mfrj x) = exp [£,rGi(X, x) + • • •

(13.19) . + CGm{\, x)]\°'r~inp+") [X, *]5_,

T T T T

(ki, ■ ■ ■ , km = 0; &i + ■ • • 4- km = vr; a = 1, • • • , n; vr = 1, 2)

for X, x in T(c', d'; R'). Substitute (13.19) in (12.15) (for h = 3). Taking ac-

count of (12.17) we have

(13.20) II       = exp [0lG!(X, *) + ••• + 5mGm(X, x)]X"(^'««>c+»»[X, x]~-i,

where

ia

(13.20a) v(ya, ia) = £ (v, — 1) = ya — ia.
r=l

We next have

FJ -      Z      EC2) it generic form of (13.20)       (in T(c', d'; R')).
«,H-Mljfof r—1

If we write 5i = a5i, in consequence of the equalities of (12.16a), it is con-

cluded that

(13.21) f[Fa' - exp [A^X, *) + •• + AroGm(X, x)]\>'(».->(»>+») [X, x]^,

where

(13.21a) /(3, s) = Z (7- - »«) = 3 - 5,
a-l

by (12.16). The product of the functions of (13.21) by ,■«<„.. .,;n(X, x) is a

function possessing the generic form of the second member of (13.21). Hence

Fl' =     zZ Z       Z<3) • • • = generic form of (13.21).
•h-!-*»—« 7iH-h7»-8 !*!»•••

Since,f for s = 2, 3, we have

X(3-S)(P+o,)[X) „.J-^ = Xp+»[X, x]^_1;

from (12.15) (for e = 3) and (12.16) it follows that

3r, "       = Z^V' = exp [AiGi(X, x) H-+ AmGm(X, x) ]X"+» [X,

(13 22) 8=2
' (Ai, • • • , Am ̂  0; A, + • • • + Am = 3; in T(c', d'; R')).

tx-<,M*»[x,*Js-i-[x,*Js-i.
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Assume that] within T(c', d'; R'),for some h (3^h^N), we have

(13 23)  9+l1^" 6XP fÄlGl(X' *)+'••' + Ä»G™(X> «&l***-1M**"»Dk, *h_3+1

(hi, ■ ■ ■ , hm ̂  0; hi + ■ ■ ■ + K = q + 1; j = 1, • • • , n),

qVk„---,km:a('\, x)

(13.24) = exp [kiGi(\, x) + ■ • ■ + kmGn(\, #]X^«[X, x]ä-9+i

(&i, ■ • • , hn ^ 0; hi + ' ' • + k„,*= g; a *■ 1,    • ,»)

for q = l, 2, ■ ■ ■ , h — 1. For h = 3 this has been previously established in

(13.6), (13.9), (13.18), and (13.22).

Substitution of (13.23) (for q = n — 1) in (13.4a) will yield

Hlrj(\, «)

(13.25) = exp [AiGi(X,«) H-h AmGm(X, u)-Gß(\,u)]\<-H-"<■»+»-> [\,u]-a-H+2

(hi, ■ ■ ■ , hm ^ 0; hi + ■   ■ + hm = h;\, u in T(c', d'; R')).

Since hi-\- ■ ■ ■ +hm = h^N', in view of the italicized statement preceding

(13.17) it is observed that Lemma 1 (together with the appended note) is

applicable for the evaluation of

(13.25a) J h7t,is(X, u)du.

Accordingly (13.25a) will have the form

exp [hiGi(\, «) + ■••+ hmGm(\, u) - Gß(\, u)]\«-v^[\, x]a_H+i.

Substitution of this in (13.4) will give

-,vA x)

(13.26) = exp [hiGi(\, *)+••• + hmGm(\, »)]x<Fr»<**>[X, x]-a_H+i

(X, x in T(c', d'; R')).

Thus (13.24) holds for f -1, 2, ■ • • , ».
In (12.15) replace h by s + 1 and substitute (13.24) for q = l, 2, • ■ ■ , n.

