THEORY OF NON-LINEAR SINGULAR
DIFFERENTIAL SYSTEMS*

BY
W. J. TRJITZINSKY

1. Introduction. The most important published paper dealing with this
subject is a recent work by the present authorf in which further references
to the literature of the subject will be found. A method, introduced for the
first time by Trjitzinsky in (Ty), which is specifically applicable to non-linear
problems lies at the basis of the developments in the present work.}

In this paper we consider the system of non-linear differential equations

A) Py @) = ailt, 1,00, Ya) (G=1,---,n; paninteger 2 0),§
where

(1.1) ai(t, ¥, "+, Ya) = Lt y1, - 5 y8) + Qi(t: Y1, 0, Ya)s
(1.1a) Lilt, y1, - -y m) = L i®yn + - -+ b i) ys,

6 9

Gilly Y1,y Vo) = D iBirsinee i V1Y Ym

(1.1b) I i »o
(11,12"‘-’1,,%0;114---.+1n22;]=1’...,n).

The coefficients I; ;(£), ;@i,-..,:,(f) are assumed to be analytic at {= « for
|t| =7 (>0), while the series of the second member of (1.1b) are supposed
to be convergent for|

(1.2) HERE AN EA RN EA Y

Moreover, it will be assumed that the linear system obtained by letting
qit, v, - - 5 ¥a)=0 (j=1, - - -, m) is actually of order n, and that it is not of
Fuchsian type (cf. §2, italics preceding (2.6)).

The analytic theory will be developed for the complex neighborhood of the
singular point t= « . The main results of this work are embodied in the theo-
rems at the end of §§7, 9, 10, and 15.

* Presented to the Society, September 9, 1937; received by the editors December 9, 1936.

t W. J. Trjitzinsky, Analytic theory of non-linear singular differential equations, Mémorial des
Sciences Mathématiques, Paris. In the sequel this paper will be referred to as (Ty).

1 This method has been also applied in the paper by W. J. Trjitzinsky, Non-linear difference
equations, Compositio Mathematica, vol. 5 (1937), pp. 1-66.

§ p is taken as small as is compatible with the stated hypotheses.

|| o is taken sufficiently small so that the function represented by the series is analytic at every
point of the specified region.
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The system (A) contains as special cases some of the important instances
of dynamical differential systems. From the point of view of dynamical ap-
plications the real variable theory is important. However, in so far as the
problems of the present paper are concerned our interest lies in the complex
plane. A considerable variety of new situations of mathematical interest arises
in the field now under consideration.

We shall also consider systems (B), obtained from (A) by assuming that
the

L), i@igiy, e inll)

are all independent of t and that p=0. These systems are of importance in
dynamics. Our concern here, as well as throughout the paper, is with the
analytic character of solutions “in the small” and, as stated before, with the
complex neighborhood of the singular point.

Finally, in §§11-15 an investigation is given for systems (C) of the form

(®) APy D (x) = aj(N\, %, y1, -, Vo) G=1, -, n; integer p = 0)

where\ is a parameter and where the second members are analyticin N, v, - - - ,Ya
atN=cw = - - =9,=0, for x on a real interval, and continuous in x on this
interval. The theory of such systems will be given for the neighborhood of the
singular point A= «. The precise formulation of this problem, together with
some references, will be found in §11.

2. Semi-formal aspects. Formal solutions of the system (A) will now be
constructed. These will appear as series, in general divergent, whose coeffi-
cients are functions determined by a sequence of well-defined analytic proc-
esses. For these reasons the construction and consideration of these solutions
can be referred to as the domain of “semi-formal aspects” of the theory of
systems (A).

Consider now the linear system associated with (A),

(LA) t_py"(l) (t> = l"(t7 2 VI yn) (7' = 1; CT Ty n)
(cf. (1.1a)). By hypothesis ‘
(2.1) | Ges®) | # 0.1

The general asymptotic theory of such systems has been given by Trjitzin-
sky.f It will be assumed that the reader is acquainted with the main results

t A=(as,;) is to denote a matrix of »? elements (i, j=1, - - - , n) with the displayed element in
the sth row and jth column. The symbol | (a.-,i)| = | A| is to stand for the determinant of 4. The in-
verse of the matrix 4 will be denoted by A71(=(a; ;)7Y).

1 W. J. Trjitzinsky, Analytic theory of linear differential equations, Acta Mathematica, vol. 62
(1934), pp. 167-226. In the sequel this paper will be referred to as (T2).
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and methods contained in (Ty).
The system (LA) can be written in matrix form as

(LAY Yoe =rvnaA@, YO = (y.:0),
where
(2-2) A(t) = (t"l.',,'(l)) (1)]. =1---, n)-

The elements of a row in ¥ (f) will constitute a solution of (LA). The system
(LA.) has a singularity of finite rank at = .
The following definitions will now be introduced.

DEFINITION 1. Generically {t,} (q an integer 20) is to denote an expres-
sion
po(t) + pa(f) log t + - - - + p,(t) log¥,
‘where p;(t) (=0, - - -, q) is a series, possibly divergent, of the form
(2.3) pio+ pintME + piatTHE 4 e
(% a positive integer). {t}* is to stand for an expression {t},.

DEeFINITION 2. A curve B will be said to be regular if it is analytic in every
finite part and extends to infinity where it possesses a unique limiting direction.t.

DEFINITION 3. A region R will be said to be regular if it is closed, extends to
infinity, and is such that for t in R |t| Zr(>0). The boundary of R is to be
simple and is to consist of an arc v of the circle |t| =7, and of two regular (cf.
Definition 2) curves extending from different extremities of v. Generically
R(8y, 65) is to denote a regular region for whickh the two regular curves (making
part of the boundary) have limiting directions 8, and 0, respectively. The number
[6,— 65| will be termed the opening of R.

DEFINITION 4. Generically [t], is to denote a function of the form
po(t) + £1()) log ¢ + - - - + p,() log¥,

where p;(t) (j=0, - - -, q) is a function, analytic for i = in a regular (cf.
Definition 3) region R, such that

(2.4) pi(t) ~ pi(®) (tin R),
where p;(2) is of the form (2.3).1 [t]* is to stand for [t],.

t The implication is that a regular curve (lt[ =r’) is representable by an equation Rf(f)=0,
where f(2) is analytic for | t[ =r', but may possess a singularity at {= .

t Unless otherwise stated asymptotic relations are asymptotic in the ordinary sense, i.e., to
infinitely many terms. Thus, if a(f)~ao+ait" Y%+ - - - (¢ in a regular region R) to infinitely many
terms, one has a(f)=ao+ - - - +a,._1t‘("‘1>/"+a,.(t)t‘"/"(| a,.(t)| <bs; tin R) for n=1,2,--- . If n
cannot be increased beyond 7, the above relation is to 7o terms.
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One may write [t],~{¢},and [t]*~{¢}* (tin R).
The system (LA,) possesses a formal matrix solutiont

(2.9) S@) = (50,i() = (e Otriviag 1)),

where
li—1

(2.5a) Qi) = X gtk (integer ks 2 1;i=1,--- ,n; L = 1),
v=0

the 7;,; for a fixed 7 may differ only by rational numbers, and
(2°5b) a".i(t) = {t}q (i1j= 17" : :")'I

Moreover, formally | S(#)| does not vanish.§

In consequence of a hypothesis made in §1 the system (LA) is not of
Fuchsian type; that is, not all of the polynomials Qi(t) (i=t, - - - , n) involved
in (2.5) are identically zero. We let B;,; denote a regular curve along which

(2.6) R(Q:(?) — Q4(9)) = 0.

It will be understood that there are no B;,; curves corresponding to any pair
of values 7, 7 for which Q;(#) =Q;(¢). Let

(2.6a) R!,R{,---, Ry

be regular regions (cf. Definition 3) separated by the B;,; curves (formed for
all admissible pairs of values 7, j) in such a way that interior to any such re-
gion there is no B, ; curve. Consider a particular region R/ of the set (2.6a).
It is of the form R(6x 1, 0x,2) (cf. Definition 3) where, let us say, 0x,1=0x 2.
Let By, and B}, denote the regular curves forming part of the boundary
of R{ and possessing at infinity the limiting directions 6%, and 0y », respec-
tively.

In view of the Fundamental Existence Theorem given in (T:) and in con-
sequence of the connection between single #th order linear differential equa-
tions with systems, the following can be asserted for any fixed 2 (1<k=<N’).
If 6;,1=0x s, the matrix equation (LA,) has a matrix solution

Y(t) = (y‘,i(t)) (1').7 = 1, ) n),
whose elements y;,;(#) are analytic in R{ for ¢ «, while
2.7 Y(it) ~S@ (¢in RY).

1 (Ta), p. 171,

1 It is seen that the oy, () can be so selected that the 7;,; are independent of j.

§ This implies that when |S(t)| is formally computed as an expression of the type (exp. [poly-
nomial in £2]) 8 {t}, (cf. Definition 1), not all the coefficients in {¢} ,are zero.
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The implication of (2.7) is

(2.7a) y:,i(t) = e®O¢riit], (4,j=1,---,m;tin RY)

(cf. Definition 4). If 65,1<0: . there exist regular overlapping subregions of
R/,

(2.8) Ri = R(O,1, O.2), iR{ = R(0k.1, Ox.2),

whose boundaries contain B;,; and By ., respectively.f The regions (2.8) can
be so selected (depending on the polynomials (2.5a); for details cf. (T,)) that
(LA,) possesses two matrix solutions,

(2.8a) () = (yai@®), Y@ = (Gy:.i0),

such that

(2.8b) () ~S@ (tin ,RY),
(2.8¢c) WY () ~ S@) (tin RY).

Let P(#) stand for a polynomial (2.5a) which is not identically zero. It is
clear that one may find a regular region R’=R (8’, 8’")(8’ <8’’) such that

P ~ 0 (¢in R).

Since not all of the Q.(#) are identically zero it is observed that tkere exist
regions

(2.9) R17 RZ)"' 7RN

such that, if R stands for a particular one of them, the following statements are
true:

(i) R is a regular region (cf. Definition 3) which is a subset of a region
referred to in (2.7), (2.8b), (2.8c).

(i) There exist polynomials of the set (2.5a), Q:,(8), Q:,(8), - - -, Qi (®)
(1 =m=n) such that

(2.9a) e () ~ 0 w=1,2,---,m;tinR).

As a matter of notation, which does not entail any loss of generality, the poly-
nomials referred to in (2.9a) will be designated as

(2'9b) Ql(t): Q2(t)7 ] Qm(t) .
Moreover, without any loss of generality one may write
(2.90) RO\()) = RQ:(f) = - - - = RQa() (tin R).

t The other regular curve, which forms part of the boundary of ,R{ (or ;RY ), is interior to R{
and has at infinity the limiting direction of B, (or Bk,;).
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In the sequel, unless stated otherwise, we confine ourselves to a particu-
lar region R referred to in connection with (i), (ii), and (2.9b). In consequence
of (i) there exists a matrix solution of (LA,), o¥ (¥) = (¢y:,;(#)), such that

(2.10) oY () ~ S (tin R).
We consider now a solution of (LA) of the form
(2.11) it) = 22 o on,i(®) G=1,---,n),
A=1

where ci, C3, - -+, Cm are arbitrary constants. The non-linear system (A) of §1
will be formally satisfied by the series (in general divergent) of the form

(2.12) 9 = i) +29: ) + - +yi) + - G=1,---,mn.

Here the ,y;({) (v=2, 3, ---) will be determined in the sequel as certain
functions analytic in R(¢5# «) and of the form

ky ks km
wyilt) = C1C2 * * * Cm sMkyka,e-e kmiilE
(2.12a) yi(#) kl.-z;km 102 Nky,k b 1(2)

(b kg km =0 ku+ kot - - + b = ).
The functions 1y;(f) will be representable by (2.12a) with »=1 if we let
(2.12b) o%’i(t) = lnkllktv”'ykmﬁ(t) (>‘ = 1) ttt :m;j = 1, s H n)’

where k=1 and k;=0 for 7=A\.

To determine the terms of the series (2.12) these series are substituted
in (A). If we take account of (1.1), (1.1a), (1.1b), it follows that, since
wi(®) (=1, - - -, n) is a solution of (LA), we have

]

(2°13) Z "yi(l) (t) - tpzli(t: vY1, 00 0, l'y") = t7q; (j = 1, ] ”))

=2 =2
where

= X steald ﬁ[i.y.,(t)]i“

(2.13a) $1,00adn a=1 L »=1
(G, "+ 2051+ -+ + ia 2 2).

The first member in (2.13) may be written in the form

©
k Ky
(2.14) Z E Cll R 2 Li(t, Mky, oo kmily © " ° v"lkl,---,k,,,m),
v=2 kit Fkp=v

where
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(2.14a) Li= mryeee i) — Py Miyreeeskmity * * 5 Mg kmin) »

We now proceed to derive a formal expansion of ¢; according to powers
of ¢c1, - - -, cm. First it is noted that, with 7, >0,

[ i vya(t)]ic = 2 sYanYa ' wYa

v=1 [ ZTEEEN "‘a’l

(2.15) -
= E Z nYarda " %, Ya 1=, 0).

Ymiq vrtes oty =y

In view of (2.12a) it is observed thatt

s i kP g
II vgYa =H Z €1 G " Cm vaﬂk,.u-,k:m
=1 B=1 kPt thmPrg

(2.15a)

M plpeeogkfa ke okde IR L
= T® 4 ok o gh
kl‘,...'kmnx

vkl oo e ki
."nklz,”.'kmi:a Y viankl"“-"'-km‘“;a’
the summation symbol of the last member above being specified as follows:
ST Rz Okt Rt Rl =
(2.15b)
It is next inferred that
fa 81,83, 18 e
(2.16) H vgYa = E Cfl Cg’ te cfn"‘y¢r:.v:,--~,v‘a:a,
B=1 Syt ot dm=r

where

8110002 it

(2)
(2.163.) 7¢yl,---'y"a:a = . Zk‘-a["lnkll""vkml;a A y‘aﬂklﬁa'...’km‘aza],
kyycooikm

)IREE DU | T SRR S YY NURRRI Y Ky N
(2.16b) knt -+ Em=bm kb d = kit hm = e
B4 R =),
Substitution of (2.16) into (2.15) will yield

(2.17) [ Z 'ya(t)] « = E E Cflcg’ e C:;m'y‘l/:l'sh'--,am:‘a

=1 y=ta Siteertim=7

1 Here the superscripts attached to the k; do not indicate powers.
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with
81,00+ 0mita 81,00 0mity
(2 . 173.) 1¢al = E 1¢v:, gt
Prbee by my

It will be convenient to introduce the notation

aiiq P bm | B1vee bt
(2.17p) My = 2. 1 CmaVa .

Syt ot m=

We may then write

(2.18) I?I[f).ya(z)] 510> ,,"““_ z‘, I »5

a=l =1 a=1 Vqmigy “yYn g=1

(71%11,72%12,"‘,7»;1‘,‘).

In (2.18) the terms can be grouped so that

(2.18a) H[ > »ya(t)]ia - Z IT %

am1 L »=1 H=tyt+:+ip Yot +1n=H g=l
Mz, v 2 ).

Before we proceed further, the product involved in the second member
of (2.18a) will be expanded. In view of (2.17b)

n
gilg qd; adm @by, admiig
H’? =1 X 4a' o
g=1 gdy+: +gdm="q
101+ +ndy 100t o+nds 10t
= Z 1 C2 T Clm

(2.19) Broemendm
FLITRERIST 1 1 281,002 120m iy 08110 indmitn
‘YI'I/ v2¥2 T ‘Yn\l/n

(it Fdn=v50F - Fdm=72 a1t adm = Va).
Substitute 18,+20,+ - - - +.0,=k,(g=1,2, - - - ,m) in (2.19). Then we have
(2.19) IIn" = X atar T,

B rem o
where
SO = S [t Fabe=hlg=1,- - ,m);
Wit Fm=v1 a0 oadm = Tal.
Now, as indicated in (2.18a), v1+ - - - +7v.=#. Hence in (2.19a)

th=zziaq=27‘=ﬂ'
g=1

g=1 i=1 =1

(2.19b)
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We shall write
3) hyoee, “lv"'v"n
(2.19¢) T = A )
181,922 indm
Then (2.19a) will assume the form

@20 I = X a' - erapimt"
g=1 Byt +hm=H

Substitution of (2.20) into (2.18a) will yield

n ] i 0 Ch b Baveee b
2.21) ]I [ > .y.,(t):l = > St Al

a=1 y=1 Humiygo o odin hytooothp=H
where

hlv""h‘m h '.-.'hm“’h..."'" . .
(2.212) At = DL HAgeeeiiyn (VL Z ity )Y 2= 0n).
[URPPININS - :

Substitution of (2.21) in (2.13a) will result in

] 0
= X saea®X X ot catmhetar

8=2 )+ -+in=8 H=s hi++++hp=H
(2.22) o
hy hm | By b
= Z Z Ci1 *** Cm HAcZi ,
h 8=2 H=g h;++:+hy=H
where
Rives s ohm Byveoerhm
(2.22a) HAsii = D eeerin B -

$1++ +in=8

If we denote the expression following the second summation symbol of the
last member of (2.22) by o, u;;, it is inferred that

©w o H
(2.23) Qi =202 Onmii = 2 2 0o Hij-
8=2 H=s H=2 s=2
By substituting the expression for o,,x;; in (2.23) one obtains

- hy LA VN
(2.23a) g =2 2 & ---cyul
H=2 hyt---thp=H

with
H

(2.23b) AT 3 Al
8=2

In consequence of the italicized statement following (2.13a) and in view
of (2.23a) it is inferred from (2.13) that
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© A .
Z Z C1 . Cm L,‘(t, HNMhy, oo hyily * 5 "y H”hp"'»hmm)

H=2 h|+' . .+hm=H

0
- Z E Clh‘~ . C,:mtpHI.";l""'hm.

H=2 hyt+ thp=H
Thus the following set of differential equations is obtained:

Biveeeihm
(Sw) Li(t, Hhye bty * * 5 HNhyeeeshmim) = 8PHT G

(j=172)""”;H=hl+"'+hm;hl—2-0)"':hmgo)

(cf. (2.14a)). There exist systems (Sg) for #=2, 3, - - - . It will be shown that
_the systems (S3), (S3), - - - can be solved in succession in order to determine
all the ,94,,... ,;; involved in the formal solutions (2.12) of the system (A),
§1 (cf. (2.12a)).
We shall now establish in detail the nature of the dependence of the sec-
ond members of (Sx) on the ,n4,,... &, Let

4 LS 3
(2°24) Z(>=E Z E E() ('Ylg ily"' y'Yngin)

#=2 Gpbesotinms Yrbe ot ynmH 181,00 b

(cf. (2.19b)). Here s<=. For if s> rit would follow that y;+ - - - +vy.=4+
-+ + +2,=5>m, which would be contrary to the equality v1+ - - - +v.=nr.
Consecutive application of (2.23b), (2.22a), (2.21a), and (2.19¢) will yield

= EHAsz

8=2

H
= Z Z Qs in HA?II:...‘:,’.":M

8=2 $1+- Fin=g

(2.25)
L] Rive= 1 hmity,e e in
=2 X e 2 HAylo
8=2 $+-- +in=8 Y1+ -+yn=H
“4) é 8 ita
= Z @iy, i H 1¢‘pa e .
a=1

In consequence of (2.17a) and (2.16a) it is finally deduced that

@ 3 ad1se*radm ita
=2 wnenll X et
a=1 vyt t¥=7q

) il @ e
= Z 5a‘l-"' ‘"II Z Z H “rnklr"“v"mr7¢

a=l vpte o tvig=va ki ket =l

@=l+ -+ b

(2.26)
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(cf. (2.24), (2.16Db)).T In (2.26) the expression displayed after the product symbol
with respect to o (a=1, - - - , n) is to be replaced by unity for every o for which
i =0; moreover, for every such o we have v, =0.

DEeFINITION 5. In 944, .-, kmia thE SUbSCript v will be called rank .

It will be now established that g T';M: " " *+*» is independent of the i, . .. kp:a
of rank =n. To prove this one notes that, in view of (2.26), the ranks of the
Mk, ke iNVOlVed in gI' 1" - #m satisfy the conditions

2.27) i+ Fve=vaZda(@=1,2,---,m); mzl(k=1,2,---);
(2.272) i+ =8 at - +in22; w20 (k=1,---,n).
Thus

(2.27) i+ +rv)+ o+ Frv)+ - F i+ i) =8

The number of terms in the first member here is 2,4+ - - - +4,. If we had a
v, 2 & the left member in (2.27b) would certainly be = z+1 since there are at
least two terms (we have 4,4 - - - 4+4,=2) in this member, while all the v,
are =1. This makes the truth of the italicized statement subsequent to Defi-
nition 5 evident.

The n’s of rank one are known; they are the functions defined by
(2.12b) where the oy ,;(¢) are elements of the matrix solution (¥ (¢) = (¢y:,;(2))
of (LA). It is to be noted that in R, (¥ (¢) satisfies (2.10). The ,I'/1:" " *m
m+ - +ha=2; 20, - -, bn=0;7=1, - - -, n) can accordingly be de-
termined as functions of ¢. One may then determine all the »’s of rank two
with the aid of the system (S:). In general, if the #’s of ranks 1,2, - - - , B —1
are known, the zI'/#* " **» may be computed as functions of ¢ and the »’s of
rank 7 may be then constructed as solutions of the system (Sx). Thus a
mechanism has been set up for determining the functions ,y;(#) of (2.12a);
i.e., a device for computation of consecutive terms of the formal solution
(3D, - - -, y.(8)) (cf. (2.12)) of the system (A) of §1.

A matrix equation

(2.28) YW@ =Y®A@®) +G@) (¥Y(©) = (3:.:(0); G) = (8:.i(9))
is satisfied by

(2.28a) Y@) =C0or@®; CO= f ‘G(T)oY"(T)df = (¢.i(),

where ¥ () = (¢y:,;(¢) is a matrix solution of
(2.28b) JO®) = FOAQ).