Since (12.17) holds, and since vi+ • • • +via=ya,

(13.27) J! •     = exP [Wi(\ *)+•-"•• + 5mGm(X, K)]X<*a-V<iH-»>[x,
r=l

We next obtain

^» =      E      E(2> IT •     = generic form of (13.27) (5,- = J$,
»H-h»ia-T •*•>

t We take a (hence a also) suitably great.
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and, by (12.16a) and (12.16) (with n replaced by n+1),

n

liFj = exp [*A(X, *) + •<•+ AmC?m(X,x)]X^+1-«x^)[x, x)z-h+i

(13.27a) °=1 ,
= exp [*A(X, *) + ••• + hmGm(\, x)]\<*-™*+»>[\, x]^h+i

(s = 2, ■ ■ ■ ,b+ l;in T(c', d';R')).

Finally, by (12.16) (with h replaced by h+1),

a-l

= generic form of third member of (13.27a).

Thus relations (13.23), (13.24) are valid in T(c',d';R') for q = 1,2, ■ ■ ■, N.

Lemma 2. Ze/ A7 oe an integer, however large. Let T(c, d;R') be an admissi-

ble region (cf. Definition 3, §12) and T(a', ß'; R) be a proper region (cf. Defini-

tion 2, §12) containing T(c, d; R'). With suitable notation we thus have (12.10),

(12.10a), (12.10b), and (12.10c).

Let (c', d') be an interval contained in (c, d) and satisfying the condition

of the italicized statement preceding (13.17).

• The system (11.1) possesses a formal solution represented by the series

Sj(\, x) (j = l, •••,«) given by (12.13) and (12.13a). The coefficients

(13.28) vi)k,.--.,km:j(\, x) (ku ■ • ■ , km ^ 0; ki + ■ • • + km = v),

involved in (12.13a) can be determined by means of (13.4), (13.4a) and the

formulas (12.15), (12.16), and (12.17). For v-\, 2, ■ ■ ■ , N the functions

(13.28) may be taken of the form

rtk„--..km:j(\, x)

(13.28a) = exp [*A(X, *>+••• + kmGm(\, *)]X<«^H**«>[X, asfe-H-i

(ku ■ ■ ■ , km = 0; ki + • • ■ + km = v; j = 1, • ■ • , n),

formulas (13.28a) being valid in T(c', d'; R'). The symbol [X, x]„->.+i is defined

(in T(c', d'; R')) according to Definition 4. We may take ä as great as desired;

however, the functions (13.28) will in general depend on ä.

14. Corresponding transformations. The system (11.1) will be trans-

formed with the aid of

(14.1) yi(x) = Ff-(X, x) + P,(X, *) 0' = 1, ■■•,»),

where

(14. la)       F,(X, x) = iy,(X, x) + syf(X, *) + •••+ N-iyA\ x).
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Here the ,y,-(X, x) (v= 1, • • ■ , N — 1) are the functions involved in the formal

series solutions s,(\, x), referred to in Lemma 2, §13. The arbitrary constants

Ci, ■ ■ ■ , cm, involved in the /y,(X, x) may be taken as functions of X. We shall

take the Ci = c,(X) analytic in R' (X^ °o) and such that

(14.2) I d\ ^ 7(X); 7(X) ~0; y(\) ^ yi (i = 1, • ■ • , m; X in R').

In view of (12.10b) it follows from (13.28a) that

(14.3) I ,Vku....km:,<\, x)\ < [X

(*i, • • • , km = 0; ki + • • • 4- km = v;j = 1, • • ■ , n; v = 1, 2, • ■ • , N - 1)

for X, x in T(c', d'; R'). Here ö„' is independent of X and x. By (14.2), (14.3),

and (12.13a)

rjrKX, *) ~0;   I ̂ (X, x) | < 7'(X) | X | i-Da*->b,"     (in T(c', d'; R')).

Hence, since 7(X)~0,

(14.4) F,(X, x) ~ 0;   | F,(X, *) | < 7(X)6' (in T(c', d'; R')).

Here b' is independent of x, X. Either by taking 7i( >0) sufficiently small or c'

sufficiently great, we secure

(14.4a) I F,(X, x) I ^ p' (j=l,   -- ,n;mr(c',d';R');\\\^r'),

where p' is independent of X, x and

(14.4b) 0 < p* < p,

where p is defined as in (11.4).