1 In (2.16b) let 8;=45; and v =7a.
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If the g:,;(#) =g;(t) are independent of 3, it is not difficult to verify that the
.c.-,,~(t) =¢;(t) are independent of 7. The same will be true of the

n

(2.29) 3..it) = 3i®) = 22 a®oyn.i()).

A=1

By writing

AW = (s0); goslt) = git) = £"aT7" ™),

we accordingly infer that the system (Sy) is satisfied with the aid of the
formulas

n

(2.30) Hhee o hsi(8) = 2 (o, i(0),
A==l
where
LSTREEIN | YRR
a(t) = a(@; al'y P 1.,,,)
n t
(2.30a) = f aln ™ (o (1) dr
)\1=1

G=1,---,mm+- A+ ha=8h =0, hn=0).

In (2.30a) the 3;,;(7) are the elements of the inverse of the matrix (oy:,;(7));
that is,

(2.30b) (035.(7)) = (09:,1(7))~".
The above may be summarized as follows.

LeMMA 1. Let R be a region referred to in connection with (i), (ii) (subse-
quent to (2.9)) and (2.9b). Let oY (§) be the matrix involved in (2.10). The system
(A), §1 is formally satisfied by series (2.12) for j=1, - - - , n, in general diver-
gent. The first term, 1y;(t), in such a series is defined by (2.11). The subsequent
terms ,y;(t) are of the form (2.12a) with v=2,3,---. The coefficients
Mr, - - - ke i(B) inv0lved in ,y;(8) can be determined in succession with the aid of
(2.30), (2.30a), (2.30b), and (2.26). (In connection with (2.26) cf. italics sub-
sequent to (2.26) and Definition 5.)

Note. R can be replaced by a more general region. However, we restrict
ourselves to regions of the stated kind, inasmuch as only corresponding to
such regions will “actual” solutions of (A), §1 be obtained.

3. Preliminaries to integration. It is to be noted that

(3.1) oMa(t) = ea®int], (tinR;Na=1,---,m).
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Thus the elements of the matrix (2.30b) are of the form
(3.12)  oha(r) = eA@rnte[7]* (@ rational; rin R; A, A =1, - -, %)

(cf. Definition 4, §2)). In view of the notation (2.12a), we have

(3 2) lﬂklf.ou.k,,.':a(f) = exp [klrQI(T) + -+ kmer(T) ]tkl i s oty rm[t]q
) (br+ - -+ bk =1;ks20;a=1,---,n;7in R).

In consequence of (2.26),

3.3) Tptm () = X0l S Z‘.‘”va... 7).

a=1 vyt +vi,=ta
With the aid of (2.16b) and (3.2) one obtains

1 ia
H 2k oo ke 1a(T) = €XP [(kl + -+ k)0
r=1
A L Bt L
7]

1 ta
(3.32) + (kn+ - + E,)Ont

= exp [501 + - -+ + 8nQulr 1]
Application of the summation

Z 2(2)

vitestra=ta

(cf. (2.16b) with 6;=,4;) to the left member of (3.3a) will yield the function
(3.3b) Fg = generic form of the last member of (3.3a).
With the aid of (2.24) and (2.19b) it is inferred that

n

IIFd =exp [+ - + 800+ - + (Bt - + 2m)0n]

a=1

(3.3¢) O B AT
T [7]

hyryteee Tm
= exp [MQu(1) + - - + haQu(D)]TT ],
Since ;a;,,...,i,(r) = [t ]o, in view of (2.24) it is concluded that
hp b -hm (3) h
(3’4) 21—‘1‘ (T) = Z Z E F‘ll ‘n LATRRERL 2RI TYRRIIY oy
Syt rtn=2 vyt rn=2 181,00 ndm
where y1=11, - - - , ¥o=1, and

(3.4a) F,':‘ JJie..;... = generic form of the last member of (3.3¢).
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-

The combined summation represented by the three displayed summation
symbols involved in the second member of (3.4) is not with respect to
(1, - - -, hm). Hence, in view of (3.4a),

hyryte o +hmtm [T ]*

(3.5) o7 M(2) = exp [Qu®) + - -+ + huQu(D)]r (rin R),

(3.5a) b+t hn=2, =0, hn=0; j=1,---,n.

If we make use of (3.5) and (3.1a), we infer that the integrand displayed
in (2.30a) (for #=2) is of the form

(3.6) exp [Q()]r[7]¥,
where

0(m) = mQu(r) + - - - + EaQu(r) — Oi(7);
r=hri+ -+ hntn —n+ o+ p.

In view of our present purposes it will be essential to integrate expressions
of the form (3.6) (Q(7) a polynomial in 7V*; k an integer 1) in such a man-
ner that the integral is of the same generic form as the integrand, with »
possibly changed. This can certainly be achieved by the methods of Trjitzin-
skyt if RQ(r) does not change sign in R. Now, when one examines the par-
ticular integrand (3.6) for which (3.6a) holds, the following is noted re-
garding Q(7). If A >m we pick out an /4,(>0)} and write

Q) = [thx(T) + (b — DQe(r) 4+ - - - + th,,,(‘r)]

(3.6a)

3.7
+ Qa(r) — (7).
Here 7120, - - -, Ba—120, - - - | %, 20; thus, since one may write in con-
sequence of (2.9a) and (2.9b)
(3.8) RQO:(7) = - -+ = RQn(r) <0 (rin R),

it is inferred that the real part of the expression within the brackets of the
second member of (3.7) is certainly negative in R. In this connection we make
use of the fact that

bt ot heat (ba— 1)+ hat -+ =1,
as can be seen from (3.5a). On the other hand, by (2.9¢)
R(Qa(r) = Qr(7) £ 0 (rin R).
Whence it is concluded that, for A >m,

t Cf. (To).
t This is possible in view of (3.5a).
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RQ(r) <0 (rin R).

Moreover, by (2.9a), (2.9b), exp [Q(r)]~0 in R. Suppose now that A <m.
If >0 we have

0() = QD) + - - + (I — DOE) + -+ - + nQu(r)

with 120, - - -, Ina—120, - - -, k20 and bt - - - +Un—1)+ - - - +hn
=1. Hence exp [Q(7) ]~0 (= in R) in this case as well. If \<m and 4 =0, the
following is noted. Some %, (1 <a<\)f may be positive; by (3.8) one then
has R(Q.(7) —Ox(r)) <0. Since

Q) = [mQi(7) + -+ + (ha — 1)Qa() + - =+ + 7nQm(7)] + Qulr ) — QA7)
(Z0,  ha—1Z0,  hmZ Okt -+ (ham D+ = 1),

it is inferred that, for the case under consideration, RQ(r) <0 and exp [Q(7)]
~0 (7 in R). In the remaining case, when\<mand ;=0 one has by =hy= - - -
=/ =0. This necessitates that some 4, (\<a=<m)} should be positive, and
we have

Q7)) = — () + By1Qria(r) + - - - + EnQn(7)
M1 20,- -, hnZ0; Iapa+ - - - + b = 2).
Now RQ(r), where Q(r) is given by (3.9), will not necessarily maintain its sign§

in R, unless A =m, in which case some 4. (1 £a<X) would have to be positive.
If, more generally, functions are considered of the form

3.9

-1
(3.10)  Q(r) = gi01(7) + £202(7) + - - - + guOn(r) = D gr—»1Ik,

v=0

where the g; (=1, - - -, n) are real, and where, unless Q(7) =0, the leading
term actually present is
(3.10a) gy, TR 0=wmn=sl-1;q,#0),
it is observed that, with
(3.10])) qol 7.lllk,’. q02,.l,/k,, cee, qomTlm/km
respectively denoting the leading terms in Qi(r), Qu(7), - - -, On(r), we neces-
sarily have

l —n
(3.10¢) — =,

t This may arise only if A>1.
1 This may occur only if A<m.
§ Examples can be given when RQ(7) changes sign in R.
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where I’ is the greater one of the numbers l;/k; (i=1, - -, m). The regular
curves along which RQ(r) =0 will possess at infinity limiting directions 7,
satisfying the equation

l —
R(g,r@m k) = | 0 | | .,-I(l—vl)/k cos [Q'vl + (_ );0] =0

Vi
k
@@= <L ;7= <L 7).

(3.10d)

These directions have accordingly the values

k T
(3.10e) 7o = T™ = I:'?"'m"r_q.vx:l (m =0, + L, +2,---).

l - "N
Thus they differ by non-zero integral multiples of kx/(l—».). By (3.10c)

kw

v

(3.11) kil
. ;

! — n
At this stage it will be convenient to introduce a definition.

DEFINITION 6. Let R denote a region satisfying conditions (i), (i) of §2.
Let Q(r) be a polynomial of the form (3.10). A region W will be said to be of the
order v(21) with respect to Q(r) if the following conditions are satisfied.

(I) W is coincident with or is a regular (cf. Definition 3, §2) subregion of R.

(IT) W=W+W.+ - - - +W,, where W1, - - -, W, are regular non-over-
lapping regions such that along W; iy, the common boundary of W, and Wy,
(=1, -, v—=1), RQ(r) =0, while interior to W; (i=1, - - -, v) RQ(r) does
not change sign.

When »=1 Condition (II) is to be replaced by a statement to the effect
that RQ(r) does not change sign in W.

With »>1 and 6;,:: denoting the limiting direction of W, ;11 (=1, - - -,
v—1) at infinity, it may be supposed without any loss of generality that

O10 <Og3< -+ <B1,.

One may then write

kT

Oiiyr =012+ (2 — 1) (t=1,2,---,v—1).

—n

LEMMA 2. With R denoting a region satisfying (i) and (ii) of §2, let W be
a regular subregion of R of opening (cf. Definition 3, §2) less than w/l’, where !
is the number referred to in the italicized statement in connection with (3.10b),
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(3.10c). The region W will then be of order <2 (cf. Definition 6) with respect
to every Q(r) of the form (3.10).}

In consequence of this lemma, R can be covered with a finite number of
regions of order <2 with respect to every Q(r) of the form (3.10). The in-
equality “ <2” cannot be replaced by the equality “=1" because, generally,
it is impossible to find a regular subregion W of R (of opening however small)
such that for no Q(r) of the form (3.10) is there a curve RQ(7) =0 interior
toW. o

The truth of this lemma can be inferred as follows. Consider a region
W =R(on, az) (cf. Definition 3) for which, as required by the lemma,
0<ay—ay<7/l;. Unless implied otherwise we take a fixed set of numbers
g, gn If Q(r)=0, W will be of order unity with respect to this Q(r).
If Q(r)#£0 let the regular curves (Definition 2) be designated by

Bl, B2, ey,
and let the limiting directions at infinity be the numbers
61, 62, s,
respectively. It is a matter of notation to arrange these numbers so that
Br1<Be<- - h=a

and so that By, if not coincident with the boundary of W for which limiting
direction is a, lies exterior to W in such a way that between B; and the men-
tioned boundary of W there is no curve B; (=2, 3, - - - ) for which

(3.11a) B1 <Bi = ar.

The implication of the above is that, if (3.11a) holds for =2, the curve B,
must extend interior to W (in which case necessarily B; =a;).

For some subscript » (>1) B, will be either coincident with the boundary
of W, for which the limiting direction is s, or it will lie exterior to W so that
between the boundary of W, just referred to, and B, there is no curve B;
(¢<w) such that

(3.11b) az = B: < B,

If, however, (3.11b) holds for z=»—1, the above necessitates that we should
have ay=@,_1, while B,_; extends interior to .

Corresponding to a particular Q(r) (#0) of the form (3.10), W has been
covered by a succession of »—1 adjacent regions separated by the curves
Bs, B, - - -, B,_4, all interior to W. Designate these regions by

t 1’ is independent of the choice of Q(7); i.e., I’ is independent of g1, * * , gm.
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(3.12) Rv?, R®3, ..., R~ (R##+1 = R(Bs, Biy)) -
With the leading term in Q(7) given by (3.10a) one has, in view of the state-
ments preceding Definition 6,

km T
(3.12a) ﬁ._1—32=(v—3).—-—g(v—3)—,,
l—lll l

whenever »>3.
When » <3 there are at most two regions (3.12), and W will be of order
=<2. If v>3 consider the region

R*3 4 - 4 R2"1 = R(By, Br-1).
It will be interior to W.T Now W =R(au, o). Thus

(3.12b) B-i1— B Sar—a < li
1
This, in view of (3.12a) implies that
T
b—3)—<—> »>3 (v an integer).

These inequalities are, however, incompatible. Hence » <3 necessarily and W
is at most of the second order.

In the sequel, unless stated otherwise, W is to denote a particular regular
subregion of R with opening <=/l

4. Integrations. Let W = R(cu, o), ax<a (cf. Definition 3, §2) be a region
such that as— oy <m/l'. Consider the problem

(4. 1) y(l)(t) = eQ(t)tra(t)

where, unless Q(t) =0,

-1
(4.1a) QW) = 2 gk (0=m=l—1;¢,%0)
and (I—v)/k<U'. Assume a(t) to be of the form
(4.1b) a(t) = [t]* (t in W)

(cf. Definition 4, §2).

It is not difficult to see that Lemma 2 holds when Q(f), instead of being
assumed to be of the form (3.10) is given by (4.1a). The essential fact is that
the inequality subsequent to (4.1a) holds. Thus W is of order <2 (with re-
spect to all the Q() of stated type—provided, of course, that I’ is fixed). In this

t That is, all of its points, with the possible exception of those on the circular part of its bound-
ary, are interior to W.
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connection “order” is specified according to Definition 6, §3. When Q(#) #£0
we have W =W,+W,, where

(4.2) Wi = R(a, Bs), Wy = R(Bs, az) (1 £ B2 £ as),
unless
(4.2a) W = Wi = R(a, o).

The symbols involved here have the same significance as in §3. With B; de-
noting the regular curves satisfying the equation RQ(#) =0 and B; denoting
the limiting direction of B; we have B, interior to W (in case (4.2)) or there
are no curves B; interior to W. The curve B, is exterior to W or is coincident
with the right boundary{ of W and the curve B; is exterior to W or is coinci-
dent with the left boundary of W. However, in view of our present purposes,
it will be necessary to examine this case in greater detail, taking advantage
of the conditions satisfied by W. . .

When W =W, the integration methods given in (T.) are applicable. In
the case of W =W,+ W, an extension of these methods will be necessary. The
latter case will now be considered.

By hypothesis a(f) ~a(f) (¢in W), where

(4.3) a(t) = {t}*
(cf. Definition 1, §2). As demonstrated in (T,) the formal equation
(4.3a) sO(@) = eQ®Otals),
associated with (4.1), possesses a formal solution
4.4) s(2) = efWtrtug(f),
where
l — "N
(4.4a) o(t) = {t}*, w=1- ) A-V=2w<l).

Retaining in the power series involved in o (#) the first 8, terms only, we obtain
a certain function g5,(#). Apply now the transformation

(4.5) y(t) = e¥Wtrtvag (8) + 2(f)

to the given equation (4.1). It is observed that z(#) will satisfy
(4.6) 2@ = ¢@),

where

t The “right” boundary of W is that one of the two regular curves, forming part of the boundary
of W, which appears on the right when the region W is faced from the origin.
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d

£(0) = @Orral) — — [@Orrteag ()]

4.6
(4.6a) = Q=B (f) (@) | < b;tin W),
as can be seen from the developments given in (T.). The essential fact to be
noted is that in (4.6a) B (=B(By)) can be made as large as desired by choosing
B1 sufficiently great. The function b(¢) will, of course, be analytic in W (¢ »).
Suppose, for instance, that RQ(#) >0 interior to Wi. Let ¢, denote the

point where B, meets the circular part of the boundary of W. A solution of
(4.6) will be defined as follows:

4.7) 2(t) = fo+ f ¢(r)dr,

(4.72) to = f t(r)dr.

In (4.7) the path of integration is interior to W, when ¢ is interior to Wjs,and
it is interior to W, when ¢ is interior to W,. This path is along B, when ¢is
on B;. In (4.7a) the path is along B,. We deliberately avoid using the notation

(4.7b) 3(f) = ftg‘(r)d-r (tin W)

unless further qualifications are introduced. This is because, for ¢ in W, there
may exist paths (¢, «) extending interior to W for which the displayed in-
tegral (4.7b) diverges. Formulas (4.7) and (4.7a) define a solution of (4.6)
analytic throughout W (¢ «).

If tis in W, and there are no curvest

ORQ() _

(4.8) %

(¢ =|¢t| exp [(— DV20]2

between ¢ and B,, we shall write

(4.9) 2(0) =(£H+ f:)t(f)dr (] =1¢]).

The first integration displayed here is along B,; the second is along an arc
of the circle |r| =|¢|. With the aid of (4.6a) it follows that

t The whole discussion here and in the sequel is given sufficiently far away from the origin so
that no two distinct regular curves, under consideration, intersect.

1 All such regular curves have limiting directions distinct from those of the regular curves
RO() =0 (cf. (T2).
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124 t
(4.9) |z(t)|§b( [+f )eno<f>|f|—a+z
0 t’

By taking 3, sufficiently great the inequality —B3-+2 =0 will be secured. Since
RQ() increases monotonically as = describes the circular arc |7| =|¢| from
¢’ to ¢, it is inferred that

dr
2

eRQD | 7 |-B+2

attains its upper bound, for the combined path under consideration, at ¢.
Thus

(4.9b) |3(8) | < 8] e°<t>t—ﬁ+2|( f “+ f ‘)

As established in (T;) we have, when =7 exp [(—1)¥20], is on B,
0 — By = for Pk 4 fry(p+UIE L ... (p an integer = 1),

the series here involved being convergent for 27, (r; sufficiently great).
Hence along B,

dr
-2

(4.90) | dr| = [r2(do)? + (@) ]1/2 = (1 + g V% + gar 2% 4 - - - ) | dr|,
so that along B,
(4.9d) |dr| < g|ar|,

where g (>0) is independent of r and depends only on the curve B,. Thus

¢ dr g
4.10 f — <= v =1¢]).
(4.10) BENR (ef=1eh)
On the other hand,
t)d t| do 1 ’
(4.10a) f i =f e —(zv-2p<t,
el elrl |t | ¢]

since £#'— £t is obviously bounded when ¢’ is on B; and ¢ (|¢| =|#'|) is any
other point in W. By (4.10), (4.10a) it is inferred from (4.9a) that

(4.11) | 2(8) | < (g + g)b| e@y—s+1|

when ¢ is in W, while no regular curves (4.8) are between ¢ and B,. In other
words, if no curve (4.8) extends interior to W, the inequality (4.11) will certainly
kold throughout W,.

Suppose now there are regular curves (4.8) interior to W,. As indicated in
(T,) there is just one curve (4.8) between B, and B,. Hence there will be only
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one curve (4.8) interior to W;. Let A, be its limiting direction. Then t

(4.12) ar = N < B
and
(4.12a) No = 3(B1 + B2).

We need to obtain an inequality for |2(f)| when #is in W, between the curve
(4.8) (with the limiting direction \o) and the right boundary of W, (i.e., of W).
(4.7), (4.7a) will now be written in the form

(4.13) 2(2) =§'o+§'1+(f, +f,)r(r)dr (] =]¢]).
Here ’
(4.13a) G = f $(ndr

with the integration extended over the circular part of the boundary of W,
(2o and #J representing the points where B; and the right boundary of W
meet the circular arc). The first integral displayed in (4.13) is along the right
boundary of W. The second is along an arc of the circle || =|¢|. If B, had
the same limiting direction at infinity as the right boundary of W, that is,
if B1 =, a contradiction would necessarily follow, since it has been previously
assumed that o1 <B; < a,. In fact, one would have B:—8;1 (=B:—a1) Sae—a
<w/l’; on the other hand,}

kw

l—'Vl

T
B2 — B = = 7

Hence, whenever there exists a curve RQ(#) =0 interior to W, oy >B:. We will
have necessarily

- V1
= COS (q,l + ——;—al) > 0.

l—
t RQW) = gn] [/ 4201% cos (g, +— =)+ - - - (0= 21)

and

l—n

)sin @t =20+ -

l—l'l

a3
— =— (=vik
5 ReO=—1a,|14 ( p

Thus the limiting directions of the curves RQ (f) =0are the values of 6 for which cos (§,, 4 ((} —»1) /%))
=0, while those of the curves (4.8) are the values of 6 for which sin (g,,+((}—»1)/k)6) =O0.
1 This is a consequence of an inequality stated in connection with (4.1a).
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Accordingly along the right boundaryt of W
(4.14) RQ(7) = a| g, || 7[00 + g1) (e| g >0,

where g,—0 as |7|— . In consequence of (4.14) it is inferred that there
exists a number 7(8) so that, for all ¢’ on the right boundary of W and such
that |#| 27(8), we have

(4.142) | eemrs| < [ ()5,

when 7 is restricted to the part of the mentioned boundary between ¢/ and ¢'.
Whence, in view of (4.6a),

f ’ug‘(‘r)d'r

t

t’ t’
<o [ |enrs||dr| = 6] 0urys) f | dr|
t} t

(4.15) <b | QUM (§1)=F+1 | ( l t'| = 7(8).

Take b’ (2 b:), depending on B, sufficiently great so that

tl

f l < b | @)A1 (|#] < 7B)).
to’

We then have

(4.15a) {ftu

for all ¢’ on the right boundary of W.

On the circular arc (¢, #) constituting the path of integration in the second
integral displayed in (4.13), RQ(7) attains its upper bound at ¢ (¢ between the
right boundary of W, and the curve (4.8) extending interior to W). Thus by
the same reasoning as before one obtains

t
f c(ndr
tl
If we apply the relations
[#]=1]t], e ] =]ew)

< b | @ (1)-p+1

(4.16) < bg'| 0B+

to (4.15a), in consequence of (4.16) we infer that

( S + I} ) (s

where 5’ may depend on 8. When ¢ is between the right boundary of W and
the curve (4.8) (extending in W), we have

(4.17) < b | |

t Use is made of the fact that, if =f(r)(r=r exp[(—1)¥20)]is the equation of this boundary,
one has lim f(r) =a; as r— .
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(4.172) | e+ | < | e@un()p+t| < by (el=1¢,

where ¢’ has the significance indicated before and 4/’ may depend on 8. With
the aid of (4.17) and (4.17a) from (4.13) we obtain the inequality

(4.18) | 2() | < ba| e@w2=8+1| (b2 dependent on B)

for t in the region specified in connection with (4.17a). In view of (4.11) it is
seen that (4.18) is valid throughout W, in any case.

When ¢ is in W, there are the following four possibilities.

Case 1. The regular curve (4.8) whose limiting direction is (8:4+8:)/2 is
coincident with the left boundary of W, or extends interior to Wo.

Case 2. The curve (4.8) mentioned in Case 1 extends exterior to We, while
s> Bs.

Case 3. oy =f3; and there exists a regular curve

(4.19) RQ(r) = — K< 0),1

with limiting direction B,, which is coincident with the left boundary of W
or extends exterior to Wo.

Case 4. ap=0; and for no % (>0) is there a curve (4.19) satisfying the
conditions laid down in the formulation of Case 3.

In Case 1 one has

(4.20) RO(r) = — a'| 7|15 + ¢,) (@ > 0)

where g.—0 as | 7| — o along the curve (4.8) under consideration. The func-
tion z(#), as defined by (4.7), can be expressed as follows:

@.21) o(t) = (f:+ f:):(f)dr (Jal =1t]).

Here the first displayed integration is along the curve (4.8); the second is
along an arc of the circle || = |¢|. With the radius of the circular part of the
boundary of W sufficiently great (but independent of B), the upper bound of

| e@m7—p+2]
is attained at # when 7 is the variable of integration in the first displayed in-
tegral of (4.21). This follows from (4.20). On the other hand, along the arc
(4, %), | exp [Q(r)]| increases monotonically, attaining the upper bound at #.

Thus an inequality like (4.9b) is obtained. With the aid of a reasoning closely
analogous to that employed in deriving (4.11) it is inferred that in Case 1

(4.21a) | 2(8) | < a1| e@e0pp+1 (tin W,).

t Regarding such curves cf. (T).
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In Case 2, a relation like (4.20) will hold along the left boundary of Wo.
This follows from the inequality B3 >az >B;. We express z(#) as in (4.21) with
the first integration involved there along the left boundary of W,. Making an
assumption as stated in italics subsequent to (4.21) we conclude, as in Case 1,
that (4.21a) holds (for ¢ in Wy) in Case 2 as well.

In Case 3, —2=<RQ(r) =0 for 7 in W,. Thus

(4.22) eh || <1 (r in Wa).
On writing (4.21) with the path of integration as in Case 2, we note that

! eQ(r).,.—p+2| < { tl—ﬂ+2

when 7 is on the combined path of integration. In view of (4.21) one accord-
ingly has (cf. (4.6a))

(4.23) EOIER] ‘|_ﬂ+2<f:+ f;)

Inequalities (4.10), (4.10a) will hold with g and g’ having a meaning analo-
gous to that previously assigned. Whence it is concluded that

(4.23a) |2() | < (g + g)b| t]|#+ (tin Ws).

In view of (4.22) it is inferred that (4.21a) holds in Case 3, provided that we
take

dr
2

ay 2 eM(g + g)b.

In the remaining Case 4, RQ(r) will be monotonically decreasing along the
left boundary of W; (as |7| — along this boundary), provided that the
radius of the circular part of the boundary is taken sufficiently great. Along
any circular arc

(ts, ) (|aa| =e]),

where £ is on the left boundary of W, and ¢ is in W,, RQ(r) will attain its
upper bound at ¢. The repetition, then, of the argument of Case 2 will yield
an analogous inequality for |z(?)].

In view of the statement previously made in connection with (4.18) it is
now seen that (4.18) (with a suitable by, dependent on B) will hold throughout
W =W,+W,. If we write

(4.24) z(t) = eQWgrtug (1)
it is accordingly observed that
(4.24a) | 2108 | < b | ¢]|* B =8—1+7+ w)t

t 7' =real part of .
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for ¢ in W1+ W.. Moreover, 3'— « with 8;— . By virtue of (4.24) and (4.5)
it is concluded that the following is true for every positive integer a.

The problem formulated at the beginning of this section possesses a solu-
tion y.(f), analytic in W1+ W, (¢ =), of the form

(4.25) Ya(t) = €20t Hon, (1),

where

(4.25a) 14(2) ~ a(2) (tin Wi+ W)
to o terms (cf. (4.4a)). Let oy be any integer >a. One has

(4.25b) Yar(t) — Ya(t) = Caya = QP10 (n4,(f) — na(f)).

With the aid of (4.25a) (stated for o and for o) it is concluded that the con-
stant c.,,. must be zero. To demonstrate this it is sufficient to let ¢ recede to
infinity along the curve RQ(#) =0, separating W, and W,, and to note that
the last member in (4.25b) will then manifestly approach zero. Thus all the
solutions v.(f) are identical. Whence it can be asserted that (4.1) kas a solu-
tion y(t), analytic in Wi+ W, (15 »), of the form

(4.26) y(#) = QWirten(y),
(4.26a) 2(t) ~ o(f) (tin Wi+ Wy)

(cf. (4.4a)), the asymptotic relations being valid in the ordinary sense. The above
will hold also when RQ(#) >0 interior to W, and RQ(#) <0 in Wo.

We shall now consider briefly the case of (4.2a). The curves B,, B, will
both be exterior to W =W, or one of them will be coincident with a boundary
of Wi, while the other one is exterior to W;. One now has

(4.27) Br=ar<az =B (012—041<%'-_<-I32—31>-

Suppose first that RQ(f) <0 (interior to Wy). If the regular curve (4.8)
with the limiting direction (B:+4p:)/2 is not exterior to W, the function z(?)
(solution of (4.6)) will be expressed as an integral extending from infinity
along the curve (4.8) to a point # (|#| =|¢|) and from # to ¢ along an arc
of the circle || =|¢|. If the mentioned curve (4.8) is exterior to Wi, an in-
equality for |3(f)| is obtained with the aid of an integration, extending from
infinity to #(|#| =|¢|) along that one of the two regular boundaries of W
which is nearer to the curve (4.8); from #, the path of integration is continued
(away from the curve (4.8) towards #) along an arc of the circle |7| =|¢].
With the radius of the circular part of the boundary of W, sufficiently great
(this choice can be made independently of 8, ;) it is observed that



1937] NON-LINEAR DIFFERENTIAL SYSTEMS 251
| 0], | eem7|

will be monotonically increasing along the specified paths, from infinity to &
With the aid of the reasoning previously employed in proving (4.26), (4.26a)
for ¢t in Wi+ W, the truth of (4.26), (4.26a) is again made evident in the new
case under consideration as well; the remarks regarding the choice of path
are to be noted.

Suppose now that interior to W, RQ(#) >0. The following is observed. If,
for instance, the right boundary of W, is considered, either

(4.28) | @78 — (for every B8 > 0)
as || — = along this boundary, or
(4.28a) | Q) 7—F I -0 (for some B)

as |7| — » along the mentioned boundary. We have i Sy <a; <f,. It is ob-
served that (4.28) will hold{ when a1 >p:; (4.28) may hold even when oy =p;.
However, with a; =, the case (4.28a) will sometimes occur. Since the equali-
ties

a = By, as = f3

cannot be satisfied at the same time, only one of the following two cases may
present itself (when RQ(#) >0 interior W =W)).

Case (a;). Along both regular boundaries of W, (4.28) is satisfied.

Case (a;). Along one of the boundaries of W, (4.28) holds, while along
the other we have (4.28a).

In the Case (a,) if the curve (4.8) (between B, and B,) is exterior to W,
or is coincident with one of the regular boundaries of W, the path of integra-
tion is to be taken from a point on the circular part of the boundary of W,
along that one of the regular boundaries of W, which is further removed
from the mentioned curve (4.8). Along this boundary of W, integration is
to be extended to # (|| =|¢|). The path is further extended along an arc of
the circle || =|¢| from # to ¢ (¢ in W,). If, in the Case (ai), a curve (4.8)
extends interior to W, the path is taken from #,, the intersection of (4.8)
with the circular part of the boundary of W, to £. When ¢ is, for instance,
between the curve (4.8) and the right boundary of W, the path is deformed
so as to extend from #; along the circular part of the boundary of W, to the
intersection with the right boundary of W;; the path is further continued
along the latter boundary to # (|#| =|¢|) and from # it is finally extended
along an arc of the circle || =|#| to & An analogous deformation is made
when ¢ is in W, to the left of the curve (4.8) under consideration. Given «,

t Along the left boundary of W, (4.28) will certainly hold if a;<ps.
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however large, a solution (4.25), (4.25a) (¢ in W,) can be obtained. The vari-
ous solutions y,(f) will in general differ by constants distinct from zero. How-
ever, any particular one of the y.(f) will maintain in the ordinary sense and
throughout W, the asymptotic form of the formal solution. The latter fact
is due to the relation

e ~0 (tin W)

which certainly holds in Case (a:). The above choice of the path having been
made, the following property will hold. If |¢| =75 (rs sufficiently great), the
upper bound of |7—# exp [Q(r)]], for = on the path under consideration, will
be attained at r=¢.

Consider now Case (a;). Suppose, for instance, that (4.28a) holds along
the left boundary of W;y; let 8 (>0) be sufficiently great so that we have
(4.28a). In this case integration will be precisely as in the previously dis-
cussed case when W =W,+W,, where W, and W, are separated by the curve
B, along which RQ(¢) =0, RQ(¢) >0 in W, and ¢isin W; (cf. the developments
stated in connection with (4.8)—(4.18)). One needs only to replace B; by the
left boundary of W;. The result will be precisely analogous to the one ob-
tained in the previous case.

Consider now the following modified problem:

(4.29) yO(f) = e2®tra(t),

(4.29a) Q@) = polynomial in t\/*,

(4.29b) a(t) = [t]* (t in R'),
(4.29¢) M ~0 (¢im R)).

Here R’ = R(au, o) (o1 <o) is a regular region (cf. Definition 3, §2). In view of
(4.29c¢) it is not difficult to infer that not more than one curve (4.8) may ex-
tend interior to R’. Hence the reasoning of the type employed in the text be-
tween (4.27) and (4.28) is again applicable leading to an analogous result.
An examination of the preceding developments of this section enables us
to assert the following.
Let the region W =R (a, o) be subject to the condition

™
(4.30) 0<a—ay < 2_l"

and let the radius »’ of the circular part of the boundary of W be suitably
great. With ¢in W and # (|| =|¢|) on a regular boundary of W or on a regu-
lar curve RQ(r) =0 or on a regular curve (4.8), as the case may be, the path
of integration indicated in the previous discussion extends towards ¢
along one of the mentioned curves either from infinity or from a point
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on the circular part of the boundary of W (as the case may be);{ from
t the path extends towards ¢ along an arc of the circle |7| =|t|. The upper
bound of |exp [Q(r)]|7|~7| (¥>0), when r is on such a path, is attained at
r=1 (at least for |¢| 27"’ >r"). A similar statement (with y =0 and W replaced
by R) will hold, with the condition (4.30) deleted, when the problem (4.29)—
(4.29¢) is under consideration.

Lemma 3. Consider the problem represented by (4.1), (4.1a), (4.1b) with I/
fixed. A solution of this problem can be evaluated as follows:

t
(4.31) y(t) = f Qe[ ]*dr = @Wiprto[s]* (t in W)
(cf. Definition 4, §2), where
, l - "n
(4.31a) I-Vsw=1-——<1,

unless Q(t)=0, when w=1. For the problem (4.29)—(4.29c), with the leading
term in Q(8) given by gt'''* (¢0; v’ >0), a solution of the form (4.31) will exist
for tin R’; in this case

’

(4.31b) w=1—%<1.

5. Formal solutions. Let R be a region of positive opening, referred to in
§2 in connection with (i), (ii), (9a), and (9b). Thus, when 7 is interior to R,
we have

(5:1) RO\(r) = -+ - = RQu(r) < RQma(7r) = - -+ < RQOn(r).
Also
(5.1a) €% ~ 0 (¢4=1,---,m;7in R).

Let I’ be the number defined in the italicized statement made in connection
with (3.10b), (3.10c). Finally, let W =R (i, o) (0 <oty <avs; az—; <w/1’) de-
note a subregion of R.

Our purpose will now be to determine the coefficients of the series (2.12)
(cf. (2.12a)), that is, the

(5.2) HNhye o by 5(8)
(hl,”',hmgo;hl'*‘"'+hm=H;j=1,"',n;H=1,2,“').
t In a certain case the path extends from a fixed point on the circular part of the boundary of W,

along this part to the intersection with one of the regular boundaries of W and from there on along the
latter boundary towards £,; from ¢, it is continued to ¢ along a circular arc.
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For 7 =1 the functions (5.2) are seen to be of the form (3.2). With the aid of
(3.2) the relations (3.5), (3.5a) were obtained; that is, the form of the

'fl""vhm

(5.3 oT'; (n) (rin R)

was determined.
Before proceeding further we note that, in consequence of (3.1), (3.1a),
(2.30), and (2.30a), one may write

n

(5.4) Hlhyeo i i(8) = f‘__‘,lcx(t)e"*“’t’m.i(t),
where
(5.4a) o) =xi tHI‘:,“m'hm(T)e_Qx (1)T_m+w+1_"7x,.x(f)df,
s
(5.4b) mwilr) = [r]*,  Paalr) = [r]* (rin R).

Here the v,,;(7) and ¥, A(7) are independent of &, &y, - - -, hw. For £ =2 the
integrand displayed in (5.4a) has the form (3.6), (3.6a). Lemma 3, §4 is seen
to be applicable for evaluation of all of the integrals involved in (5.4a) for
g =2 when ¢ is in W. The integral displayed in (5.4a) for # =2 will be of the
form

(5.5) exp [mQi(®) + - - - + 2nQn(t) — O\(®) ‘|th,r1+---+;»,.rm—rx+w+p+w,[¢]*

when ¢ is in W. Here w, is taken the same for all of the involved terms in
(5.4a) for B =2; w, is rational and w, <1. It can be asserted that c\(#) has the
form (5.5) when ¢isin W (and & =2). Substitution of these forms in (5.4) (for
g =2) will yield, in view of (5.4b),

(5.6) 2,7,“’,_.,,%:’.(;) = exp [thl(t) + .- 4 thm(,) ]thlrl+...+hmfm+w; [t]*
' (by - hmZ 03 F hn=2;5=1,--+,m;¢in W).

Here w{ =w-+p+w.. On taking account of (3.2) in view of (5.6) one may
write
B vk s b et (r—1) w0, [T]*

ol e ia(T) = €XP [k Qu()+ - - - +EnQum(7) ]
(5.7)

T GGinWikr, o k20 kM k= a=1, 00 =1,2).
We shall now substitute (5.7) in (2.26) (for » =3). If the equalities of (2.16b)
and (5.7) are used it is inferred that

(5.8) II--- =exp [6:Qu(r) + - -+ + 8nQum(r) Jrhircte Hommmpr raviaini [ ]¥,

r=1



1937] NON-LINEAR DIFFERENTIAL SYSTEMS 255

where

(5°83) V('Ya, ia) = Z (Vr - 1) = Ya — ta.
r=1

The symbol

Z Z(zf (6& = 066)

’

Vibee o vi =ty Korererkin
(cf. (2.16Db)) applied to the product (5.8) will yield a function
(5.8b) F. = generic form of the last member of (5.8) (rin W).
In view of (2.24) and (2.19b) (where # =3)
gt b=k (g=1,---,m);
it va=3 0t F =23,
Accordingly, in consequence of (5.8b) (with §;=,8:) and (5.8a), one has

(5.8¢c)

(5 8d) HF /) = exp [thl(T) + - 4 thm(T) ]Thl'f""‘+hm'm7-(3—s)w',[f]*
- (s=1d14 -+ ia;7in W).
Since without any loss of generality one may consider that w{ 20 and since

the only values that s may assume (when #=3) are 2 and 3, it is concluded
thatt

(5.9) IIF = exp [mQu(r) + « -+ + BnQu(r) Jrhirete-Hhmrmoi[2]%,

a=1
We next write
hyyoe o hun 3
F‘h"*.‘n“Yl-"'.‘Yn‘lﬁ"”m‘m T jQig, e in HF“’
(5.10)

= generic form of last member of (5.9).

Next it is noted that the first summation symbol of the last member of (2.26)
is defined by (2.24), (2.19b); this summation is extended only over the sub-
scripts of the left member of (5.10). The generic form displayed in (5.9) does
not contain these subscripts. Hence, for 7 in W,

(5.11) 4T = Z“)F?:,..-;-..:... = generic form of last member of (5.9).

Assume now that, with a rational wy_ 2 w! (wy_1 Sw+p+1) and for rinW,
one has

t 769wy’ = g9y’ . 120w’ = 7w 1] since (2—s)w,’ is rational and =<O.
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q+1l‘?l"“'hm = exp [BQu(7) 4 « - - 4 haQu(7) Jrhirit - Hhmrmr (o= Vulra [ 7 ]*
(hly"hmgo;hl++hm=q+l;]= 1:"':”)7

(5.13) Moo ki a(7) = €XP [B1Q1(7) + - - - A+ knQu(7) [hirste - +omrmr (@= Dk [7 ]*
) (ki  knZ 0 ks 4+ -+ bn=g;a=1,---,n)
forq=1,2,... H—1 (823). For #=3, that is for ¢=1, 2, relations (5.12)
and (5.13) have been established previously in (3.2), (3.5), (5.6), and (5.11).

Substitute (5.12) with g=#—1 in (5.4a). The integrand there displayed
will be of the form

(5.12)

(5.14) Q@ rr[r]* (rin W),
where

(5.142)  Q(7) = kiQu(7) + - - - + EaQu(7) — ON(7),

(5.14b) r=hri+ - F hptm—nF o+ p+ (28— 2w,

with

(5.14c) By -y hm20; it - Fha=H (23).

In view of (5.14c) and (5.1) it is inferred that, for A >m, one certainly has

@M ~ 0 (rin W).
When A <m, Q(r) will be a linear combination (with constant coefficients) of
(5.15) Qi(1), - -+, Qm(7)

only. With (3.10b) denoting the leading terms of the polynomials (5.15)
it is recalled that !’ was defined as the greater one of the numbers /;/k;
(¢=1,---, m). Thus, when A=<m, Q(7) is of the form (3.10) and, unless
Q(7) =0, there will be a leading term,

PRGNl (gr, % 0;1 — v1 > 0),

present in Q(7); moreover, we shall have (! —»,)/k<1I’. It is accordingly seen
that, when A<m, Q(7) will be a polynomial of the variety of polynomials
involved in the integration problem (4.1), (4.1a), (4.1b). On the other hand,
when A >m, since exp [Q(r)]~0 (r in W), it is observed that Q(#) will be a
polynomial of the type which could occur in the problem (4.29)-(4.29¢), pro-
vided one lets R’=W. Thus Lemma 3, §4 is applicable for evaluation of the
integrals involved in (5.4a). With the aid of this lemma and in view of (5.14)
we conclude that we may write

t
(5.16) f (integrand displayed in (5.4a)) = e@(tgr+ur[t]* (tin w),
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where wy is rational and wy <1. The functions c\(#) (cf. (5.4a)) will be all
of the generic form of the last member of (5.16). Hence, in view of (5.14a),
(5.14b), one obtains from (5.4) and (5.4b)

thl" "'hm‘j(t)

(5.16a) = Z exp [1Q:(t) + - - - + thm(t)]th‘r,-{---‘+lhnrm+(H—2)w5_,+w,',' [e]*
A=1
(tian;hl‘i‘"‘ +hm=H;j= 1)"' 1”’))
where wy =w+p+wy Sw+p+1. Let wy be the greater of the numbers wy
and wy_1. Necessarily wy will be rational and wy <w-+p-+1. On noting that

FH=2) Wi —wh)+wlf —vh — [l]o,
in view of (5.16a) it is inferred that, for ¢in W
(5.17) My, nii(8) = €xp [1Q1(8) + - - - F BuQum(t) Jthirt: - Hhmrmt H-Dwg [¢]¥,

This, however, implies that (5.13) holds also when # is increased by unity;
that is (5.13) holds for ¢=1, 2, - - - , &, provided that in (5.13) we write wy
in place of wg—_;. This is possible for g=1, 2, - - - , #—1 because wy_,—w} is
rational and non-positive.

To determine the form of y, '/ +*» use will be made of (5.13), with
wy-1 replaced by wy, and of (5.17).  Substituting the known forms of the
M- (g=1,2,--- ) in (2.26), where # is replaced by #+1, one obtains

(5.18) JI - - - = generic form of the last member of (5.8) (ws replaced by wy).
r=1

Here (5.8a) will hold. The summation symbol, displayed subsequent to (5.8a),
applied to the product (5.18) will yield

(5.18a) F. = generic form of the last member of (5.18).
By virtue of the relations (2.24), (2.19b), where = is replaced by #+1, one has
e+ -+ = hy (@=1,---,m);
it Fv=E+ 04+ =23, ,8+ 1.

Thus from (5.18a), where we put §;=.0;, and in view of (5.8a) it is inferred
that

(5.18b)

n

HFa' = exp [thl(T) + -+ kam(T)]Th1’x+“'+hmrm7-(H+l—-c)w{, [1.]*

a=1

(5.19) = exp [thl(T) + PR + thm(T)]T"I'l"‘"“"’hn"m,-(ﬂ—l)w' [T]*
(S=’I:1+~~- +i"=2:3""’H+I;TiDW)’
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since wy 20 and wy is rational. The functions (5.10) will have the generic
form of the last member of (5.19). In view of this fact

hyyeee ) ki1,
H+1Pi Z Ft, Sni ‘h f,Ynidy, o ndn
(5.20) = exp [ 1Q1(T) + -+ 5aQn(r) ]Th1f1+~..+hmrm7-(3-!)w15[7.]*
(rin W),

since the summation here involved is only with respect to the subscripts of F.
We accordingly conclude that relations (5.12) and (5.13) will be certainly
valid for#=3,4, - - - when 7isin W. The numbers wy are rational and

(5.21) 0w/ Sw{< - -Zw+p+1.