In consequence of (11.1a) and (11.1b) substitution of (14.1) in (11.1) will

yield

X Pp) (X, x) — lj(\, x, pi, • ■ • , pn)

(14.5) = - X^F^'CX, *) +        x, Yi, • ■ ■ , Ya)

+ ?/(X, x, Yi + pu ■ ■ ■ , Yn + p„).
Here

,t. - s      9>0> *» Fi + Pi, • • • ) - ?,(X, *, Fi, • ■ • , F„)
(14.5a)

+     zZ    a»,.---.i-.!/(X, *)pi' • • • p»",
',+ ••■+»»41

,.. ...   "1! • ■ ■ "»!«»„••• .».<KX, *) =-?j(X, x, yu ■ ■ ■ , yn)
(14.5b) «3"yi ■ ■ • ci'-yn J

(yt = Fi(x, *); i = 1, • ■ • , n),
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the series above being absolutely and uniformly convergent in T(c', d'; R')

(|x| Sir') provided

(14.6) lPl|, ••• ,\Pn\ ^p" (0<p"<p-p')

(cf. (14.4b)).f
By (14.5b) and (11.1c)

t*t i\    tt'W':*m(h x) =   E   ;ö"1+x„---.>v+x„(X> x)C^r '• • • C\nn+KYi ■ ■ ■ Yn™
1*4.f) Xi.— A.

(Xi, ■ ■ • , X„ 5; 0; X, 4- • • • + X„ ̂  2 - (Vl + ■ ■ ■ + »„)).

Thus, in particular,

«»„—.»»!j(X, *) = E    ' • •     ("l + ' ' ' + "» = !),

so that, by (14.7) and (14.4),

(14.7a) «»,....,,„;,(X, as) ~0 (in r(c', d'; R'); f, + • • • + „„ = 1).

On the other hand,

«'..»-.v<^ *) •              *) + Z)     •••      (»i+••+>» 3E 2);

thus, in view of (14.7),

(14.7b) a»„---,»»:f(X, ») - ja»,,---.».(X, x) + $,„....,„(X, x),

where

(14.7c) A„....v„(X, *) ~0 (r, + .•■+„„ ^ 2; in T(c', d'; R')).

By (14.5a), (14.7a), (14.7b), (14.7c), and (14.5)

(14.8) X "py^X, x) - lf{\, x, pi, • ■ • , p„) = q*(\, p„) - F/X, at)

y = l, ■ • ■,«).
Here

(14.8a) Fj(\, x) = \PY?{\, x) - l£\ x, F,, • • • , Fn) - qj(\, x,Yu • ■ •, F„)

and

(14.9) Zf~Z,-;   gf~9,. (in r(c',rf';/?'))•

FAe relations (14.9) are to be understood as follows. The l* — lj are linear in

Pi, ■ ■ ■ , pn and the qf — qj are series in non-negative integral powers of

Pi, ■ • ■ , pn; the coefficients of the various powers of p\, ■ ■ ■ , p„ are functions of x

and X which are all ~0 in T(c', d'; R').

f p" is independent of x and X.
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It remains to study the function (14.8a). By (12.18) and (12.18a) in con-

sequence of (14.8 a) we have

F,{\, x) = X P[Y(jL\\, x) — \vaj(\, x,Yi, ■ ■ ■ , F»)]
(14-10)

L-^-v *i hm — p *
2_, Cl   " ' Cm A Hphu---.hm;j,

H=2 ht+---+hm=H

where

*
(14.11) Hphu- ■ ■ ,hm:j = Hp h„ ■■■.km,j,

provided that in the second member of (14.11) we replace the

(14.12) ^,,.»,vA^ {fit If)

by zeros.f Thus by (12.18a)

(14.12a) Hp*ku. ...,„;3 = b+^.w (h^N - 1),

(14.12b) *jLu>»*mil = - ^r*"'"'*°'>

(14.12c) " ~ X^r?*"'(ff>/V).

In (14.12c)

(14.13) ffr;"""*-* - ,rJ,'",N' (a>A0,

provided that in the second members the functions (14.12) are replaced by

zeros.

It is to be recalled that the

a*,;—,»i..«(x, *) (x g 7Y - 1)

have been previously determined so that

(14.14) a**,,-..,*../- 0 (ff^/V-1).