LeMMA 4. Let R be a region of positive opening (cf. Definition 3, §2), re-
ferred to in §2 in connection with (i), (ii), (5.9a), (5.9b). As a matter of notation,
within R we have (5.1) and (5.1a), the Qi(r) (i=1, - - - , n) being the polynomials
involved in the formal matrix solution (2.5) of the linear differential system(LA,),
§2.1 The highest power of T actually present in Qi(r) being designated as T'sl*:
we let I’ denote the greatest of the numbers l;/k; (i=1, - - -, m). Let W be of the
form R(ay, az) (cf. Definition 3), where

(5.22) 0<a2—q1 <7l'/l,,
and be a subregion of R. The system (A), §1 will possess a formal solution
(5.23) 5 = i) +oyi®+ -+ + - G=12---,m),
where, with ¢y, ¢z, - - - , Cm denoting arbitrary constants,
ky ke km
W»ill) = 2 C 0 Cm Mk keyeor kil
(5.23a) yilh) k,,f‘:’.,kmcl @ o bt kestl)

Sk km 2 O kit ket A hm=r =1, 0.
In (5.23a) the coefficients are functions whick for t in W, have the form
(5-24) iy kpii(®) = €xp [RiQu(8) + - - - + knQu(8) Jthrrite - Homrmp0—0i [1], )

(cf. Definition 4, §2).1 The w, satisfy the conditions stated in connection with
(5.21).

Note. A function [t],. involved in the second member of (5.24) satisfies
an asymptotic relation

[leoy ~ {t}qm (tin W)

t This system is identical with (LA), §2 and is the linear system associated with the non-linear
problem (A), §1.
} Tt might happen that g(v) > asy— .
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(cf. Definition 1, §2). The formal expression {¢},. contains power series
(generally divergent) of the form

po + put~tk 4 pot2l ey 4 - .. (k, an integer > 0).
The b, (v=1, 2, - - - ) may approach infinity with ».

In general the series (5.23) will diverge.
6. Transformations. With Lemma 4, §5 in view, consider the trans-

formation

(6.1) yi(t) = V(&) + pi(t) G=1,---,n),
where

(6.1a) Yi(t) = 19i(®) + 29i®) + - - - + v-13:0).

Here the ,y;(t) (v=1,---, N—1;5=1,- - n) are the functions (5.23a) and

(5.24). N is a fixed positive integer (which may be taken as large as desired).
This transformation is to be applied to (A), §1.

We let
(6.2) | ei] < ¢ >0;i=1,---,m).
Denoting the part of a region G for which |t| 7' by G (| ¢| 27’) we observe that
(6.3) R ZOYEY =1 ,meinw(t]2n],
where '
(6.3a) 0<p <op,

where p is the p of (1.2), if »’ (depending on N and ¢’) in (6.3) is taken suffi-

ciently great. In order that (6.3) hold »’ may be taken independent of N,

provided ¢’ (depending on N) of (6.2) has been taken sufficiently small.
Substitution of (6.1) in (A), §1 will yield

t—ppi(l) (t) - li(t’ Py * "t 79”) = - t_pyi(l)(t) + li(t) Yy oo, Yﬂ)

(6.4) .
+q;f(t’Y1+ply"';Yn+Pn) (]=1r""n):

where

Qi(t) Vit+opy,- - ) = Q:‘(t, Yy ooy Yﬂ)

(6.4a) + 2 i@ - - o2 (®)

(9120,"' ,Vngo;1’1+1’2+"’ + v = 112"")’
Jritetn
V1! s Vn!ayl,-~-,vn:f(t) = _"—’—Qi(t, Y, ", yﬂ)]
al‘lyl PO al'nyn
(6.4b)

(3’1 = yl(t)) Ty Y = yn(t))
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~(cf. (1.1b)). In view of (6.3) and the convergence conditions satisfied by the
series (1.1b), the series (6.4a) with j=1, - - -, n are absolutely and uniformly
convergent for t in W, provided

(605) |P1(t) l7 ) Ipn(t)l = P"
where
(6.5a) 0<p'<p—p,

with p’ defined as in (6.3a).
We may write (6.4) in the form

t—Pp’.(l) (t) - li(ty P1y * pﬂ) = q-i(t’ P1y * ct Pﬂ) - Fi(t)

6.6

( ) (i = 1’ ttt ”)7
where

(6.6a) gi = Z Ay, wm‘(t)P;‘ ce

vyt etral
(cf. (6.4b)) and
(6.7  Fi@) =tV V@) — (¢, Yy, -+, Vo) — qi(6, Y1, - -+, V).
To determine the form of F;(f) we first note that, by (2.23a),
6.8 g, Ty, ¥ =2 X atecarali ).

H=2 hyte-thmy=H

We now recall that the functions

(6.9) - T3,
referred to in §5, depend only on the functions
(6.9a) TR ()]

of rank less than & (cf. Definition 5 and (2.26)); the functions (6.9a) have in
W the form (5.24). It is clear that the function (6.8) can be given by the ex-
pression ¢;(¢, 1, - -+, yn) (@) =5(), - - -, y(f) =s.(t) the formal series
(5.23)) provided that in the latter expression all the functions (6.9a) with
rank equal to or greater than NV have been replaced by zeros. Hence, in (6.8),

one has
,hl'. e

(6.10) 2T M) = gy

in the second member of (6.10) the functions (6.9a), for which v= N, are replaced
by 0. In view of the statements in connection with (6.9), (6.9a), and (6.10)
we have
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'hm(t) (H=2;3;"')N)'

(6.10a) ATy = T
For >N (6.10) will, in general, not hold. However, in view of (2.26) and
in consequence of the indicated connection between the coefficients in (6.8)
and the functions (6.9), it is inferred that, for ¢ in W,

thyyees

“ohm
T; (

'h"'(t) = generic form of Hl";"” f)
= cxp QL)+ - I Qul) e shamg =i

for all values of the subscripts and superscripts (cf. (5.20) and (5.21)).

In view of the developments of §2 and in particular in consequence of
(2.13) and (2.14) we see that if in the second member of (6.7) one replaces
the ¥; by the y.(¢) (formal solutions referred to in Lemma 4, §5), respectively,
this member can be formally expanded as follows:

"
(6.10Db)

(6.11) > > cf‘---c,,".",)\,,, ..... ki85

v=2 kyte o ++hgn=>

where

(6.112)  Meyveeestii(D) = £ " b i) = Lilly - -+ ) — T3 0).
From the definition of the functions (6.9a) it follows that

(6.11b) Moo knii(E) = 0

for all values of the subscripts.
If in (6.11) the functions (6.9a) of rank =N are all replaced by zeros we
obtain an expansion of (6.7),

0 k km
(6.12) F,'(t) = E Z (31l T Cm ,);;l,.u,k,,,:i(t),
vem2 Kyt o otk

(6.123) iy, i) = £ vﬂscl,).n-.k,..;i(t) =ity ) — vl‘;'kl """
where the functions (6.9a) are replaced by zeros for »= N. Thus, by (6.10a),
(6.11a), and (6.11b),

(6.13)  Neeoknsi®) = Meyeeeinii®) = 0 @w=23---,N—-1),
(6.132)  Nepoonnii(®) = — D7) W=NN+1,---).
Thus F;(?) is representable by

(6.14) —F) =Y X o eamritta),

VEN byt gy

In view of (5.21) one may replace wy_, in (6.10b) by
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(6.15) s=w+p+1.

Since
[e]* < | ¢]ee,

where £ is positive, however small, the inequality being inferred from Defini-
tion 4, §2, we accordingly obtain

(6.16) [0 | < grgrenein(®) | 2754607 (tin W),
where
hree (@) = | €xp [B1Q1() + - - -+ BnQu(t) 375t o |
(6.16a) - - -
m=rn+4+w- - ry=rn+w).
Hence by (6.2) and (6.14) we have, for ¢in W,
(6.17) |Fit)| < k()| t]5+ T grpein®)
kyte s o tky=N

(cf. (6.16a) and (6.15)), where %, is a constant independent of ¢’.
In the series (6.6a) the coefficients are given by (6.4b). In view of (1.1b)
it accordingly follows that
(6.18)  aypeeermii®) = 2 ,a,l“,,...,,,,+x,,(t)C{:+)" - C;:“" yf‘(t) - y:”(;),
A

1ot hn
where
(6.188.) )\lgo,'--,)\ngO; Mt +)\,.§2—(v1+ +Vn).

Since, in W, Y;({)~0 (i=1, - - -, n) and since by (6.18a) forn+ - - - 4v,=1
wehave M+ - - - +A. 21, it is inferred from (6.18) that

(6.19) Qoo ~ 0 (Fin Wi+ - 4 va = 1).
Furthermore

(6.19a) Ayyyevnnnii®) = j@uy,ee () + iBoyyeeon(®) i Fve=2),
where

(6.19b) Boreeem®) = 2 - ~0 (¢in W).

Arkee A1

By (6.19) equation (6.6) may be written in the form

(6°20) t—pp’.(l) (t) - li*(t, P1y, " " ", Pn) = q;k(ty P1y, " ", pn) - F:(t)
G=1,---,m),

where
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(6°203') ql*(t) P1, * " ,Pn) = Z a'p"'.'u‘i(t)p:l ce Pr'ln

Vit a2
(cf. (6.19a), (6.19b)) and
(6'20b) ll*(t) P1y " "y Pn) ~ lf(t’ Py, "t 0, Pn) (in tfortin W)‘t

LeMMA 5. The transformation (6.1), (6.1a) applied to the non-linear system
(A), §1 will yield a system (6.20). In (6.20) I* is linear in py1, - - -, pa, the
coefficients of py, - - -, p. being analytic, for t= o, in W; moreover, (6.20b)
holds. The q;* are given by (6.20a) and have coefficients analytic for t in W
(t5= ). The series (6.20a) converge absolutely and uniformly (for t in W
(|¢| =7’) and provided (6.2) is satisfied) whenever the inequalities (6.5), (6.5)
hold. The F;(t) are analytic in W (5% ») and the | F(t)| satisfy in W inequali-
ties (6.17). These assertions are made under the supposition that p’, r', and ¢’
(of (6.2)) have been selected so that inequalities (6.3a) and (6.3) hold.

7. The First Existence Theorem. We shall write for brevity
Gy kmn()) = €xp [B101(0) + - - - A+ knQu(t) Jg5i7i-+hmTm

@1 Gom it

and, with »>0,

(7.1a) grn(0) ——;.Zk,,.| Qhy,e-- e 2 (0) |

(klgo,"‘,kmgo;k1+"'+km=y).

If we recall that Qi(r)=qx¥*+ - .- (i=1,---, m), where ¢;#%0 and
1;/ki>0, and take account of

(7.1b) RQ:(1) £ ROx(7) £ - -+ = RQn(r) (rin R),1
it 1s inferred that necessarily

l l = L Im
(7.2) V=—=2o. .22y 5 5>

by ke ks kmn km

where 1 <m <m. In fact, if the contrary were the case, for some »(1 Sv<m)
one would have
lv lv+1

7.2a — < .
( ) kv kv-f-l

We shall write 7 =angle of 7. Let 7=7, be some ray, interior to R, with 7,

t (6.20b) is to mean that }*—l;=b,() 1+ - - + +bn(t) pn, where bs(¢)~0 for s=1, - - - , # and for
tinW.
1 R is the region of Lemma 4, §5.
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distinct from the limiting directions of the regular curves bounding R. Such a
ray exists since by hypothesis R is of positive opening. We have

x cos('+l'—)<0 )\' o (' +l,.+1_)<0
y = T y v = COS . T
(7.3) LT + AR

12 »+1
(Q-i=qu;i=17"',m)

since the above cosines can vanish only when 7, is replaced by the limiting
directions of the regular curves
RQ,(1) =0,  RQuu(r) =0,
respectively, and since in R
@D ~ 0, @ ~ (.
Now (7.1b) necessitates that along 7 =7, we should have

IQvI)‘v'lfll"/k"" e < q.+1|)\'u+1] T|1,+1/km+ cee

that is,

TN |t S g N+ - (x> 0),
which can be seen in view of (7.2a). In the limit, as |r| —. along the ray
T =7,, this will yield the inequality

0 < | gu] M1,
which contradicts (7.3). Hence (7.2a) is impossible and the truth of (7.2)

has been made evident.

DEFINITION 7. Let R be a region of the type specified in Lemma 4, §5. Let
W be a subregion of R of the character indicated in the same lemma. Thus,
W =R(a, az) (cf. Definition 3, §2), where 0 <az—ay<w/l’ (cf. (7.2)). Let W,
denote a subregion of W of the form

(7.4) W:= R(ay + & az — §) (¢ > 0 and sufficiently small)
where the two regular curves bounding W are the rays

Lt=a1+¢ Lit=az—¢ (|t =),
respectively.t .

In consequence of the definition of W; we have

!
(7.4a) —Iq.-lcos<Qa+k—l?)ée=e(E)>0 (t=1,---,m)

1
for rin W,.

t The rest of the boundary of W consists of an arc of the circle |¢] =r£ .
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DEeriniTION 8. If G is a regular region such that, whenever t is in G, all the
points of the ray Lr= Lt (|v| Z|t|) necessarily belong to G, and if q(r) is
positive and defined in G, it will be said that q(v) is monotone in G, provided the
upper bound of q(r) (L= Lt; |7| Z|t|) is attained at t for every tin G.

LeMmMA 6. Let Wi be a region as given in Definition 7. With

Q(n) =g+ -+ (@] =0;i=1,---,m)

(cf. (7.2)) and with e=e(t) denoting the number involved in (7.4a), let v(£) be
the least integer equal to or greater than

(7.5) et+|a Gl
€

Write

(7.6) )‘Akl ..... k;:h("') = I qklnu,k;:h(T) I l e—Q)\(f)T_;)‘I

(cf. (7.1)), where
(7.68) k1= 0,  k-20; kit - 4+ kh-=v20(); \=1,2,---,n.

There exists then a number r' =1r'(§, k), independent of N, ku, - - - , k=, such that
the functions (1.6) are all monotone (cf. Definition 8) in W (|t| =7").

To prove this lemma first take ' =7} i sufficiently great so that the functions
(7.7) | e@itn7 | G=1,---,m),
(7.7a) | exp [Qi(r) — Qu(7) Jr7a| (t=m;i<r)

are all monotone in W (|¢| =7'). The possibility of such a choice follows with-
out difficulty if we note that in W,

(7.7b) RQi(r) <0, R(Q«(r) — Qi\(7)) <O

for the values of the subscripts indicated in (7.7), (7.7a), while on the other
hand the following is true. If 7; denotes the limiting direction of any one of
the regular curves

(7.7¢) RQi(r) = 0, R(Qi(7) — Ou(7)) = 0 G=m;i

then, for 7 (with Z7=7) in W, we have |71 —7| = ¢ (£) >0.
In view of the statement in connection with (7.7) we infer that the func-
tions

(7.8) | gopvevermn(®) | #20, - ,v=20)

(cf. (7.1)) are monotone in Wy (|t| =7'),T these functions being expressible

IIA

m; i <N\,

t The statement in connection with (7.8) can be made also when 7 is replaced by m.
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as products of non-negative powers of functions monotone in W (|¢| 7).
Let \>m. By (7.6a) some k; (i <m) will be positive. Thus, if we write

(79) )‘Alcl,---,k;;h(f) = I Gy, ediml,e e T ,.(1-) | l e (N—Q\ (1) 5 r)‘l

we observe that the statements made in connection with (7.8) and (7.7a)
are applicable to the two factors of the second member of (7.9). Hence the
functions (1.6) with N> are monotone in W (|t| 7).

Suppose N\ < and kr>0. Then

(7.9a) Miy, () = l Qhyeee g1, k5 n(T) '
The statement in connection with (7.8) is again applicable, and the functions
(7.92) AN, kr>0) are seen to be monotone in W (|t| Z7'). [

Suppose N\=, kx=0, and some k;>0 (i<\). We then write (7. 9) and
demonstrate, as before, that the functions (7.6) are monotone in W, (under
the conditions just stated).

It remains to consider the case when A< and ky=ky;= - - - =k, =0. Nec-
essarily one must have A < since otherwise k;+ - - - +k5 =0, contrary to
(7.6a). One may write
(7 . 10) )‘Ak“. .. 'k;;h,(f) = l QDTN HRTR I . I 0, -+ 0 kng1—hagt, -+ ,k;—h;,(*) I,
where

(7.10a) M1 20, -, bz 20, g+ - F ha=wE); i Sk

(G=XA+1,---,m)
and

(7.10b) Q) = — ) +bpsOria(r) + - - - + kx0z(7).

Sets of integers (M4, - - -, k=), satisfying (7.10a) exist if (7.6a) is assumed
(as it now is). Moreover, there is only a finite number of such sets. The second
factor in the second member of (7.10) is monotone in W; in consequence of
the statement in connection with (7.8). It will be necessary to consider the
other factor. The real part of the function (7.10b) is of the form

(7.11) RO() = ¢@) | = | +
where '

@ty 0= | ] cos (@ + D)

+ [= ha| g cos (@ual'D) — - - — hz | gw | cos (gm + VD).
By (7.4a) and (7.10a)
[+ ]2 Unpa+ - - + kp)e = s(®)e.
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Thus from (7.11a), in view of the definition of »(£) given in Lemma 6, we get

e+ | gl
€

(7.11b) — 4@ 2 v®e—|q] 2 e—|al=¢ (inwp.

If (7.11) and (7.11b) are used it can be shown that

RQ(r) = ¢@ | 7["(A + (| =], )| 7] 8>0),
where |v(| 7|, 7)| <¥(r in W¢). Hence there exists a number
(7.12) r=1r(& b by, B

such that the factor of the second member of (7.10) is monotone in W,
(|#| =7). By virtue of the italicized statement subsequent to (7.10b) it is
concluded that the lemma holds, with #’ =7 (£, %) defined as the greatest of all
numbers (7.12) A=1, - - - ;@ —1; lry, - - -, k= such that 21 20, - - -, £, 20
and v+ - - - +Hm=v(%)).

Consider now the functions (6.20a) ; they are represented by series satisfy-
ing the convergence conditions stated in Lemma 5, §6. Write

(7.13) |pil < 0*, | wi]| S w* (i=1,---,n),
where
(7.13a) p* + w* < .

We then have |p:| <p’’, |pi+wi| <p”’ (i=1, - - -, n). With the conditions
of Lemma 5 satisfied one may write

QJ*(t;Pl'l-wl;" . yPn+wn) _q;k(t,Pl}' c 7Pn) = Z W
(7.14) F D Qi1 Wa

i z0,---,vzZ20n+--+v,=2),
where the functions ¢;.,, . .-, v, satisfy
(7.15) | gimeeom| = ¢,

provided (7.13) and (7.13a) hold. In view of the character of the coefficients
@,,. .-, i(t) in the series (6.20a), it is seen that ¢’ can be selected as a con-
stant independent of ¢ Since in (6.20a) »+ - - - 4,22 it follows that

aqs* kn

6 k
—= 2 ahem®@ercpa
ikt Hhaz1

and, by (7.13),
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ag

(7.15a)
dp;

< ¢"p* (¢"" independent of ¢).

By (7.15), (7.15a), and (7.13)
(7.16) | gXt, pr4 wy, - -+ ) = g} p1, - - )| < ngp*w* + g(w*)?
(¢ independent of #). Thus the following is true.

Let t be in W (|¢| =7’) (cf. Lemma 5, §6). Assume that (7.13), (7.13a) are
satisfied. Then :

Iq}t(t}pl'l-wl" ° ,Pn+w») _qu(t’ply"' ,Pn)l
< (¢'p* + qw*)w*,

where q', q are independent of t. These inequalities will continue to hold when
the p; and the w; are functions of ¢, provided that the inequalities (7.13),
(7.13a) continue to hold.

With the aid of the systems

(7.17)

—p (1)
t pi k(t) - ll*(t’ L k) = q}k(t’ Pl:k—1y " * 5 Pn: k—l) - Fi(t)'

(7.18) .
(J=1:"':”;k=0,1)"')’

we shall seek to determine in succession the functions p;:x (=1, - - -, #n;
k=0,1,--.).In (7.18) let

(7.19) pii—1=0 G=1,---,mn.
Write

(7.20) Pik = Pik1= Wik G=1,---,nk=0,1,---).
Thus

(7.20a) pik = Wio+ wi1+ - - - + wis.

The set (7.18) is equivalent to the sequence of systems

- ) . .
(7-21) ¢ pw;zlo(t) - l:*(t: Wy, * ° ,»'wn:O) = - Fi(t) (J = 1’ ) n),
— )
(7.21a) Pwinl) — L, Wik, Wed) = gk
. (j=17"',”;k=172"")7
where
(7 21b) 8ik = q}"(t, p1: k-2 + Wi k—1y * ° ° y Pn:k—2 + w k—l)

— qF(, pri—2y * * * y Prii—2) -

Under suitable convergence conditions the series
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(7.22) pit) = wio+ wir+ - - G=1,---,mn

will constitute a set of “actual” solutions of the transformed system referred
to in Lemma 5, §6.

In view of (6.20Db) it follows that, from an asymptotic point of view, the
solutions of the linear system, obtained from (6.20) by replacing the second
members by zeros, are identical with the solutions of the system (LA,), §2.
Thus the systems (7.21), (7.21a) may be written in the form

(7.23)  wia®) = 2o e U™y 0) G=1,---,mk=01,---),
A=1
where
. n ¢t
(7.232) & ) =2 | grare @O trg A (1)dr,
A=1
Here
(7.23b)  gio= — Fi(?)

and

(7.23c) i) = [t]*, ¥ = [i]* (¢tin W).
In view of (7.23c)

(7.23d) | y™i(t) |, [ 2@ | <|t]ey (¢ >0;¢in W).