If we take account of the statement preceding Lemma 2, §13, the form of the

function of (14.12b) is inferred with the aid of (13.23) (for q = N-l). Thus,

trpkl,---,hm:j

(14.14a) = exp [A,G,(X, x) H-+ &«G»(X, x)]X<"-2)<*+»>+*[X, x]5_at+2

(A, + • • ■ + hm = N; in r(c', <f; Ä')).

The form of the functions (14.13) can be established as follows.

t When the functions (14.12) have been replaced by zeros, the formal series s,(X, *) = iy;(X, x)

+2yj(X, x)+ ■ ■ • reduce to the functions F,(X, x), respectively. On the other hand, (12.18) and

(12.18a) have been obtained as a result of substituting in y,(1)(X, X"a,(X, x, y\, • • • , y») the

series s,-(X, x).
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Since, for v^N— 1, ä — v-\-\^ä — N-\-2, in consequence of (13.24) (for

q = 1, • • • , N—l) we have

. N  ,Vku.-.,km-.a(K x) = exp [fad + ■ ■ ■ + kmGm]\i'-inp+w)[\, x]a-N+i
(14.15)

(*i + • ■ • + Am = v; v = 1, • • • , N - 1; in r(c', d'; R')).

With the functions (14.12) replaced by zeros, we may write

»>?*,, ■••,i„:«(X, at) = 0 = generic form of the second member of (14.15)
(14.15a)

(Ai + • • • + km = v; v = N, N + 1, • ■ • ; in Y(c', d'; R!)).

If (14.15) and (14.15a) are substituted in (12.15), in view of the definition of

the functions (14.13) it is inferred that

„r-""'•*""* = exp [faGi(\, *)+••- + hmGm(\, x) ]X<*-2H"+»> [X, x]a_N+2
(14.16)

(Ai + • • • + hM - b,b - N + 1, iV + 2, • • • ; in r(c', d'; R')).

By (14.14)

Fj(\,x)  =   Z Z X   PCl'- • • Cm hP*„ ■■■,hm;j-

Thus, in consequence of (14.2), (14.14a), (14.12c), and (14.16)

|F,(X,*)| < A0(t(X))w I X |<*-»<*-»> Z
(.14.17) «1+...+*m_iv

(j = 1, • ■ ■ ,«;inr(c', <**;#)),
where

(14.18)       {?*„....*) = I exp [A1Gj(X, at) H-+ hmGm(\, x)]\.

Lemma 3. TAe transformation (14.1), (14.1a) (cf. the italics subsequent to

(14.1a)), applied to the system (11.1), will yield the system

«„n  x PPi(1\x> x) - lf{\ x, pi, ■ • ■ , pn) = qf(\, x, pi, • • • , pn) - Fj(\, x)
(14.19)

0 = 1, ■ • • , n).

The I* and qf, here involved, satisfy (14.9) in the sense of the italicized state-

ment subsequent to (14.9). The series

(14.19a)    ?*(X, x, pi, ■ ■ ■ , p„) =     Z >vj(X, x)pi ■ ■ ■ p„"

will converge absolutely and uniformly in T(c', d'; R') (|X| ^r'), provided

(14.6) holds. Moreover, the F,(\, x) satisfy (14.17), (14.18). The above is as-

serted under the supposition that the arbitrary constants (functions of X) c, sat-

isfy (14.2); furthermore, ji and r' are to be suitably chosen so that (14.4a),

(14.4b) hold.
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15. The Third Existence Theorem. We now have the following state-

ment which is analgous to a statement in §7.

Let X, x be in T(c', d'; R') (|x| trr). Suppose

(15.1) \pi\^p*,       \ Wi\ g: w* (i = 1, • • • , n)

with

(15.1a) P*+w*gp".

For the function (14.19a) we then shall have

qf{\, x, Pl + wl; ■ ■ ■ , pn + wn) - qf{\, x, pi, ■ ■ ■ , pn) \

< (q'p* 4- qw*)w*   (X, x in T(c', d'; R'); q', q independent of X, x).

We now write

(15.3) pj-.k — Pi-.k-l = Wj:k (k = 0, 1, • • •  j pj.-i = 0),

(15.3a) pj-.k = Wj:0+ Wj-.i 4- ■ ■ ■ + W,;k (k = 0, 1, • ■ ■ )

and consider the succession of differential systems

X — X, • • •  , Wn..k)  = gj:k

= qf{\ X, pi.k-1 + «>l:*-l, ' • • , Pn:k-2 + Wn: k-l)
(15.4)

— <7*(X, X, pl;k-2, ■ ■ ■ , Pn-.k-i)

fj « 1, • • • , »; h m 0,1, • • • ; gf.% - - jF{\, x)).

A solution will be obtained in the form of convergent series

(15.5) pj(X, x) = w,-:o(X, x) + w,-:i(X, x) + ■ ■ ■ (j = 1, ■ • • , n).

The left member in (15.4), multiplied by Xp, is "asymptotically" identical

with the left member in (12.19) (cf. Lemma 3, §14). Hence in consequence

of the statement in connection with (12.19)—(12.20b) one may write (15.4)

in the form
n ^

(15.6) Wj..k{\, X) = X) kCß{\, x)0ys,j(\, x) (j = 1, • • • , «),
0=1

where

(15.6a) kCß(\ x) = Z I  Xpgr:l. oyr,3(X, u)du.
t=i J

Here the oy*,-(X, x) can be taken asymptotically the same (in T(c', d'; R'))

as the oyi,,(X, x) (i,j = \, •••,«), involved in (12.20); moreover,

(oJi.AK u)) = Uyi,j{\, «))-*.
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If account is taken of (13.1), (13.2), and (13.3), it is concluded that

(15.7) oy*,j(\, x) = eaß^'x)yt,j(\, x), 7*,j(X, 4 = [\ «1»,

(15.7a)    oy*,fl(X, u) = r*0***%*%j£k, »),           y*,ß(\,u) = [X, «];,

(15.7b) I 70*/(X, *) I,       I 7* 3(X, *) I < 7* (in T(c', d'; R')).

Moreover, a can be taken as great as desired, and ä—>=° with <r. However,

the y*j(K, x) will, in general, depend on a.

In view of the above (15.6) may be written in the form

n

(15.8) Wj-.tiK x) = X kCß(\, x)eGß^^y*ß,j(X, x),

n     /» x

(15.8a) kCß{\, %) -      I  XP+a,gn*e-^^.")7*s(X, «)<*«•
r=l »

Finally, with the aid of (15.7b) we obtain

n /• x

(15.9) I Wj..k{\, x) I < ny22~2 I eff/»<x'*> | J  g* | X || e-a»0"u) \ \ du \
0=1 J

(in T(c', d'; i?)), provided |g,:jfc| ggk (j=l, ■ ■ ■ , n) and the integrals here in-

volved can be evaluated.

Write

(15.10) q,(\, x) =    X     I exp [äiGi(X, *) + •■•+ hmGm(\, x)}\,
AiH-Vhm—v

(15.10a)        M(X) - 7(X) |X|*+-.

Then, since gi:o= —,F(X, u), in view of (14.17) we may take

(15.11) go = *o**w(X) I A|-2<"+"Vx'u).

Whence, by (15.9),
n

I w/:0(X, x) j < A0«7Viv(X) I x|-<»+<"> X) I e^*"1' I

(15.12) f» ...

*,+ -..+nm=Ar J

where

(15.13)       G(X, u) = ÄiGi(X, «)+•••+ AmGm(X, m) - Gs(X, «).

Now

(15.13a)   RGa\\, u) = faRQ^iX, u) 4-+ hmRQml\\, u) - RQa\\, u).
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Applications of (12.10), (12.10a), and (12.10c) leads (by the same reasoning

as employed in proving (13.13)) to the conclusion that the function of

(15.13a) is ^0 for X, u in T(c', d'; ic').f Since

R[G(\ x) - G(X, u)] = f RG™(\,v)dv,

and since, for

(15.14) <* S, _*,J5 v £ V ,j£ d',

dv^O, the integrand just displayed is ^0 for X, x in T(c', d'; R'), provided

(15.14) holds. Thus, under (15.14),

(15.14a) RG(\, x) ^ RG(k, u)

(cf. (15.13)). Accordingly,

\eGa,u)du I  ^ I gG(X,z) I I du I  = I gG(X,x) I (d> _ c>)
d' J d'

(X, x in r(c', d'; R')).