Thus from (7.23) and (7.23a) it follows that, if |g;.:| <gr (j=1, - -, n),

n t

(7.24) | wia() | < my2 Y| eromte | f gr| R mntEre || pmimedr |
A=1

for ¢in W and provided the integrals involved in the second members of (7.24)

exist.

Henceforth, unless the contrary is stated, ¢ and T will be in W (cf. Defini-
tion 7) and we shall suppose that all the previous results (including equations
(7.21), (7.21a)) have been established with m replaced by i, where i is the in-
teger occurring in (7.2). Moreover, we shall take N 2v(¢) (cf. Lemma 6).

By (7.1a), (7.1), and (6.17),

(7.25) |Fi(r) | < g(r) = ko(c)¥ | 7 |~5+egqn. 5(7) @=w+p+1).

In view of (7.25) and (7.23b) it is seen that the function, obtained by dis-
regarding the factor |7~1~dr| in the integrand displayed in (7.24) (k=0),
is less than

(7.26) [ko(c)¥ | 7 [#+2¢ ] [y 5(r) | e O @r=0t® | | = i¥(7) (rin We).
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In consequence of (7.1a), (7.1)

(7.26a) ¥ (1) = ko(c)¥qn: no(7) | QM7= (ntho) ||
where

(7.26b) ho=&4 @y, ao=(§+2¢)/(N—1).
By (7.6)

(7.26¢) ¥ (r) = ko(C')Nkl’;'.k;)‘Ak, ..... ke iho(T)
(bit -+ ka=Nz2=ZvQd).

From (7.26¢), with the aid of Lemma 6, it is inferred that 4¥(7) is monotone
(cf. Definition 8) in W¢ (|¢| 27 (£, ho)).

In the sequel, whenever t is in W and T is the variable of integration, the
path will be selected along the ray

Lr= Lt (|‘r|§|tl)
The integral displayed in (7.24) (for £=0) is less than

¢ 1
(7.27) i) f el | de | = — (o) | £]-
€
when ¢ is in W (|¢| 27'(%, ko). With the aid of (7.24) (for £=0), (7.27), and
(7.26a) we obtain

2m/2

v
(.05 | re@] < 0O = wol t]hgwn ), wo = = k()

(j=1”"’”;tinW5(]t|g’,(gyho))-

Write

1
(7.29) hy = ho + au, a = v (— a0+ 2¢)
(cf. (7.26b));

(7.29a) w = (b=qg(1+,p")+9
(cf. (7.17));
(7.30) I'(t) = wowign: »,(¢)

(cf. (7.28), (7.1a), and (7.1)).
One will have

r” 4

p
1’ I‘(t) = 2
14p 1+,

(7.31) wi(t) < (¢in Wi(| 2] = ),
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where r* is some number =7' (&, ), =7’ (&, ho); (7.31) can also be obtained for
tin W, (|t| 27’ (£, k)) provided ¢’ is taken sufficiently small.

Since (7.21b) (for £=1), (7.19), and (7.28) are valid, and since, by (7.31),
w() <p’’, it follows from (7.17) thatf

(7.32) | g5:1(t) | < b(wdt(®)? = g(®) (tin We(|t| = ).
It will now be proved that
(7.33) | wia(®) | < T wdt(®) = wi() tin We(|t| 2 r%).

In fact, if we disregard the factor |r——dr|, the integrand displayed in
(7.24) (for k=1) is less than

b('wd"(r))2| e—Q)‘(r)T—r)‘+3+2e’| = bwozl r I-—ho+5+2e’qN: ho(‘f)
. [QN: }.O(T)e_o)\(’)T_')\"'o] .
By (7.26b) and (7.29), —ho+w+2¢' = Nay. Hence, for s =ho+a, one has

| 7| ht o2 gy ng(r) = qweny(7).

(7.34)

Thus the function of (7.34) is equal to
(7.34a) bwitgw:n(r) 2 M., ke iho(T)

In view of the inequalities satisfied by #* and in consequence of Lemma 6
it is observed that the functions (7.34a) A=1, - - - | » are monotone in W,
(|#| =7*). Hence the integral displayed in (7.24) (for £=1) is less than the
product of the function of (7.34a) (with 7 replaced by #) by

t
(7.34b) f | 7=1=¢dr |;

thatis, by (1/¢’) | ¢| —'. Making use of this fact, we infer from (7.24) (for £ =1)
that

"’Yz n
[ wia@) | < — 2 bwelgmn, () 20 My iz ne®) - | €O = wik(e).
€ 1 Byt k=N

By (7.6) and (7.29a)
wi¥(t) = ('wowl)QN:h.(t)(wol tl_"") Z T W ()

Eyte o thg=N
With the aid of (7.30), (7.1a), and (7.28), the truth of (7.33) is deduced from
this relation.

t In the second member of (7.32) b could be replaced by ¢(<b); this, however, is avoided in
order to simplify subsequent developments.
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By (7.33) and (7.31)

(7.35)  wi() < (1 i ,,) wi(t) < wil), wi) + wi) <o

for tin W (|¢| =7*).
In consequence of (7.21b) (for £=2), (7.35), and (7.17)

(.36 | 87901 =198l weo® + wia®), - ) = ¢, wial®), - )
' < (gwd(d) + qur@))wi(?) < bwd)wH() = gi ()

for tin Wy (|¢| 27%).
Assume now that for t in W (|¢| =7*) and for i=1, 2, , k (=2) we have
(7.37) | g0 | < g2(®) = bwdOwi(),
(7.37a) | wiia(t) | < wa(t) = D10 wi(E) G=1,---,n).
In (7.32), (7.36), and (7.33) this has been established for £ =2.
By (7.37) and (7.37a) (for i=k)
(7.37b) g () = T (1) (we'(9))*.
Thus, by (7.37) (for i=k)
Ig’ #(7) | I e~ (D p—ntat2e’ I < brk—l(.r)(w (,.))2[ e (Dmntatee |
—Q) (1) —(rx+ho)| I u+2e’—h°|

= b('ll)owl) QN:M(T)wO qu ho(‘r) I €

k=1 k—1
= bwe(wow1)  gw: n,(7) Z My, ho("')(l Tl
Eypte etk =N

().
Making use of the formula subsequent to (7.34), one obtains

I §i: L(T) I | e—Qx(f)f—q+5+2e"

(7.38) k1 e
< b‘wo le qu h (1‘) Z )\Ak,.u~,k; :ho(f) .
Eyte s k=N
The functions gs's,(7), aAx,. .. ..kma(r) are monotonet in Wy (|¢| =7*).[Hence

the integral displayed in (7.24) is less than the product of the second member
of (7.38) (with r replaced by #) by the function of (7.34b), that is, by (1/¢’)
|¢| . In view of this fact and (7.6) it is deduced from (7.24) that

n?;y?
(7.39) I W, k(t) | < (—, b)w:+lwf—qu ;.l(t) | t| E |qk;,--'.k’=ho(t) l
€ Y
By (7.29a) and (7.1a) .

(7.40) | i) | < i) = (wowignn (1)) *(wo] £[~ogwag(8))

t Because r*21'(%, ho), r*=r'(£, h).
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for tin W (|¢| =7*) and for j=1, - - - , ». Making use of (7.30) and (7.28) one
obtains
(7.40a) wi¥(t) = THOw ().

Furthermore, by (7.31), (7.37a) (fori=1, - - - , k), and (7.40a)

P\, .
(7.41) wHl) < (1 - ,,~) wit(t) (=01, , k).
Hence
(7.42) pEa®) = wd(t) + - - - 4+ wka() < (1 + o) w().
Alsot
(7.42a) wi() < (L";)k-wo*(t) < w(®) (¢in We(| ¢| = )
14+,

and, by (7.31),

(149 o)+ w) 3 wOX(T5=) < A+ 5wd0 < 5",

By (7.21b) (cf. (7.21a)), in consequence of the statement in connection
with (7.17),

| gsen1®) | =1 gt praa® + wia(®), - - ) = ¢, praa®, - -+, pmia(®) |
< (g'pia(?) + qui () wi(?).
Thus, by virtue of (7.43) and (7.42a), we have in W (|¢]| =7*)
(7.49) | girn® ] < [g01 + o) wd() + qui®) Jwi () = gial®).
Whence, in view of (7.29a),
(7.44a) g&a(t) = bw@)w(@).

In consequence of (7.40), (7.40a), (7.44), and (7.44a) it is observed that
the relations (7.37), (7.37a) will necessarily hold when £ is replaced by 2+1.
It has therefore been proved that these relations hold for k=2, 3, - - - . Thus, in
particular, in view of (7.31) one has

” k
| wir®)| < wi(®) = (1 _T_ p”) w ()

G=1,---,nk=0,1,---;tin We(| | = ).

(7.45)

t (7.42), (7.42a) may be replaced by more precise inequalities and the developments could be
given with a smaller b.
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Accordingly it is seen that the series (7.22) are absolutely and uniformly
convergent, and

(7.46) | pi@® ] < (1 4+ p")w@®) (= o) G=1,---,n),

when tis in W (|t] 27%).
From (7.21a), in view of (7.37), (7.37b), (7.40), (7.40a), we obtain

—p (1)

| win®) | = | gica(®) + 12, wrny -+ wai) | < | g n®) |

+E Y| was)] < U1 wd@) + KnDH0) Jui().

=1

Thus, by (7.31),

2 k
(7.47) | wint) | < b’( P ) wd®) (' =b+Kn).i
1+,
Hence the derived series
(7.48) > wia() G=1,-++,n)
k=0 N

are absolutely and uniformly convergent in W,. These series represent the
derivatives of the functions p;(f) (involved in (7.46)), respectively. By (7.47)

(7.49) 02| < B+ o wd®) | ¢]” (tin We(| £] 2 ).
We are now ready to formulate the following existence theorem.

THE FIrsT EXISTENCE THEOREM. Let R be a region referred to in §2 in
connection with (i), (ii), (7.9a), (7.9b). With Qi(r) (=1, - - - , n) denoting the
polynomials involved in the formal matrix solution (2.5) of the linear system
(LA,), §2, as a matter of notation we have in R

, RO:(t) = RQa2(t) < - - - = ROu(f); %9 ~0 (i=1,--+,m).
Moreover, the Qi(r) will be supposed to be so selected that, on writing
Qi(r)=qirtil%it - - - (i=1, - - -, m; ¢;%0), we have

= I= m
ll=£=iz-=---=—->l+l>~'->£— (1§7Tt§m).

kl kz km k7;+ 1 . km

Let W be a subregion of R of the form R(ou, o) (cf. Definition 3, §2) where
0<oy—oy<w/l'. With £>0, however small, W will denote a subregion of W

t Here K is a number equal to or greater than the absolute values of the coefficients of the linear
differential operators /;* (j=1, - - -, n); these coefficients, being asymptotically identical with the
corresponding ones in the /; are therefore bounded for £in W.
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of the form Wi=R(ou+§&, ap—§£) (cf. Definition 7). Let N be an integer = v(§),
where v(£) is the number defined in Lemma 6.

The non-linear system (A), §1 will possess a solution y;(t) (j=1,-- -, n),
whose elements y;(t) are analytic for t= o in W (|t| =7*), while at t= o they
will generally be singular. M oreover,

(7.50) yi() ~ si(0) G=1,--,mtinW(|t| 2 ).

Here the si(t) are the formal series given by (7.23), (7.23a), (7.24) of Lemma 4, §5
under the supposition that in that lemma m has been replacedt by m. The
asymptotic relations (1.50) have the following significance. The y;(t) are func-
tions of the form

Nl Ey ks iy
(7.503) y,‘(t) = Z Z C1Cy * - C- v"?kl,---.k,',ﬁi(t) + Pi(t);

v=1 kit -+kp=v
where ci, - - -, cx are arbitrary constants (|c;| <¢’;i=1,-- -, m) and

Mg en k= :,-(t) = exp (kin(t) B ki_nQr_n(t) ]tk.r.+...+k;r;;(r—1)w,.' [t]q(,)
(tin We(| 2] = )
(cf. Definition 4, §2, and (5.21)), where w, <w—+p~+1. Furthermore, the func-
tions p;(t) =p; (c1, - - - , cm, 8) are analytic for t= o in W(|t| 27*) and satisfy
in this region the inequalities
[pi(®) | < W(cH¥|t]@-Dho

- |exp [£:0:(8) + - - - + k’_nQ;l(t)]tkoro-l—-..-(-kmrml = np*(8),
(7500) kit oAkm=N

oi )| < B'| 1P xp*() G=1,mh=uotp+1+a)
(cf. (7.26b)), provided |c;| <c’ (i=1, - - -, m). The above holds under the sup-
position that ¢’ has been taken sufficiently small and that r* is sufficiently great.

(7.50b)

Note. The term “asymptotic relations” applied to (7.50) is justifiable be-
cause in the neighborhood of #= « the “remainder” term in (7.50a), that is to
say, p;(#), is essentially of the same order of magnitude as

k km
E Cll' - CTnmNnkl_...,k;‘;j(t).
kit k=N

In fact, for ¢ in W(|¢| =Z#*), the absolute value of the above function is less

than
| ¢4 % (6).

We consider it extremely likely that facts of the type of those stated in the

t This obviously has no effect on I’.
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above theorem will hold in the region W itself, even if in the formal series (in-
volved in Lemma 4, §5) m is not replaced by m, this being true at least when W
is subject to the condition that its opening (cf. Definition 3, §2) is less than
7/(21"). An attempt to prove this conjecture leads to analytic difficulties even
greater than those encountered so far.

8. Formal solutions for systems (B). The First Existence Theorem (§7)
is of course applicable to systems (B), §1. However, in view of the specialized
(as compared with systems (A), §1) character of these systems, results of a
more precise character, valid in more extensive regions, can be obtained by
treating (B) directly. We have

(B) i @) = ai(yn -, 9a) G=1,,m,
(8.1) ai(yy -y ) =bilyy 0 v F (v, ),

(8.1a) Ly, -y o) =luiyn+ - -+ 1n, Yy

(8.1b) Gt -y I = Diliyeeadt Y

(’1:1,1:2,,1,‘%0,114-+‘Ln22,j=1,,n),
the series in the second member of (8.1b) being convergent for
(8'2) Iyll"")lynlép""
Associated with (B) there is a linear system

(¢Y)

(LB) Yi (t)=li(y1:"':yn) (.7=1’1”)
which is equivalent to the matrix equation
(LBy) Yo@r) =Y®B, Y@ = (5.:),
where
B = (i,5) (Gj=1,---,m.

Here elements of a row in ¥ (¢) will constitute a solution of (LB).
The characteristic equation}

(8.3) E(a) =| (li; — ds4a) | = 0
has roots
(833.) ay, Gz, "t c, O) (1§)\§n,ak7£a,fork7£v)

of multiplicities

Mmy, Mo, * * -, M) (mi+me+ - +m=mn),

t The same remark is made as in the footnote in connection with (1.2).
1 Here (8;,;) is the identity matrix; i.e., 8;,;=0, for 7%, and 8 ;=1.
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respectively. The equation (LB;) will possess a matrix solution

(8.4) Y (@) = (e%'s.i(8) (,j=1,---,n),
where
(8 42) g=ar (i=1,---,mi); q.'=a2.(i=m1+l,~-,m1+m2); S,
gi = ay EG=m+---F+ma+1,---,n),
and the p;,;(#) are polynomials in ¢ of degree at most
m—1 ((fori=1,.---,my),
me—1 (fori=mi+1, ---,m + my),

(8.4b)

.....................

mo1—1 fori=m~+ - +my+1,---,n).

It will be assumed that not all of the roots of the characteristic equation (8.3) are
zero. Thus in (8.4) at least one of the ¢; will be distinct from zero.
In the sequel there will be occasion to consider the matrix

(8.5) Y-i(t) = V().
Since it satisfies the equation
YO() = — BY(y),

whose characteristic equation is E(—a) =0 (cf. (8.3a)), if we take account of
the interchanged role of the rows and columns we conclude that

(8.52) ’ Y1) = (§0.5(0) = (Be,i(t)e")

where the ;,;(#) are polynomials in ¢ of degrees at most as stated in (8.4b)
(with ¢ replaced by 7). Moreover,

(8.5b) (P:.i(0) (p.i(8)) = (8:,5) = I.
DEHNITIBN 9. S(ou, az; 7) will denote the sector
S LtE a (|| zn.

Let the B; denote the rays along whick R(q:t) =0 (whenever the constant g,
under consideration, #=0). Let

(8.6) S1, Sy - - -

denote the sectors separated by the B; rays and not containing any of these rays
in their interiors.

In the above set of sectors (8.6) there is certain to exist at least one sector
S such that the following holds.
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In the set of numbers q; (i=1, - - -, n) there are some, say

(8.7) ooy Qis " * 5 Tin (1=m=wn),

all distinct from zero, corresponding to which

(8.7a) R(gi,2) =0 (r=1,---,m;tinS).
As a matter of notation the functions gt involved in (8.7a) will be designated

as

(8.7b) qid, qab, - - ¢, gmd.

Henceforth, unless the contrary is stated or implied, we consider a particular
sector S of the above description. It will be designated as

(8.8) S(al, ag; f) (Oll < az)
(cf. Definition 9).
Let ¢, - - -, ¢m denote arbitrary constants, and consider a solution of

(LB) of the form
(8.9) 19i(t) = 25 aenipy, (D) G=1,---,mn).
A=1

We shall seek to satisfy the non-linear system (B) with the aid of the
formal series

(8.10) Yi(8) = 19i@®) + 29i@) + - - + 90 + - - - G=1,---,m),

where

(8.10a)
(ki s km 205 k14 -+ - + km = v).

For v=1 the coefficients in (8.10a) are already known. In fact, by (8.9),
(8-10b) eﬂtﬁ)\vf(t) = Mky,---, km:i(t) (x =1,---, m:j =1, 1”’)’

where k;=0 for i\ and &k =1.

On substituting (8.10), (8.10a) in (B) it is found that the coefficients
involved in (8.10a) satisfy the linear non-homogeneous systems (Sx), §2
(u=2, 3, - - - ). Furthermore, in place of (2.30) and (2.30a) we now deduce
in consequence of (8.5a) and (8.4)

n

(8 11) Hﬂhn"'v"m‘i(t) = Z c)‘(t)eqx‘p)‘,i(t) ,

A=1

where
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(8.11a) all) = iftHI'::'.‘.'M(T)ﬁx',x(f)e_q)‘fdr.
x

1=1

Here the
A ()

are given by (2.26).

LemMa 7. Consider the problem (B) at the beginning of this section. Let
Y (8), as given by (8.4), be a matrix solution of (LB,). A mechanism for construc-
tion of formal solutions (8.10) (cf. (8.10a)) of the system (B) is given by (8.11),
(8.11a) (cf. (8.5a) and (2.26)).

It will be convenient to introduce the following definition.

DeFINITION 10. Generically [t, v] is to denote a polynomial in t of at most
the vih degree.

By (8.10b)
(8.12) M, k(1) = €xp [(kl'ql + -+ k;.qm)r][r, m'|

(m’ the greater of the numbers (8.4b)). In view of (8.12) the left member of
(3.3a) becomes

(8.13) exp [(01g1 + - - - + dngm)7][r, ium’].
Applying the summation displayed subsequent to (3.3a) to (8.13), we get
(8.13a) F. = generic form of (8.13).

In view of (2.24), (2.19b) we have

a=1

(8.13b) JTFZ =exp [(mgi + - -+ + hmgm)r][r, sm'] (s = i1+ - - + in).

By (3.4)
I = Y > > ipein ILF

(8.14) b a2 Yrb a2 oo b
=exp [(lag1 + - - - + kmgm)7][7, 2m'].
Since
Pi,i(r) = [r, m'] (G,j=1,---,n)

in consequence of (8.14), it is observed that the integrand displayed in (8.11a)
is of the form

(8.14a) exp [(ngs + - - - + hmgm — g)7][r, 3m'].
Hence the integral displayed in (8.11a) is expressible as
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(8.14b) exp [(hgi+ -+ + hugm — @)t][t, 3m" + 1],

where 3m’+1 may be replaced by 3m’ whenever g1+ - - - +hngm—gr#=0.
One further finds that c\(¢) has the generic form of (8.14b). Hence, by (8.11)
(foru=2),

(8.15) My imii(8) = €Xp [(Bags + - - - + hngm)t][t, 4m’ 4 1].
In view of (8.12) and (8.15)

My, kmalt) = €xp [(Brgs + - - - + kmgm)7][7, )]
(oy=vBm +1) — 2’ +1);»=1,2).

On writing k;=k;7 (4=1, - - - , m), v=v,, substitute (8.16) in (2.26) (for u=3).
The product (5.8) will now be of the form

(8.16)

(8.17) exp [(Gugrt -+ - + Smgm)7][r, 0o ],
where
(8.17a) pd =3 oy = vaBm + 1) — ia(2m’ + 1)

r=1

(cf. (5.8a)). Applying to (8.17) the summation symbol subsequent to (5.8a)
one obtains

(8.18) F. = generic form of (8.17).
In view of (5.8¢)

. a==l

(8.18a) I1F: = exp [(lags + - - - + bmgm)7][r, 0" ],

where, by (8.17a),
(8.18b)  p/' = 2 pd =3@m +1) —s2m' +1)  (s=ir+ -+ in).

Here s may assume only the values 2 and 3. Hence in (8.18a) we may replace
[, i’ ] by [r, 5m’41]. Thus the functions involved in the left member of
(5.10) will possess the generic form of (8.18a) (where the indicated replace-
ment has been made). If now the first summation symbol of the last member
in (2.26) is extended over the functions (5.10), it is seen that the generic form
will remain unaltered. Thus

(8.19) I = exp [(agr+ « -+ + hugm)7]lr, S + 1].