In the sequel integrations will be from d' to x (x in (c', d')).

By (15.15), (15.12), (15.13), and the definition of qN{\, x)

I w,-:0(X, x) I < fafapN{\) I X\-<-v+^qN{\, x) = fa I X |p+"go(X, x)
(15.16)

= w„*(X, x) fj m 1, • • • , «* X, * in T(c', d'; R'))

(cf. (15.11)), where

(15.16a) A'i = [d' - c>V-

With q' and q denoting the constants of (15.2) let b be the upper bound oj

the numbers

(v = 1, 2, • • • ); b will be finite. The inequalities

it it

(15.17)      w0*(\, x) S —— >      T(X, x) = k'b I X I "+»Wo*(X, *) ^ ——
1 + p 1 + P

(X, * in T(c', d'; R')( | X| ä r'))

(cf. (15.16), (15.16a))      6e obtained either by

(i) taking r'sufficiently great;

or by

f Presently, however, it is immaterial whether the coefficient of the highest power of X, in

(IS.13a), vanishes for any x in (c', a").
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(ii) taking the interval (c', d') sufficiently small.

If we make use of (15.4) for k = 1 (with p):_i = 0) and apply (15.1), (15.2),

with

p* = p*-i(\, x) = 0,      w* = w0*(\, x),

it follows that

(15.18) I g,:1(X, u) I < 6(w0*(X, u)Y = gl (X, « in r(c', d'; R')).

In view of (15.16) and (15.14a) the upper bound of

(15.19) w0*(\, u) I e-VßO.») I (X, u in T(c', d'; R')),

for

(15.19a) c' g xgugd',

is attained at x; the function wo*(a, u), and hence

(15.20) (W(X, u)Y\ e-^(x.u) |;

will possess the same property. By (15.9) (for k = l), (15.18), and the stated

property of (15.20)

I W,-:i(X, x) I  < (d' - C>V I X|p+"0(W(X, x))2.

Thus, by (15.17)

(15.21) I wj:1(\, x) I < T(X, x)w0(\, x) = Wi*(X, x)        (in T(c', d'; R')).

Making use of (15.4) for k = 2 (with p,:o = w,;o) and applying (15.1), (15.2),

with

p* = p0*(X, x) = w0*(X, x),       w* = wi*(X, x)t

we infer that

I g,-:2(X, x) I < (q'wQ*(\, x) + qwftX, x))wjl*(X, x)

, ...      - [?' + ?r(x, x)]wf(\, x)w?(\ x)

r      / p" M
<   ?' + ?'(-~) w0*(X, x)wf(X, x) < 6w0*(X, x)wi*(\, x)

1+P (inr(C',^;7c'))4

^4ssw?we that for X, x iw r(c', J';ic') (|X| ^r') andfori = \, ■ ■ ■ , k (£2) /fe

following inequalities hold

i i *
(15.23) I g,-:!-(X, x) | < gi = 6w0*(X, x)wj_1(X, x),

t P*+w* = w0*-\-w1*<(P"/(l+p"))+(p"/(l+p")r<p" by (15.17) and (15.21).

t By definition of b.
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(15.23a)    I wi:i-i(A, *) | < w*-i(A, x) = V^W x)wa*(\, x)    (j = 1, • • • , n).

For k = 2 these relations have been established in (15.18), (15.22), (15.16),

and (15.21).

In consequence of (15.23) for i = k, and (15.23a) for i = k

(15.24) gk = f*(X, «) = &r*-l(A, «)(w,*(X, w))2.

In view of the property previously stated in connection with the function

(15.19) and wQ*(\, «), and in view of the fact that T(X, u) enjoys the same

property,! if we write

(15.24a)  gk(\ u) I e-G/s(*.«> | = bT^W u)w0*(\, u)[w0*(\, w)«-^ »•«>],

we infer that the function on the left-hand side of (15.24a) will attain its up-

per bound at u = x, for X, u in T(c', d'; R') (provided (15.19a) is satisfied).

Hence from (15.9) it follows that

I wi:k(\ x) I < »vI x|*-(d' - c')gk(\, x) = ki\ x|*-ir*-l(x, *)(wa*(X, x))\

Thus, by (15.17)

(15.25) I wi:k(\, x) I < r*(X, *)w0*(X, x) = wk*{\, x)

(in IV, d';R');j = 1, • ■ ■ , n).

In other words, (15.23a) will hold for z = l, • ■ • , k + 1.

We are going to apply (15.4) with k replaced by k + l. We may write

I Pi, ifc-i(X, x) I = I Wj; o(X, *)+•"+ Wj; jfc_i(X, *) I < W0*(X, *) + •••

+ w|_i(X, x) = p*,      I wj:k(\ x) I < wk*(\, x) = w*       (j = 1, • • • , ri).

Now, by (15.23a) (*«!,••• , k + l) and by virtue of (15.17)

Hence the statement in connection with (15.1), (15.2) is applicable. We have

I gtk+i(\ x) I < (q'p* + qw*)w*

- [?'(i 4- r(x, *) + ••• + r*-i(x, x)) + ?r*(x, x)]w0(\, x)wk*(\ x)
(15.26) r ,

< [?'(1 +«+•••+ 5*-') + qS*]wQ*(\, x)wj*(\, x)

g bwf(\, x)wk*(\, x) = gk+l      (S = p"/(l 4- p"); in T(c', d'; R')).

W'hence it is concluded that the inequalities (15.23), (15.23a) hold j"or i = l, 2, ■ • •.

Consequently the series (15.5) converge absolutely and uniformly in

T(c',d';R') (|X| 5rr0;infact,

f T(X, u) is o>o*(X, u) except for a factor independent of «.
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I p,(X, x) I Sa I w,;0(X, x) I + I w,-:i(X, *)! + •••

< w0*(X, *) 4- wi*(X, x) 4- ■ • •

= W(x, *) [l + r(x, *) + r2(x, *) 4- • ■ ■ ]

^ W(x, x)[l 4- 5 4- 52 + • • • ] = w0*(\, *)(i 4- P")

(inr(c', i';«0;J = i, • • • ,»).

The absolute values of the coefficients of w1:i (i = 1, • • • , n) in

(X, X, W].», • • • j W„: i)

are gK, where K is independent of X and x (X, x in T(c', R')). By (15.4)

for£ = 0

I u>fil(\ *) I = I ̂ \VnKw0*(X, x) + I X|"go(X, x).

Substituting the expression for g0(X, x) from (15.16), we obtain

I «»«fr x) I < A" I x |"w0*(x, x)      0" = 1. • • •.»;in r(c'> «*'; *')) ■ t

By virtue of (15.4) for k>l, (15.25), and (15.24) and the fact that T(X, x),

ze'o*(X, x) S 5, it is seen that

I w"i(X, x) I ^ I xl'wüTw^X, x) + I \\vbYc'1{\, x)(W(X, x))2

< (nK 4- 6) I x|"5*w0*(X, x).

Thus, with i& denoting the greater of the numbers k", nK+b, we have

(15.28)     I «t4"(X, x) I <      x|Vw0*(X, x)      (k = 0, 1, • • • ; j = 1, • • ■ , n)

in T(c', d'; R').

With the aid of (15.28) it is concluded that the series

Pj (X, X) = Wj:o{\, X) 4- wj:i(\, x) + ■ ■ ■

converge absolutely and uniformly. We have, for X, x in T(c', d'; R'),

(15.29)
p-\\, x)\£\ w%(\ x) I 4- • • • < (1 4- p")iA I X|*Wo*(X, x)

(j = 1, ■ • • , »).

For X, x in T(c', d'; R') (|x| Sir'; r' sufficiently great) the series (15.5)

will truly represent a solution of the transformed system. The p,(X, x) are

analytic in X for X in R' (X^ °o), provided x is in (c', d')- For any fixed X in

i?' the p,(X, x) will be continuous in x for x in (c', d').% Moreover, these func-

tions are differentiable in F(c', d'; R') with respect to x.

f fe" is independent of X, *.
% The p,(X, x) are uniformly convergent series of continuous functions.
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The Third Existence Theorem. Let Y(a', ß'; R) be a region proper ac-

cording to Definition 2, §12. The functions Qi(K, x), here involved, are from the

formal matrix solution (12.2) satisfying the linear problem (12.1) (associated

with the system (11.1)). Let the Gi(\, x) (i = 1, ••■,«) be defined by (12.6b).