Assume that, with p,=q(3m’+1) —(2m'+1),
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o1l e exp [(lgr + - - - + Ingm)7][7, pg + m']

(8.20) ,
By hm 205 ht - Fhp=gq+1;5=1,---,m),

and

(8.20a) Moo kmia(T) = €xp [(Bags + - - - + Emgm)7][7, p4]

(kl)""kmgo;kl'l'"‘+km=q;a=1,...,n)

forq=1,2,--- u—1(@E23).
Substitute (8.20) (for g=r—1) in (8.11a). The integrand involved in
(8.11a) will be of the form

exp [(hagi + -« + bumgm — @)7][7, pu—s + 2m'].
Thus the integral displayed in (8.11a) is
8.21)  exp [Ungs+ -+ + hingm — @[t prs + 20" + 1]

Here 2m’+1 may be replaced by 2m’ whenever hgi+ - - + +hngn—q 0.
Whence c\(f), as given by (8.11a), will be of the form (8.21). Finally, from
(8.11) one obtains (8.20a) with g replaced by u. By making use of the relations
(8.20a) (for ¢=1, - - -, u) we are going to prove that (8.20) holds for g=mn.
For this purpose use will be made of (2.26) (with u replaced by u+1). In
view of the equalities of (2.16b) it follows that

ia

(8°22) H c ot = €Xp [(5191 + -+ 6mqm)T][T; Pa, ]7

r=1

where, since ni+ - - - +v;, =v. (cf. (2.26)), p. is given by (8.17b). Next it
is inferred that ’

(8.23) > X% II--- = generic form of (8.22).
,k,,,a r=1

. 1
Vist e o¥iq kyaeee

Denoting the first member above by F./, in view of (2.19b), it is deduced that
(8.232) JIF. =exp [(gr4 - - + hngw)r][r, 00" ] (s=ir+ -+ + i),
a=1

where, by (8.17a)
ol = pd = Gm' + DD ya— @m + DY .

Now, since 1 in (2.26) has been replaced by u+1, in consequence of (2.24)
one has vi1+ - - - +v.=u+1. Thus p/’ =Bm’'+1)(u+1) — (2m’+1)s, where
s=2,3,---,n+1. Whence p;’ Zp;’ =py+m’ and, accordingly,
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i@ipeeein LLFS = exp [(lgr + - - + bmgm)7][7, ou + m'].

a=1

Extending over the left member of the above relation the summation symbol
with the superscript (4), one finally obtains

o exp [(h1Q1+ e 4 hmqm)T][T, pH+m']
by, b0+ -+ ha=8r4+1;7=1,---,n).

Thus it is seen that the relations (8.20), (8.20a) hold for ¢=1, 2, - - - . The
following result has been established.

hy
aql';

LeMMA 8. Consider the non-linear system (B), the associated linear system
(LB) (matrix system (LB.)) and the matrix solution (8.4) of (LB,) (cf. (8.3),
the statement regarding the zeros of E(«a), (8.4a), (8.4b)). With (8.6) denoting
the sectors in each of which the R(qit) (i=1, .-, n) do not change sign,
let S be a particular sector of the set (8.6) such that there are some ¢, say
Gy Giny " " 5 Giw (1Sm=m), all distinct from zero, for which R(q.t) =<0

(=1, - - - ,m;tin S). As a matter of notation designate the ..t involved in these
inequalities as qit, @at, - - - , qmi. The system (B) possesses a formal solution
(8.24)  si(8) = 1yi(®) + 2yi®) + - -+ G=1---,n)
where

) = X o exp (kg o+ kag)t][ts 0]

(8.24a)

k120, k2 Okt km=v;p=1,2,---).

Here ¢\, - - -, cm are arbitrary constants, p,=v(3m’+1)—(2m'+1) (m’ the

greatest of the numbers (8.4b) and [t, p,] represents generically a polynomial in t
of at most the p,th degree.

Note. Forv»2»’ (v’ sufficiently great) the p, can be taken smaller compared
to the p, given in the lemma. In fact, one may take p,=v(3m’)+a’(r2v’).
This is because g1+ - -+ +hngm—q (20, - - -, Eu20; Iln+ - - - +hu=v)
will certainly be distinct from zero (for A=1, - - - | #) whenever v is suffi-
ciently great.

9. The Second Existence Theorem. In general, the series (8.24) will not
converge in S or in any given regular subregion (cf. Definition 3, §2) of S.
However, as seen from the Existence Theorem of §7 there exist “actual solu-
tions,” asymptotic to the formal solutions (7.24) (in the sense of that theo-
rem) in certain regular subregions of S.

We shall follow up the method previously employed in establishing the
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theorem of §7, in order to obtain certain simplifications not directly obtain-
able from that theorem; more precisely, in order to obtain better results for
the problem now under consideration.

The ¢; will be again subjected to the inequalities (6.2). Applying trans-
formation (2.1) and (2.1a) to the system (B) of §8 the inequalities (6.3) and
(6.3a) should be satisfied. Now, in general, for ¢ in S (6.3) will not hold, no
matter how small ¢’ is taken (unless c;=c;= - - - =¢, =0, which is a case of
no interest). This statement is seen to be true because of the presence of the
polynomials [z, p,]. When the roots of E(e) =0 (cf. (8.3)) are all distinct,
(6.3) can be made to hold in S by taking ¢’ sufficiently small. We have
S'=S(cu, az; r) (Definition 9, §8). There exists a regular subregion of S,

(9.1) R’ = R(ay, o)
(Definition 3, §2), such that
(9.1a) | esstgpm+1| <1 (i=1,---,m;tinR).1

In R’ (6.3) can be satisfied with ¢’ (>0) sufficiently small. Assume, for the
present, that ¢’ has been so chosen. In place of (6.10b) one now has
,h ITRRE]

9.2) w07 = exp [(Ungy + -+ hagn)t)[t, pro + ']
Thus (6.14) will become

—F) =Y ¥ a e [(hat

YN kgt tkp=r
kmmt t) y— !
(9.3) + kngm)t][t, prr + m']

= t—4m’—22 Z Cfl « e C:.m exp [(qul + . e

V2N kgt otkp=v 1
+ kmqm)t]t’(zml+l) [7) st ],

where the [(1/#), - - - ] are polynomials in (1/#). Hence, in view of (9.1a),

9.4) |Fit)| < ko(c)¥ | t]=4™ -2 > grpeeein®) (¢in R')
kyte o tkm=N

with

(9'48') gklv"'»km(t) = l exp [(qul + tet + kam)t]tN(am’+l)|

(ki -+ kn = N).

For ¢in R’, in place of (6.19), (6.19a), and (6.19b) one may merely assert
that the

9.5) L IR () o+ +r=1)

1 The second member in (9.1a) can be replaced by any constant (5 «).
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and the
(9.5&) jﬁyh..._y”(t) (lll + e + Vn g 2)

are bounded.
However the following is noted. There exists a regular subregion R of R’
(cf. the statement made in connection with (9.1) and (9.1a)) of the form

(9. 6) R = R(al) 0‘2)
(cf. Definition 3, §2) such that
(9.6a) e%t ~ 0 (4=1,---,m;tin R).

Since in R, V;(§)~0 (=1, - - -, m) it is observed that the functions (9.5),
(9.5a) are asymptotic to zero for ¢in R.

LeEMMA 9. The transformation (6.1) and (6.1a) applied to the system (B)
of §8 will yield a system

1) .
(9°7) Pil (t) - li*(t: P1, * - ;Pn) = q:‘*(t’ [V 7Pn) —F;(®) (] =1, n)y

where

Qi*(f, P1, ", pn) Nqi(ph Tty Pn)1 li*(t: P1, " "y Pn) Nli(Pl; tee apn)
Gj=1,---,n;tin R)

(cf. (9.6)).T For tin R and |c;| <¢’ (i=1, - - -, m) the F;(t) satisfy (9.4) and
(9.4a). Also, for tin R (|t| =7) and | c;| Sc’ the series (6.20a), representing q.*,
converge absolutely and uniformly.}

In order to obtain a solution of the system (9.7) by methods of the type
of those used in §7, it is necessary to apply the methods of Trjitzinsky (cf.
(T2)) to establish the character of the solutions (within appropriate regions)
of the linear system

(9.7a)

(9.8) pi (&) — I¥(t p1y -+, pw) = O G=1,---,m).

Now (9.8) is equivalent to the matrix equation

(9.82) (bisi®) = (p.)) (154(8)) Gj=1--+,m),
where, by (9.7a),
(9.8b) A0 ~ sy (tin R).
1 In (9.7a) g{f~yg;, for instance, is to mean that in ¢ and ¢; the corresponding coefficients of the
" powers of py, + - + , p, differ by functions of #, asymptotic to zero in R.

1 With proper choice of 7 and ¢’.
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In view of (9.8b) the formal matrix solution of (9.8a) is the same as that of
(LB,) of §8; that is, it is given by (8.4). While the matrix (9.4) happens to
constitute an “actual” matrix solution of (LB;), in general of course it is not
an “actual” solution of (9.8a). Regarding “actual” solutions, we recall the
pertinent facts derivable from the Fundamental Existence Theorem of (T.)
and briefly outlined in §2 (cf. the text in connection with (2.6)—-(2.8c)). To
make applications to (9.8a) one needs to write

9.9) S(t) = (e%*pi,i(8)) = (e'tm1ps,i(2))

and let Qi(f) =¢it (:=1,---, n). Here the r; are certain integers and the
19:,i(f) are polynomials in (1/#). All the B;,; curves, that is the regular curves
along which

(9.10) R[(gi—gdt] =0 (whenever ¢; # q;)
and the B; curves
(9.10a) R(gt) =0 (whenever ¢; # 0),

are rays of the form Z¢=a constant.

DerFINITION 11. S’ is to denote any sector which can be constructed as fol-
lows. Consider the sectors separated by the rays (9.10) (3,7=1, - - - , n), no such
rays extending interior to any of those sectors. There will be some sectors (of the
above set) containing subsectors, interior to each of which a number of the func-
tions R(qt) is negative.t Take a particular such subsector S'’,

S = 8"(y1, v2; 7) (1 < 72)
(cf. Definition 9, §8). As a matter of notation we may now write
(9.11) R(g) £ - -+ £ R(gmt) £ R(gmsat) = - - - = R(gad),
(9.11a) Rlgt) =0 (qi#0;i=1,---,m;tinS).

A sector S'=S(n1+e, v2—e; 7) is defined as follows. If the ray Li=m
(ray £Lt="s) is not coincident with any of the rays

(9-12) R(‘IJ) =0 ('L =1--, m)7 R[(q: - Qx)t] =0 (i = m))

take e,=0 (take &,=0); in the contrary case we take & (fake €) positive, however
small. '

It is observed that in S’ (9.11) holds and
(9.13) etit~ 0 Gi=1,---,m;tin S’);
moreover,

t This is because, by hypothesis, not all ¢; are zero.
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(9.13a) | gi| cos (@i +7) < —e<0 (i=1,---,m;tinS).

In following the developments of §7, as applied to the present problem,
with ¢ in the sector S’, it is noted that the number i, introduced in connection
with (7.2), can now be taken equal to m. The inequalities (9.13a) will corre-
spond to (7.4a). Lemma 6, §4 (with i =m) will be valid for ¢t in S’ (|t| =7,
where 7' =7'(e1, €, h)). The latter fact can be inferred by noting that the
functions (7.7) and (7.7a) (for #% =m) are monotone (cf. Definition 8, §7)
in S’ (sufficiently far from the origin). This fact is deduced by observing that
the statement made in connection with (7.7b) holds for the problem under
consideration when ¢ is in S’ if we take into account the remarks made in
connection with the rays (9.12).

With S/ =5(8,, 8:; 7) (8:<98,) denoting a sector satisfying the conditions
of Definition 11, in consequence of (T2) one may assert the following.

The system (9.8a) possesses the matrix solutions

(9.14) (ii®),  (oui(®),

with elements analytic in S (for £ «), such that with ¢>0, however small,
(9.15) (pi, i) ~ (e%'pii(§)  (inSY = S(61, 62 — €; 7)),
(9.152) (piri(®) ~ (e%ps, (1)) (FinS§ = S(1+ ¢, 855 7).

Here the p;,;(#) are the polynomials of (8.4).

The existence theorem of §7 is applicable to the problem (B) for ¢ in SY
and, also, for ¢ in Sy . However, with the aid of the following lemma it will
be shown that an existence theorem for the problem (B) can be stated for ¢
in the more extensive region S’ as well.

LemMA 10. Let S’ be a sector of the type specified in Definition 11. The
system (9.8a) possesses a matrix solution (p;,;(8)), with elements analytic in S’
(¢ ), such that on writing

(9.16) (pi,i(#)) = (e%%t™'bi, (),

(9.16a) (b, i)™t = (i, i(®) = (t™'bs,(t)e9i")

(m' = greatest of numbers (9.4b)) we have

(9.16b) [0i0) | <v, [bai)] <v (=1, ,n;tinS).

To prove this we note that the matrix solutions involved in (9.15), (9.15a)
are connected by the relation

(9.17) @w»=m»@w»=(;%@wﬁ,
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where the ¢;,; are certain constants. Let o(¢) generically denote a function which
in the indicated region is asymptotic to zero. By (9.15a) and (8.5a) we have

(9.17a) (pi 1)t = (i) = ((Bi.i(t) + o(8))e~*) (in Sy').
From (9.17) and (9.15), in view of (9.17a),

Y = (n] . =17 = [ o(ai—ai)t . .
©0.18) (c0) = (oL O)EYAD) Q [;pmwmf+wﬂ)
(in53' =S(61+€, 52 ot e;()).
By (8.5b)
(9.182) (c0) = (i[5, ; + o(®)]) (in 7).

Letting ¢—« in S7 we infer that ¢;,;=1(;=1, - - -, n). Moreover, by (9.11)
¢:,i—0 (<j) when || - in Sy ; that is,

Ci,j = 0 ('L < ])
Thus, by (9.17) and (9.15a),

pii()) = pii(t) + i cinon.i(t)
9.19) = »
= eq“[l’f.j(z) + o) + X cineam194(py ;(0) + 0(‘))] (in §7).

=1

In consequence of (9.11)

| ea—art| <1 A=1,---,i—1;¢inS/);
moreover, the p;,;({) (i, j=1,---, n) are of the form [t, m’]. Hence the
p:,i(#) are of the form (9.16), (9.16b) for ¢ in S/ . By virtue of (9.15) it is seen
that they are of the form (9.16), (9.16b) in S’ as well. With e sufficiently
small S’ =S/ +S7. Accordingly, for ¢ in S’, the matrix (o ;(¢)) will satisfy
the conditions (9.16), (9.16b) of the lemma.

By (9.15), (9.15a), and (8.5a)

(9.20) (05,7 = @0.i)) = (Bei(®) + 0(®))e%) (in /),
(9.20a) (i, () = B:,5(0) = ((Bs.1(t) + o())e~%?) (in S¥').
If we write

(ci,)™* = (Ci.i),
it follows that
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(9.21) Ciit D Cinong = di;.

A=j+1
From (9.21) (for j =n) we deduce that¢,,»=1and ¢;,»=0 (i <n). Forj=n—1
(9.21) will yield éo—1,n1=1, ¢;,n1=0 ({<n—1); and so on. Thus

(9.21a) Gii=1 (= 1, n), Ci,i=0 (2 <j).
By (9.17) '
(9.22) 3ii®) = (B0 (E.:) = ( > T’E.Ix(t)fx.i)-

A

In view of (9.21a) and (9.20a)

piit) = pii+ 2 (Bin(®) + o(t))ent6y,;

A=j+1

=fw{mAD+M0+fﬂﬁﬁﬁ+dmmmKw—%MéJ,

A=j+1

(9.22a)

for ¢in S¢. Here, by (9.11),

(9.22b) | exp [(¢; — qt]| = 1 A=j41,---,ntinSd).
Now, as we have noted before, the p;,;({) are of the form [¢, m’]. Hence, in
consequence of (9.22a), (9.22b), it is observed that

(9.23) |5 | <v'|t|me it (,j=1,---,m;¢tinS7).

By (9.20) the | 5:,;(f) | satisfy inequalities of the same type in S/ . Hence, with
a suitable v’ (9.23) will hold in S’. This complétes the proof of the lemma.f

A solution of the system (9.7) will be obtained in the form of a convergent
series (7.22), the terms of this series being defined by the relations (7.19)-
(7.21b) (with p=0). In place of (7.23) we now have

©9.24) i) = 3 & Ooni),
Aml

where

(9.24a) o) = i tgx,: K(T)or, A (7)dr
=1

(cf. (2.28) —(2.30b)). Here the p;,;(#) and the p;,;(r) are the functions referred
to in Lemma 10. With the aid of (9.16), (9.16a), (9.16b) one obtains from
(9.24), (9.24a), provided |g;.+| <gs,

t Either of the matrices (p;,), (p/;) can be taken for the matrix (p,;) of the lemma.
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n t
029 wis®| <mpX|eniw| [ [ gul| e || |
A=1

fortin S’ (provided that the involved integrals converge).

It is essential to note that, for ¢ in S’, the inequalities (9.25) are of the
same type as those of (7.24) and that Lemma 6, §7, as we remarked subse-
quent to (9.13a), is applicable. Repeating the processes of §7, integrating
alongrays Z7= £t (|| =|¢|;¢in S’), the following theorem is now deduced.

THE SECOND EXISTENCE THEOREM. Consider the system (B), §8. (LB,), §8
will represent a related linear system. Let the q; denote the roots of the character-
istic equation (9.3) (a root of multiplicity m; repeated m; times). It is assumed
that not all the q: are zero. Let S’ denote a sector satisfying the conditions of
Definition 11. Thus, as a matter of notation, in S’ we have (9.11), (9.13), (9.13a).
Let N be any integer 2 v(e); here, with € denoting the number in the second mem-
bers of (9.13a), v(e) is the least integer equal to or greater than (e+|qn|)/e
A\=1 .-, m-1). :

The system (B), §8 possesses a solution, v;(8) (j=1, - - - , n), whose elements
are analytic in S’ (1= ). At t= o they will be singular. M oreover,
9.26) yilt) ~ si(8) G=1-,nmeins(|t| 2 )

where the s;(t) are the formal series (8.24) (cf. (8.24a)) of Lemma 8, §8. The
asymptlotic relations (9.26) are to be inter preted as follows. The y;(t)are functions
of the form

N—-1 ka Fom
(9.262) yi(t) = 22 2 v om exp [(bagit -
v=1 kyt- thp=v
+ kngm)t]sPrse i (8) + 05(0)
where ¢i, - - -, ¢m are arbitrary constants (|ci| <c¢’; i=1,-- -, m) and the
Dk, -+ ki) are polynomials in ¢ of at most the [v(3m’'+1) — (2m’+1) st de-
gree.t The pi() =pi(cy, - - - , cm; t) are analytic, for t5 w, in S'(|t| Zr*) and
satisfy in this sector the inequalities
(9.26b) | ps®)| < W)W |t 3 Jexp [(kagi + -+ + kngmt] |,
O
provided |c;| <c¢’ (i=1,-- -, m); here m"’ is a constant independent of N. In
the above we have assumed that ¢’ is sufficiently small and r* is sufficiently great.
Note. In this theorem the term “asymptotic” is justified for reasons of the
same type as stated in the note subsequent to the theorem of §7.
10. Uniqueness theorem. Turning our attention to the theorem of §7 we
observe that there is a manifold of solutions, depending on #% parameters c;,

t m’ is the greatest of the numbers (8.4b).
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such that the elements of the solutions, as well as all the derivatives of these
elements, approach zero as |¢| — o within W;. This set of solutions has been
constructed corresponding to some N(=»(£)). We shall write

(10.1)  y;(®) 5 5i(®) G=1,--,ntinW(|t| 2m); || ),

where ¥ is to signify (7.50a) and (7.50c); this symbol will be read as “asymp-
totic to NV terms.” It appears at the first glance that the y;(f) may depend
onN.

Let the y/ (£) be elements of a solution of (A), §1 such that

(10.2) Yy Os®  G=1- -, mein W] 2 ) [l S 0.
We may have 7y,1=7y. Form the difference

(10.3) zi(t) = v/ (t) — vi(t) = nyi(®) + o () — pi(t);

here xy;(¢) is given by (5.23a) and (5.24a), and p/ (¢) are the p;(¢) of the theo-
rem of §7, formed with N replaced by N+1. If we take account of (7.50c)
and of the note of §7, from (10.3) we infer that

(10.32) | 20| < Wwe*(®) 4 w0*®  Cin Wi [ 1] 2 1w || S ).t
By (10.3a) and (7.50c)
| 20| < &-wp*®)
qo.gy - FErlemme 3 lep [0+
+ ksQm() JtketthErE | = g¥(@)  (bin We(| t] 2 rven));

also, by the theorem of §7,

(10.4a) |9 | <mp*@) | 1|72 = 3*@)  (in Wi(| ¢] Z i)
It will be assumed that ry,; has been taken sufficiently great so that
(10.4b) 220 + y*() < p* <o (tin We;| t| = 7a40)
(cf. (1.2)).

By (10.4), (10.4a), (10.4b), in consequence of the statement in connection
with (7.17),1 we have
(104C) | Qi(t, Y1 + %2, 53 Vs + zn) - qi(ta Yy, * 0, yn) |
< A(g'y*(®) + gz (0))=(2)

t TakernaZ7n.
1 One now has g; in place of ¢j*; however g; is of the same description as g;*.
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for the indicated values of the variables. Hence ‘
(105) | qi(t: Y1 + 21, ) - qi(t» Y1, -t )l < allp*(t)NP*(t) I t|_E_2¢,
(tin We; | t] = raqa).
Subtracting the corresponding members of the relations

7(1)

(10.6) ey () =L, vy, 9h) =gt v, o),

(10.6a) t7Pyi8) — Uity v, 00, ¥n) = qilt, ¥y, 0, In)
G=1,---,n)

(cf. (A), §1, (1.1a), (1.1b)), we find that in consequence of (10.3)

(10.7) 5 @) = L, 5@, -, w®) = PTH G=1,---,m),

where

(10.7a) Ti(t) = qi{t, 1+ 51, - - - ) — qilt, y1,- -+ ).

Thus, by (10.5),

(10.7b) | T:0) | < a'wo*@)wp*(@) | ¢]-42 (tin We; | ¢] 2 rva).t

It is noted that the left members in (10.7) are of the form
Li(t) zl(t)7 Ty zn(t))a

where the differential operator L; is precisely the same as the one so denoted
in (Sw), §2 (also cf. (2.14a)). If we note that (Sx), §2 can be solved with the
aid of (2.30) and (2.30a) and that these formulas may be written in the form
(5.4), (5.4a), and (5.4b), the relations (10.7) may be written as follows:

n

(10.8) 2i(t) = D a(®)erWinmy (1),

A=1
where

n » t
(10.8a) al) = 2 | Thea®rntetey, \(1)dr,

=1
(10.8b) mi(m) = [1]*, @) = [7]* (rin We; | ] 2 rws).
The formulas (10.8), (10.8a), with the integrals taken as indefinite, would
give a general solution of (10.7) if z:(#), - - - , 2.(f) were considered as the un-

knowns and the T;(f) were considered as known functions of . In the case
on hand, however, the z;(f) by definition are known functions. Hence (10.8),

1 Throughout the discussion we keep |ci| Z¢’ (5=1,+ <+, 7).
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(10.8a) will be equivalent to (10.7) only if the integrations in (10.8a) are
suitably specified. One may write

n t
(10.9) al) =din+ 2 | Dy(Dea@rntetsy ((r)dr,
A=1Y oo
where the path of integration (for ¢ in W;) is within W, and the d;, are
certain constants. The integrals here involved exist in view of (10.7b). The
integrand displayed in (10.9) being analytic in W, (¢ «), the path of in-
tegration will be chosen as the ray

Lr=1Lt (| 7] =z |¢|;¢in wy).
Substituting (10.9) in (10.8) one has
(10.10) zi(H) = ¢i(0) + ¢/ 0,
where
(10.10a) & @) = é dine Oty i(8) G=1,---,n);

on the other hand the ¢;(¢) will satisfy inequalities, provided | 7x,(r)| <T(r),
n t
(10.10b) | £, | < mya?2 | eartOpmte | f | T(r)emamq=nt@r2e | | y=1='dr |
A=1 ©

In consequence of (10.7b) and in view of the notation introduced at the be-
ginning of §7 (cf. (7.1)-(7.6))
| T(T)e—Q)\(T)T—r)‘+;+2e’| < ' 1p*(r)np*(7) | r ]—E—2e'l e~ (D tot2e’ l

= M Qarae(D) 2 Mg my(T),
krke stk

where iy =@+ (¢+2¢’)/(N —1). Hence, by Lemma 6, §7, the second member
of (10.11) is monotone (cf. Definition 8, §7) in

(10.11a) We (|t z 7 B) = rvs),

(10.11)

where 4 is the greater one of the numbers @+2¢’ and 4y. Hence the integral
displayed in (10.10Db) is less than the second member of (10.11) (with 7=%)
multiplied by |#|~'/¢’, provided ¢is in the region (10.11a). Thus, by (10.10b),

a'nye?, _
(10.12) |50 | < ———[t[=4p*Ou*®) = 550) = gB0),
_ 'p2 ’
(10.12a) gd) = a"| t|5tp*(), o =2 ,;o
€

t Note that, by (10.8b), | v:,i(¥)], | 7.i®)| <|¢| ¢’ (¢>0) in the indicated region; &=w+p+1,
asin §7.
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for ¢ in the region (10.11a). In (10.11a) take 7’(¢, &) also sufficiently great
so that in the indicated region

(10.12b) g £56< 1.
Since, except for a constant factor, g(#) is of the form
I tF’“"QnO(t)

(cf. (7.1a)), by virtue of the definition of 4 it follows that g(#) is monotone in
the region (10.11a).
If we make use of (10.10), (10.4), (10.12), and (10.12b) we conclude that

(10.13) l ¢ (t)l < (14 9)3F() (¢in Wy; | ;| = 7(¢ k).
Let R be some fixed ray interior to W;. On R
(10.14) RO\(#) = - -+ = RQu,(t) < RQn1(t) = -+ = RQa,(#) < -+~
| < ROusta®) = -+ = ROnp_ () < ROnesi®) = -+ = ROw(®)
(”w = n)
and
(10.14a) exp [0:(t) — 0i())] ~0 (ton R)

for ¢ <j, whenever Qi(f) £Q;(#). In view of (10.10a) one may write

(10.15) ¢/ () = €@ (8) + e (O¢] o 1() + - - - + (O] 1(8),

where

(10.153) 5,00 = D diati(d) (me=0;vp=1,---,0).
A==y _ 1+1

With o(#) denoting generically a function ~0 (for the indicated values of ¢),
in consequence of (10.14a), (10.15), and (10.15a) we have

(10.16) ¢ () = O[]0 + o()] (ton R).
By virtue of (10.13)
(10.16a) | Cre(®) + 0()) | < (1 4 8)zi(f)eQnet® (¢ on R).

If note is taken of the properties of the functions (7.6), for k14 - - - +kz=v»
=N 2=v(¢), it follows that the second member in (10.16a) is ~0 along R.
Hence the function of (10.15a) for » =¢ must be ~0 for £ on R. In view, how-
ever, of the origin of the functions involved in the second member of (10.15a)
for » =0 this would imply that necessarily

(10-16b) g-;'.a(t) =0 (.7 = 1’ T n)-



294 W. J. TRJITZINSKY [September

We substitute (10.16b) in (10.15) and prove that ¢} ,.()=0(j =1, - -, n)
in a way analogous to that used in establishing (10.16b). Thus, step by step
it is shown that the ¢7,,(¢) are all identically zero. Hence, from (10.10) and
(10.12) it follows that

(10.17) |20 | < g®)ai(t) = 2 ®) G=1,---,n

in the region (10.11a) (where »'(¢, %) is assumed to satisfy the condition
stated in connection with (10.12b)).

We repeat the procedure beginning with (10.4), replacing (10.4) by
(10.17), and letting t remain in the region (10.11a). It is observed that (10.4b)
will be satisfied, with z.*(¢) replaced by 2:*(¢), since g(#) <1. Moreover, (10.4c)
with z*(¢) replaced by z.*(¢) will hold. Now

('y*(8) + g2 (1)22(1) < [(¢'y*(®) + gzt @)z (1) ]e(®),
so that (10.5) becomes
(10.5) | qilt, i+ 21, -+ ) = qilt, 3, - - ) | < i @Onp*@) | £]7E2500).

Whence in the second member of (10.7b) we may introduce g(#) as a factor.
The argument is the same until we obtain the relation (10.11). The second
and the third members of (10.11) are to be multiplied by g(¢). Designate the
resulting inequalities by (10.11). Now, as remarked before, g(r) is monotone
in the region (10.11a) (with #’(£, &) chosen so that (10.12b) holds). Along
the path of integration indicated in (10.10b) g() <g(#). Hence in place of
(10.12) one now obtains

(10.18) l &0 I < g2z (t) = 2(@) (t in the region (10.11a)).
As established before, we have ¢/ (£)=0. Thus in (10.18) ¢;({) may be re-

placed by z;(?).
It is not difficult to prove by induction that

(10.19) | 2,0 | < g*@®)z2() G=1,---,mk=1,2--")

for t in the region (10.11a) (such that (10.12b) kolds). The latter region is inde-
pendent of k. Let £=/, be any point in the above region; since by (10.12b)
and (10.19)

Izi(to)l<6kzl*(t0) (j=1,"',ﬂ;k=1,2,“°),

where the second member can be made as small as desired by a suitable choice
of k, it follows that z;(¢p)) =0 (=1, - - - , »). Thus

(10.20) 2(6) = 0 G=1,-,n).
Whence, by (10.3), it is concluded that the solutions referred to in (10.1) and
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(10.2) are identical. It is thus inferred that the elements of the solution de-
scribed in the First Existence Theorem are independent of N so long as
N =»(¢). The same result will hold for the theorem of §9, even though the
latter theorem is not a special case of the first. One needs only to apply the
result established for the theorem of §7 to a suitable subsector (a ray, even,
is sufficient) of the sector for which the theorem of §9 has been stated;
(10.20) will then hold in the original sector in consequence of a well known
property of analytic functions.

UNIQUENESS THEOREM. The solutions of the existence theorems of §§7 and 9
are independent of N. Thus, if

yl(t): y2(t)7 ) yn(t)

are the elements of a solution of the non-linear differential system under con-
sideration, and if

s1(8), s2(8), - -+ 5 sa()
are the corresponding elements of a formal solution, we have

(10.21) vi(®) ¥ si(®) G=1, - ,mn;t in the indicated region),

where N=v(§), v(§)+1, v(§)+2, - - - . For any fixed N (Zv(£)) the “asymp-
totic” relations (10.21) are to signify that the v;(8) are functions possessing the
properties described in the existence theorems referred to above.

Note. The above theorem, then, implies that the solutions mentioned in
the theorems of §§7 and 9 are asymptotic to the corresponding formal series
not merely “to N terms,” as stated in those theorems, but also in the ordinary
sense; that is, to infinitely many terms.

11. Systems (C). Our purpose will now be to investigate in the complex
neighborhood of the singular point A = oo the analytic character of some of the
solutions of systems (C), mentioned in §1. A system (C) will be assumed to
be of the following form:

(11.1) NPy (x) =a;\, %, 3, - ,¥) (G=1,---,n;paninteger = 0),}
where A is a parameter and
(11.12) a;(\, %, 91, - -+, n) =LA, %, 91, - -+, n) + @GN %, 91,0+, ya),
(11.1b) L\ @, 31, - 9a) = DN )yt i D)y,

L D DI NN WE) DA
(G -y @aZ20ii+ -+ 22;7=1,---,n).

t Indicated derivatives are with respect to x.

(11.1¢)
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Here the I;,;(\, %), ja4,,...,.,(\, x) are functions representable by series of the
form

(11.2) co(x) + (N1 + o)\ A - - -,

where the ¢,(x) (v=0, 1, - - - ) are continuous, together with their derivatives
of all orders, for x on the closed interval (a, 8). Moreover, the series (11.2)
are assumed to converge absolutely and uniformlyf{ for x in (ay, 8;) and for

(11.3) RYEX2

The series involved in the second member of (11.1c) are assumed to be
absolutely and uniformly convergent} for

(11.4) a2 x =By [Nz ol [yl [ 9] So.

Moreover, it will be assumed that the system obtained by replacing the q;
by zeros is actually of order n. ‘
Associated with the problem (11.1) there is a linear system

(11.5) k—ﬂyj(l) (x) = l,()\, Xy Y1, 0, yn) (j = 1’ I n).

A general analytic theory for systems of this type has been given by Trjitzin-
sky.§ It will be assumed that the reader is familiar with the results and meth-
ods contained in (T;). In connection with the earlier contributions to the
theory of linear systems containing a parameter, we shall mention papers of
outstanding importance by G. D. Birkhoff,|| J. D. Tamarkin{ and P. Noail-
lon.{t Some additional references to the contributions of these and some other
writers may be found in (T;).

1 The functions under consideration will be analytic in A for [A| Z# (\=w included) when #
has any fixed value in (au, B1), if it is assumed (as it is) that r is sufficiently great. For every fixed A
( A| =) these functions are continuous in x for x in (e, 8), in consequence of the assumed uniformity
of convergence of the series (11.2). This continuity is uniform with respect to A (| )\] =r).

1 r is taken sufficiently great and p sufficiently small so that, for x in (ay, B1), the functions
gi(\, %, 31, + <, ya) are analyticin (A, 3, -+ +, yn), at A=, y=y,= - - - =3,=0), for (I)" 2r;
{yll , Iyg] I |y,.| =p). For any set of values, such that (11.4) holds, the g; will be continuous in »
for x in (au, B1).

§ W. J. Trjitzinsky, Theory of linear differential equations containing a parameter, Acta Mathe-
matica, vol. 67 (1936), pp. 1-50. In the sequel this paper will be referred to as (T3).

|| G. D. Birkhoff, On the asymptotic character of solutions of certain linear differential equations,
these Transactions, vol. 9 (1908), pp. 219-231.

q J. D. Tamarkin, Some general problems of the theory of linear differential equations and expan-
sions . . . , Mathematische Zeitschrift, vol. 27 (1927), pp. 1-54.

11 P. Noaillon, Développements asymptotiques dans les équations différentielles linéaires d parameétre
variable, Mémoires de la Société des Sciences de Liege, (3), vol. 9 (1912), 197 pp.
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12. Preliminaries for systems (C). The linear system (11.5) is equiva-
lent to the matrix equation

(12.1) Y®O(x) = Y(2)4(\, 2), Y(x) = (yii(x)),
(121&) A(X, x) = ()‘pli,i()\7 x)) (i’] = 1; ] ”)
(cf. (11.1b)). A solution of (12.1) will consist of the # elements in a row of
Y(#). Now, this system is of the type to which the results of (Ts) apply. It is

to be noted that the linear system on hand possesses a singularity at A= oo
It will be convenient to introduce the following definition.

DEFINITION 1. Generically {\, x} (integer ¢ 20) is to denote a series possibly
divergent for all N o , of the form

ao(x) + ar()NE 4 oo g (N4

(integer k>0). Here a,(x) (v=0, 1, - - - ) is, together with the derivatives of all
orders (whick are assumed to exist), continuous on some real interval.

The system (12.1) possesses a formal matrix solutionf

(12.2) SO\, %) = (5:,(, %)) = (e@®g; ;(N, x)).

In (12.2) .

(12.2a) o:(\, x) = Z g ()N ks (integers k; = 1),
(12.2b) aii(\, %) = {\, x} G,j=1,---,n)

(cf. Definition 1), the functions of x in the second members of (12.2a) and
(12.2) being, together with the derivatives of all orders, continuous on a sub-
interval (o, Bz) of (a1, B1).1 Henceforth, unless stated otherwise, attention will
be confined to a particular such interval (o, B2) and its subintervals. The inter-
val (e, PBe) i taken so that for no x in (s, B2) do any two roots of the character-
istic equation of (12.1) coincide, unless these two roots coincide throughout
(o2, B2).§ The intervals under consideration are closed.

By the Fundamental Existence Theorem of (T;) in particular the follow-
ing can be asserted.

Let (ay, B2) be an interval as stated above. Let the B} designate curves in the
\-plane, extending to infinity, along which

t That is, the determinant | S(x, \)| does not formally reduce to zero.

1 It is to be noted that (e, 81) may contain values of =1, such that in two intervals contained
in (o, B1) on different sides of x, the system (12.1) will possess distinct formal matrix solutions (12.2).

§ That is, (a2, B2) is such that roots which are distinct for some x in (a2, 82) remain distinct
throughout (e, 82); while any two roots coincident for some x in (a, 82) will coincide throughout this
interval.
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(12.3) RQM (N, %) = RQM (N, %). 1

There exist subintervals of (as, B:) such that , when x is restricted to one of them,
there exists a regular (cf. Definition 3, §2) region R in the N-plane so that there
are no curves B} interior to R. Let (', B') denote any particular subinterval
mentioned above. As a matter of notation we may write
(12.4) RO (N, x) £ ROV, %) < -+« < RO, x)
(% in (’, 8'); N in R).
Let o be an integer, however large. The system (12.1) possesses a matrix

solution Y (N, x), with elements analytic in X (\= ) and continuous in x for x
in (o’, B’) and \ in R; moreover, for the indicated values of the variables}

(12.5) Y (N, %) ~ S, )
(cf. (12.2)).

Consider a matrix solution satisfying (12.5). Form another matrix solu-
tion

(12.6) Y\ %) = (3,6, %)) = (8:,567%%2D) Y (N, %),

where (9;,;) is the identity matrix. We shall have

(12.6a) Y(x, N) ~ S*(\, %) = (6520, 5\, %)) (xin (o, B'); N in R)
(cf. (12.2b)), and
(12.6b) Gi(\, %) = Qi x) — Q:(\, ).

Since,§ by (12.6b),

Gi()\, x) = Gi(l) ()\, u)du

u=a’

and
RGN, x) = f RQV (N, w)du,

u=a

t Whenever Q:(A, x)=Q;(), x), the corresponding B'“, curves will be said not to exist. Through-
out it will be understood that these curves extend to infinity and that sufficiently far from the origin
they are simple; moreover, at infinity they will possess limiting directions. A particular curve (12.3)
will depend on x; as x varies in the interval this curve may vary, remaining always interior to a sector;
the angle of this sector can be made as small as desired by taking the interval for x suitably small
(ct. (T3)).

1 ~ is to denote an asymptotic relation in the ordinary sense (unless the contrary is stated);
that is, to infinitely many terms.?;’ denotes an asymptotic relation, to « terms. These relations are
with respect to A and are “uniform” with respect to x (x in (a’, 8)) (cf. (Ts)).

§ Throughout, differentiation is never with respect to A.
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if it is noted that
RGO, 3) — Gilh, @) = f RQ™ O\, %) — O (A, 1))du,

in view of (12.4) it is concluded that
RG,(\, %) < RGy(\, %),

whenever »<k, x isin (a’, 8’) and N is in R. Thus, for the indicated values of
the variables

(12.7) RGi(\, ) = RGo(\, %) = - - - £ RG.(\, x);

moreover, if for x in (a’, 8’) and X in R and some 2, we have RQ;¥ (A, x) <0,
it will follow that for the same values of the variables

(12.7a) RGi, %) < 0.

The case of interest is when not all the Q;V (N, x) are identically zero. This
will be assumed.

DEeFINITION 2. T'(a’, B’; R) will denote the aggregate of the values of x and \
such that

(12.8) o SxZ B and \is in R

(e’ <B’; R aregular region (cf. Definition 3, §2)) T'(a’, B8’; R) will be said to be
proper if

(i) The interval (o', B’) possesses the properties attributed to (as, B2) in the
italicized statement subsequent to (12.2b).

(ii) With suitable notation, we may assert the validity of (12.4) in
I'(e’,B’; R).

It is observed that if we take the interval for x sufficiently small, proper
regions I'(e/, B’; R) can always be constructed. By the Fundamental Exist-
ence Theorem of (Ts) it follows that, given any particular proper region
I'(e’, 8’; R) and any «, however large, there exists a matrix solution of (12.1),
say .Y (\,x), which satisfies in T'(a’, 8’; R) the conditions of the italicized
statement made in connection with (12.5).

Since not all the RQ;V(\, x) are identically zero, in view of the statement
in connection with (12.7a), it is inferred that there exist proper regions with
the additional property

(12.9) RO (N, 2) = -+ = ROLV(\, x) = 0;
that is,
(12.9a) RGi(\, %) £ - -+ £ RGo(\, v) £ 0,
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satisfied in the region under consideration (1=m=n).
Hence it is not difficult to see that there exist regions satisfying the
following definition.

DEFINITION 3. A region T'(c, d; R’) (notation of Definition 2) will be said
to be admissible if it has the following properties:

(a) There exists a region T'(a’, B’; R), proper according to Definition 2, such
that the interval (c, d) is contained in (', B') and R’ is contained in R. With
suitable notation we may then write

(12.10) RO (N, ) £ RQ:Y (N, %) = -+ - = ROV (N, )

in T'(a’, B’; R) (we may also write (12.7); cf. (12.6b)).
(b) For somem (1=m=mn)

(12.10a) RO (N x2) =0 (¢=1,---,m;inT(,d; R)).
It is observed that (12.10a) implies
(12.10b) RG:(\, ) £ 0 (i=1,---,m;inT(c,d; R)).

(c) Whenever the number m employed in (b) exceeds unity we also have
(12.10c¢) ROV (N, ) = 2RO (N, ) (inT(c d; R)).

Admissible regions for which m =1 (that is, (a) and (b) are satisfied and
() is deleted) can be always constructed. Admissible regions with m >1 will
exist in a wide variety of problems.

Consider now a particular admissible region T'(c, d; R'), subset of a proper
region T'(a’, B’; R). Let
(12.11) Y\ 2) = (oyi,i(, %))
be a matrixz solution of (12.1) satisfying (12.6a) (cf. (12.6b)) aend (12.10) in

I'(a’, B’; R) ; moreover,in T'(c, d; R’) we shall have (12.10a), (12.10b), (12.10c).f
On turning to the system (11.5) it is noted that a solution can be taken in

the form

(1212) lyi()\, x) = zm: Co Oya.i()\, x) (j =1, "’);

o=1
where ¢i, Cs, - - - , Cm are arbitrary constants (which may depend on \). We
shall seek to satisfy the non-linear system (11.1) with the aid of the formal
series
(12.13) i\, %) = 19i\ 2) + 29 ) + - Fyih 2) -
G=1,---,n),
t (12.10c) is deleted if m=1.
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where 1y;(\, ) is given by (12.12). The ,y;(\, x) will be determined as func-
tions of the form

k km
(12.13a) Wi E) = D Gt Gk ii(Ny %)
k"...’km

(ki » s km 205 k14 - - + b = ).
For v=1 we may write
(12.13b) Oyv,i()‘; %) = pULTITEN k".‘i()" x),
where
ki=0 (fori o), ks = 1.

Substitution of (12.13) in (11.1) will result in a set of differential rela-
tions; the coefficients involved in the second members of (12.13a) must
satisfy these relations. Formulas of this kind have been calculated in §2.