Let T(c, d; R') be an admissible (cf. Definition 3, §12) subregion of T(a', ß';R).

With suitable notation we then have (12.10), (12.10a), (12.10b), and (12.10c).

Let N (>0) be a fixed integer, however large. Form a region T(c', d'; R'),

where R' is the same region as before and (c', d') is a subinterval of (c, d) such

that the italicized statement preceding (13.17) should hold for (c', d'). Let the c,

(i= 1, • • • , m) be arbitrary functions of\ (independent of x), subject, however,

to the condition stated in italics in connection with (14.2).

The system (11.1) will then possess a solution y,(X, x) (j = 1, • • ■ , n), whose

elements are analytic in X for X in R' (X^ oo) (% in (c'; d')) and satisfy asymp-

totic relations

(15.30) yi(\, x) ~ Sj(\, x) (j = 1, • • • ,n;in Y(c', d'; R')),

where the s,(X, x) are the series referred to in Lemma 2, §13. The relations (15.30)

are asymptotic in the following sense. The ;y,-(X, x) are of the form

Cm ,1]k„..-.km:j(\, x) + p,(X, *)

(j = 1, ■ • • , «),

yVk„--.,km.iC\, x)

(15.30b) = exp [AiGifX, *)+••• + kmGm(\, x)]\^<-"+^[\, x]a_v+1

(fa, ■ ■ ■ , km St 0; fa + ■ ■ ■ 4- km = v; v = 1, 2, • • • , N - l;j = 1, • • • , n)

for X, x in T(c', d'; R'). The symbol [X, x]ä-,+i, above, is defined in T(c', d'; R')

according to Definition 4, §13. The p,(\, x) are functions defined, together with

the derivatives p,(1)(X, x), in T(c', d'; R') and are such that

I Pj(\, x) I < kyN(\) I x j<w-iK*+»)
(15.30c) .

2^      I exp [AiGi(X, x) 4- • ■ • 4- hmGm(\, x)\ \ = p.v(X, x),

where y(\) is defined as in (14.2) and

(15.30d) I p ,a)(X, x) I < £lP.v*(X, x) I X |P (j = 1, - ■ ■ ,n; in T(c', d'; R')),

k, fa being independent of X, x. In the above, ä, depending on N, is to be taken

where
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suitably great. In R', \\\ >,r' and r' is to be taken sufficiently great so that

(14.4a) and (15.17) f will hold.

Note. We observe that | p,(A, x) \ is essentially of the order of

2~1       Ci' - • • CmmNT]ku---,km;j{\ x).

In fact, the absolute value of the latter expression is less than

*P*(X, x) (mT(c',d';R'))t

where h is independent of A, x.

The following general remarks will be made regarding the main results

of this work.

The remaining problem is of interest, namely, to determine under what

specialized conditions the formal series solutions involved in the three existence

theorems converge. It is to be noted that in all of Horn's work, which relates

to certain restricted first-order problems,! the formal solutions converge and

thus represent actual solutions. §

Another problem of importance is to find under what restrictions are the co-

efficients in the formal series solutions (in the case of the First Existence Theo-

rem) representable with the aid of the fundamental methods of Nörlund (Laplace

integrals leadings to convergent factorial series developments—essentially by

a method of exponential summability).||

Finally, it is observed that the existence theorems of this work can be

extended without any substantial difficulties by replacing the second mem-

bers in the systems (A), (B), and (C) of §1 by suitable functions satisfying

in a certain neighborhood of the singular point appropriate relations asymp-

totic with respect to yt, ■ ■ ■ , yn (to a finite number of terms with respect to t

(or A))- ■

f These conditions can be also satisfied by other means (cf. the text in connection with (14.4a)

and (15.17)).

t For references to J. Horn see (Ti); also see my paper in Compositio Mathematica, loc. cit.

§ Even in the first-order problems occasions arise when the formal solutions diverge. So even

for these problems one is forced to use asymptotic methods, unless suitable restrictions are introduced.

|| Whenever applicable, these methods yield results of greater precision than those obtained by

asymptotic methods. On the other hand, as indicated in (Ti), they are applicable only under suitable

restrictions.
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