It will be convenient to collect together, with some slight modifications, those
of the formulas which will be needed in the sequel. We have

hy

(12.14) Li()\, Xy HNhyyoooshyily © " ° 9 HNMhy,--, hm:ﬂ) = )\pHF,‘
(j=1,---,n;H=h1+"' +hn;h020;"')hmgO;H=2,3y"’)7
where ‘

1)
(12.l4a) L,' = HNhy,---, hmid Xpl,'()\, Xy HNMhy,y-o-, hpily © "y Hﬂhl""vhmm)

(cf. (11.1b)) and

, b ) n ia
(12.15) aT; =>% eIl X DI | PRI

aml yyte Vi =T, kll.""km’¢ ra=1
4+ Fhba=8;52=20, -, by, =0).
In (12.15)
w ® ; )
(12.16) 2= X 2 2 (nmZdy o, v 2 )

=2 igkeebinms koot Ya=H 81 ondm

with

2(3)=Z{15q+"'+n5q=h4’ @=1,-,m);

(12.16a)
Wit e =y ;n51+"'+n5m=‘yn];

moreover,
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(12.17) bl b b ke =S kbt kal =
R e !
Also, formally, - '

1) ad hy hn
(12.18) y; (x) — Nai 2, 91, 98 = 2 D G CmEW ke bty
H=2 hyt--+hp=H

where

Bareen .
(12.188) m¥n,.ee i = LiQAy %y B ity * * * 5 HAgeeshm) — N &L *

Consider a non-homogeneous system corresponding to (11.5),

(12.19) yi (@) = NLO 2y, ) =g (=1, ,m).
We then have
(12.20) yi(k, x) = Z Cﬂ()‘) x)oyﬁ.i()" x) (j =1,---, ”),
B=1
where
(12.20a) a0, 2) = 3 [ swosesh, wd,
=1

provided that the integrals here involved converge. Here the oy,,;(\, ) are
from the matrix solution (12.11), and the oj.,.(\, %) are the elements of the
inverse of the matrix Y (A, ») ; that is,

(12.20b) (o358, #)) = (opi.i(A, )"
An application of (12.19)-(12.20b) to (12.14) yields

(12-21) Hﬂhl.-“.hﬂfi()‘) x) = Z Hcﬂ()‘: x)oyﬂ.i(x) x)y

B=1

(12.21a) gash, 2) = 20 NED W) o s (N, w)du.

T=1

13. Formal solutions for systems (C). We shall proceed now with
I'(a’, 8’; R), T'(c, d; R’) and Y (A, ) having the meaning assigned to these
symbols in the italicized statement made in connection with (12.11). Thus

(13.1) 0¥8,i(\, ®) = e%8M2)yg i\, ),

“where
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(13.1a) ¥8.i(\, %) 5 {\, %}

(cf. Definition 1, §12) in I'(a’, B’; R). Definition 1 here is applied, of course,
for the interval (a’, B’). Taking account of (12.20b) and noting (formally)
that | S*(\, »)| #0 (cf. (12.6a)), we have

(13.2) oFjr8(N, ) = 8OO\, 5(N, u),

(13.2a) ¥r.8(\, %) > {\, u} (w an integer = 0) ,

where & <a and a— o with a. Also

(13.3) [y, ) [, |36 2) | < (in T(«, B'; R)).
In place of (12.21) and (12.21a) we now may write

z

(13.4) g N, %) = D B0 D (N, ) D0 | mlep(N, w)du

B=1 Te=1
(cf. (13.1a)),
(13.4a) wlo O, 6) = gDt "™ (w)eGaOwnrroy, 4\, 1)
(j=1,“','nr;3=h1+"'+hm;h1%0,"‘,hmgo;ﬂ=2,3,"’)

(cf. (13.2a)).
For #=2 (12.15) becomes

,,,,

(13.5) A i
= 2(4) iail ..... in(x) u) H E 2(2) H ”rnk'; """ k"n:a(x, u) *

a=1 vyt ri =i, r=1

On the other hand, in view of (12.13b),
(13.6) oo iniah, %) = exp [B 71N, %) + - - - + Ea Ga(N, w) ][N, #]a
(A4 4+ km=1;a=1,---,n;\uinT(, 8'; R)).

Here and in the sequel [\, %], is defined as follows.

DEFINITION 4. Generically |\, x]. (\, x in a region T'(a, b; R); cf. Defini-
tion 2, §12) is to denote a function defined and such that

[X, x]“’:’ {)" x}
(cf. Definition 1, §2) for \, x in the above region.T

1 That is, [, 2la=00o(x) Fo1(@NVE+ - - - doa1(X)A =@ VkAgy (2, NA—F, where | oq(z, N)| <b
in I'(a, b; R).
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Generically [\, z]. [\, xla=[\, 2] and [\, ).+ [\, 2]a= N, 2]a.
In consequence of (12.17) from (13.6) we obtain
(13.7) IL el iiia(h, %) = exp [8GIN, #) + - - - + 8,6\, W) ][N, #]a.

r=1

Designate the expression displayed in (13.5) subsequent to the first product
symbol as F./. In view of (13.7)

(13.7a) F. = generic form of (13.7) (with 6; = 40:).
Thus

(13.7b) JIFd = exp [(1 4 - - - + 280G, 9) + - - -
o=t + (lam + R + nam)Gm(xy 'u‘)][x’ u]ﬂ

and, by (12.16) and (12.16a),
(13.7¢) JIFZ = exp [BGiN, %) + - - - + ©uGm(\, w) ][N, %)
a=1

Now, we may write

iain."'.‘n(x) u) = [)‘: u]eo
(cf. (11.2)). Also we observe that [\, %]. [\, #]o= [\, #].. Hence
(13.8) @iy s, w) [] F = generic form of (13.7c).

a=1
It is noted, next, that in (13.5)
(4) 3) .
Z = E Z Z (=1, = in)e
fpte ot in=2 Yyt FTn=2 181, indm

Whence, by (13.5) and (13.8),

(13.9)  o0T(w) = exp (MG ) 4 - - - + BaGn(h, )]\, ula
for N\, # in T'(e’, B8’; R). Thus, in view of (13.4a) (for a=2) and (13.2a),
(13.10) s W) = exp [BGi(N, ) + - -+ + kaGa(N, #) — Go(N, ) N[N u]g
' (= oy b Z 05 bt o+ b = 2)
when A\, #isin I'(e’, 8’; R).
The following lemma will now be proved.

LemMA 1. Let T'(c, d; R’) denote an admissible region (cf. Definition 3,
§12). Then, with suitable notation, we have in it (12.10), (12.10a), and (12.10c).
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Let

Q()‘, x) = thl()‘; x) + h2Q2()‘} )+ -+ thm()" x) - Qﬂ(x) x)
(B, - b Z0; 1+ -+ + hw = v = 2; the h; integers).

Assume, moreover, that in QO (N, x) (unless QW (N, x)=0) the coefficient of the

highest power of N does not vanish in the interval (closed) (a, b). We then can
evaluate the integral below so that, with w =141, we have

(13.11)

(13.12) f @O\, ulodu = 0D\, 5]

(cf. Definition 4), provided that the displayed integrand is of the stated form in
T'(c, d; R’). Formula (13.12) will be valid for \, x in T'(c, d; R’). Furthermore,
if the highest power of N in QW (N, x) is the (I/k)th (I/k>0; i.e., QW (N, x) £0)
the coefficients of N='* (v=0, - - - | 1—1) in the second member of (13.12) will
all be zero.

Note. If we assume that this lemma is true, it will follow that the facts
stated therein will continue to hold when the Q:(\, x) are replaced by the
G\, 2)(=0:\, ) —Q:(\, @) (6=1, - - - , n), respectively.

The truth of the above lemma would follow from the developments of §4
of (T;) if it were shown that

(13.13) ROM(\, x) =0 \, xin T(c, d; R)).
Suppose 8>m. Some %; will be positive. We then have
s & )= B0 ) e (= D00
(3.1 + 5O O, )]+ [0 3) — 05"

and (13.13) will follow in consequence of (12.10a) and (12.10).}
Consider now the case when B=<m. If 45>0 and if we write

\, D]

@ = L tt - N -
(13.13b) Q0 #) = kO @) + + (hs — 1)Q0s (A, %) + .

+ thm (X, x):

the truth of (13.13) will be inferred in consequence of (12.10a). If #3=0 but
some /;, with :<p, is positive, write (13.13a); the validity of (13.13) is then
deduced in view of (12.10) and (12.10a). The remaining case is the case when
QM 2) = — Os(\, %) + hs1Qsr1(N, %) + - - - + £uQn(A, %)

13.14
( ) (Bgsr, Bgyay - s B Z 05 hgpy + - - - + b = v 2 2; 8 < m).

T R(Qs™—QpW) <0 since i <p.
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In treating the case when (13.14) holds we make use of (12.10c). In view
of (12.10) and (12.10c), whenever

(13.15) 1=8<i=j=m,
one has
RO (N, %) 2 [ROIT(N, 2) = RO (A, %) + ROS (N, %) = 1RO(, %)
(13.15a) o) .
+RQ; (A, x) (in T'(c, d; R")).

Since in (13.14) A+ - - - +hn=2 (Bgss, - - -, hm20),

[¢)

070, ) = [0 O @) + 07, %) + 050, )] + kaQs N, %)
+ koyoQra, ) 4 - -+ EaQu 0 %) (kgsry -, Em Z 0)

for some pair of integers 7, j satisfying (13.15). By (13.15a) the real part of
the expression within the brackets displayed above is equal to or is less than
zero for A, x in T'(c, d; R’). Hence, in view of (13.16) and (12.10a), (13.13)
will necessarily hold. Thus (13.13), as well as the lemma, has been established.

Henceforth the developments will be given for a region I'(¢’, d’; R'), where
R’ is the same as in T(c, d; R’), and where (c’, d’) is an interval contained in
(c, d) such that in eackh of the expressions

(13.16)

@) (¢3) 1)

0 0 #) = QIO ®) A+ -+ haQn (N ) = Q5 O\, 3)
(hiz 0, b Z0; 14 - -+ + by = v; the h; integers; 3 = 1,-- -, n),
formed for v=2,3, - - - , N, the coefficient of the highest power of \ is either =0

or #0 throughout (¢’, d").1 The choice of (¢’, d") may depend on N.
In view of Lemma 1 and of the relation (13.10) it is concluded that

(13.17) f oI, 80\, w)du = exp [MGI(, x) + - - -
. + hme()\, x) — Gg()\’ x) ])\p+w [)\’ x];_l

in T'(c’, d’; R’). Substitution of (13.17) in (13.4) (for #=2) will yield, in
consequence of (13.1a),

(13.18) My (hs ) = e3P [BGIN, 2) + - -+ + huGah, &) I[N, 2]aca
i+ -+ kb =2;\, 2inT(, d'; R)).
By virtue of (13.6) and (13.18)

+ When the coefficient of the highest power of A is =0 throughout (¢, ¢'), QW (A, x)=0 (for
in ¢, d').
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vk knia(N, ) = exp [kerl()\, x)+ -
(13.19) . + EnGm(\, )N [\, ]z
Bty kmZ O kit -+ hm=via=1,--,n0=1,2)

for A\, x in T'(¢c’, d’; R’). Substitute (13.19) in (12.15) (for # =3). Taking ac-
count of (12.17) we have

(vy—1) (ptw)

iq

(13.20) JI- - = exp [6:Gi(\, %) + - - - + 8uGu(N, x) N Owin Pr [\ ]z,
r=1
where
(13.202) W(yay da) = 3 (= 1) = e — ia.
r=1

We next have
FJ/ = > Z(z) II - - - = generic form of (13.20) (in (¢, d’; R")).
Vit vig=y r=1

If we write 8,=.0;, in consequence of the equalities of (12.16a), it is con-
cluded that

(13.21) JIFJ = exp [mGi(A, %) + - - - + BoGu(N, ) W E O\ x]z,,

a=1

where

(13.21a) V3, 5) = 3 (e — ia) = 3 — 3,

a=1

by (12.16). The product of the functions of (13.21) by ja;,,....;;(A, %) is a
function possessing the generic form of the second member of (13.21). Hence

F!' = Z Z 2(3) - -+ = generic form of (13.21).
it otip=s Yyt ra=38 185,00
Since, T for s=2, 3, we have
NGt [\ x]zy = Ao\, x)a,

from (12.15) (for z=3) and (12.16) it follows that

3
I = TR = exp [WGi, 1) 4 -+ haGn, &) N, 2]an

(13.22) =2 .
(b, yhnZ0; s+ -+ - + hw = 3;in T(c, d’; R')).

—Ww‘z’)[—)\’x]&4= [, 2.
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Assume thatt within T(c’, d’; R'), for some 8 (3<8=<N), we have

i7" = exp [MGIA #) 4 - - - A haGn(h, D) NGV OO\ 2] g1
(hy b 20+ +hn=q+1;j=1,---,m),
Mk, kmialN; %)
(13.24) = exp [BiGi(\, %) + « - - + EaGn(N, ) N DI\, x5 g4
by bmZ 04 - F bn=qa=1,---,n)
for ¢g=1,2,- .., a—1. For a=3 this has been previously established in
(13.6), (13.9), (13.18), and (13.22).
Substitution of (13.23) (for g=r—1) in (13.4a) will yield
alegOhw) .
(13.25) = exp [mGi(\, u) + - - - + BuGm(\, %) — Gs(\, ) NE-D @+ [\ u]5_pr4q
(hy, - b 2 0; b1+ - -+ + bn = B; N\, #in T(c, d’; R')).

(13.23)

Since /4 - - - +kn=8=N, in view of.the italicized statement preceding
(13.17) it is observed that Lemma 1 (together with the appended note) is
applicable for the evaluation of

(13.25a) f al. s\, u)du.

Accordingly (13.25a) will have the form
exp [BGi(N, #) + - - + kaGn(N, %) — Gs(\, W) NE-DGHON x]5 gy,
Substitution of this in (13.4) will give

HNhy,- oo, hm;,'()\, x)
(13.26) =exp [MGi(\, %) + - - - + EaGn(N, 2) NE-DC+O [\, x]appr
(\, xin (¢, d’; R")).
Thus (13.24) holds for ¢=1,2, - - -, &.
In (12.15) replace 7 by a+1 and substitute (13.24) for ¢=1, 2, - - -, &.
Since (12.17) holds, and since v+ - - - +»;, =7a,
(13.27) ﬁ = €Xp [B],Gl()\, x) + AR + 5".Gm()\, x) ]x("a_"a)(p"'”) [X, x];._.[{.;.l.

r=1

We next obtain

F! = > 2(2) f[ cee =>generic form of (13.27) 6: = od3),
r=1

ikt vig=T

1 We take a (hence & also) suitably great.
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and, by (12.16a) and (12.16) (with = replaced by z+1),

ITFd

(13.272) “

exp [mGi(\, %) + - - - + EuGm(\, ) NEH=D GO [\ x]5_g1a

exp [Gi\, %) + - - - + kuGu(N, ) NE-DGHO N x]o gy
(s=2,---,841;inT(,d’; R)).

Finally, by (12.16) (with = replaced by a+1),

Biveeeshim 4) n
al = 2 it 2) [T P
a=1

= generic form of third member of (13.27a).

T hus relations (13.23), (13.24) arevalid in T'(¢c’,d’; R") for¢q=1,2, - - -, N.

LEMMA 2. Let N be an integer, however large. Let T'(c, d; R') be an admissi-
ble region (cf. Definition 3, §12) and T'(a’, B’; R) be a proper region (cf. Defini-
tion 2, §12) containing T'(c, d; R'). With suitable notation we thus have (12.10),
(12.10a), (12.10b), and (12.10c).

Let (¢, d') be an interval contained in (c, d) and satisfying the condition
of the italicized statement preceding (13.17).

The system (11.1) possesses a formal solution represented by the series
si\, %) (=1, - - -, n) given by (12.13) and (12.13a). The coefficients

(13.28) Moo o i(N, ) (Biyv v EmZ 0 kit + km =),
involved in (12.13a) can be determined by means of (13.4), (13.42) and the

formulas (12.15), (12.16), and (12.17). For v=1, 2, - - -, N the functions
(13.28) may be taken of the form

My, i i(Ny %)
(13.28a) =exp [BGi(\, %) + - -+ + EnGu(\, 2) NOD @O\ x]5 i1
(kl)'°',kmg0;k1+"'+km=v;j=1""7”)r
formulas (13.28a) being valid in T'(c’, d’; R’). The symbol [\, x)z_,11 is defined

(in T'(c’,d’; R")) according to Definition 4. We may take & as great as desired;
however, the functions (13.28) will in general depend on &.

14. Corresponding transformations. The system (11.1) will be trans-
formed with the aid of

(14-1) yl(x) = on" x‘) + Pi()\, x) (j = 1, Tty ”)’
where
(14.1a) Y\, x) = 19\, ) 4+ 2900\, %) + e + v21yi(\, x).
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Here the ,y;(\, ) (v=1, - - - , N—1) are the functions involved in the formal
series solutions s;(\, x), referred to in Lemma 2, §13. The arbitrary constants

1, , Cm, involved in the ,y;(\, x) may be taken as functions of N. We shall
take the c;=ci(\) analytic in R’ (N ©) and such that

(14.2) el 9090 ~0 vy =m G=1,---,mNinR),
In view of (12.10b) it follows from (13.28a) that

(14.3) | Mg bsiQ ®) | < [N [O-D o)

(b,  km =20 ki + - F bw=v;j=1,---,n;vp=1,2--- N—1)
for N\, xin T'(¢’, d’; R’). Here b/ is independent of A and x. By (14.2), (14.3),
and (12.13a)

i, 1) ~ 05 [Lyil, @) | <) [N [ev@+9p) (in T(, d'; RY).
Hence, since y(\)~0, ‘
(14.4) Yi\, %) ~0; |V, 2)| <yMY  (inT(,d;R)).
Here b’ is independent of x, . Either by taking v:(>0) sufficiently small or ¢’
sufficiently great, we secure
(14.4a) | 7,0\, @) | < 0 G=1,---,ninl(,d;R); M 27),
where p’ is independent of \, x and :
(14.4b) ' 0<p <op,

where p is defined as in (11.4).
In consequence of (11.1a) and (11.1b) substitution of (14.1) in (11.1) will
yield
)\‘Pp;})()" x) - li()‘; X, P10, Pn)
(14.5) = 2P0 2) 4 L 8, Yy, -, V)

+ qj(k) x"Yl +Pl, Tty Yn +pn,).

Here ‘
(14 53-) qi(x’ % Vit LR ) = qi(x’ % Yl’ T Yn)
+ X i Dot 0
(2% RS -3 |
vty
mle-- V"!a'l"""ﬁ‘j(x’ x) = qi()‘r %y Y1, "y yn)]

(14.5b) a'lyl . av,,y"
' * (y;=Y.~()\,x);i=1,~-~,n),
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the series above being absolutely and uniformly convergent in T'(¢’, d’; R’)
(I\] =27") provided
(14.6) o], = sl pa] < 0" 0<p”"<p—10p)
(cf. (14.4b)).1
By (14.5b) and (11.1c)
Vﬁ')\l

Am
Qyy,eee, pu()\ x) Z Jav,+)\l v"+)\,.(>‘ x)C)\l

VntAn
g Yl -V,

- Gy,

(xly Y n = 0’ x1 + te + kn g. 2 - (Vl + et + Vn))'
Thus, in particular,
Ao niiN, ) = Z e e =1),

AR, 21
so that, by (14.7) and (14.4), v
1).

(14.7a) Qyy,eee iy %) ~ 0 (inT(,d;R);m+ - +vw=
On the other hand,
QyyyevemmiiN, %) = s, ..., ,,,()\ ) D DI 4z 2);
Mt A 21
thus, in view of (14.7),
(14.7b) ayyee i, ®) = i@y, %)+ B (A, ),
where
(14.7¢) Boyy Ny ®) ~ 0 (mn+ - +wv 22;inT(,d; R)).
By (14.5a), (14.7a), (14.7b), (14.7c), and (14.5)
(14'8) x"’p;l)()‘ x) —IFN %, 00,0 - ) Pn) = ‘I:*()\: %, p1,* * +, pa) — Fi(N, %)
(j = 1’ ] n)'
Here
(14.82) Fi\ 5) = NV, "0, 2) = L, 8, Vo, - -+, Vo) — g0, 2, Yy, oo, V)
and
(14.9) I~ qf ~gqi (in T(¢, d'; RY)).
The relations (14.9) are to be understood as follows. The 1;*—1; are linear in
P, -, pn and the q—gq; are series in non-negative integral powers of
P1, * * -, Pa; the coefficients of the various powers of py, - - - , pa are functions of x

and \ which are all ~0in T'(c’, d’; R’).

t p’’ is independent of x and A,
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It remains to study the function (14.8a). By (12.18) and (12.18a) in con-
sequence of (14.8a) we have

Fin %) =N [P0, 0) — Nah, 2, Ty - -, V)]

(14.10) i

=T T dt e T bty

H=2 hyt:- +hy=H

where
(14.11) BWhnse e shoii = BV b b
provided that in the second member of (14.11) we replace the
(14.12) , Mg, - kmia(Ny %) »= N)
by zeros.t Thus by (12.18a)
(14.12a) Hnseohi = HWhyeee hoid (g < N-1),
(14.12b) Nhpeeiss = — NaDy
(14.120) BWneopi = — Nl (g > N).
In (14.12¢)
(14.13) I T (z > N),

provided that in the second members the functions (14.12) are replaced by
zeros.

It is to be recalled that the

My, mia(Ny %) wWEN-1)
have been previously determined so that
(14.14) H‘ph,.o--,h",:j =0 (H =N- 1).

If we take account of the statement preceding Lemma 2, §13, the form of the
function of (14.12b) is inferred with the aid of (13.23) (for ¢=N —1). Thus,

*
Nlphl, cen 'h"ﬁj
(14.14a) = exp [MGi(\, %) 4 - - - 4+ BaGu(d, ®) NE-DOrO+2 [\ gl yis
(ht -+ hn = N;in T(, & R)).
The form of the functions (14.13) can be established as follows.
t When the functions (14.12) have been replaced by zeros, the formal series s;(A, x) =1y;(\, %)
~+29i(\, )+ - - - reduce to the functions ¥;(A, ), respectively. On the other hand, (12.18) and

(12.18a) have been obtained as a result of substituting in y;®(\, £) —APa;(\, %, 1, *, ¥s) the
series si(A, x).
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Since, for y<SN—1, a—v+1=a—N+2, in consequence of (13.24) (for
g=1,---,N—1) we have
(14.15) e kwia(N, %), = €xp [kiG1 + - - + knGm NV O N, x]a e
' (bi4 -+ kn=wv;v=1,---,N—1;in (¢, d’; R)).
With the functions (14.12) replaced by zeros, we may write
Mky, - kmia(Ay ) = 0 = generic form of the second member of (14.15)
(ki4 -+ km=v;»p=N,N+1,.--;inT(c, d; R)).
If (14.15) and (14.15a) are substituted in (12.15), in view of the definition of
the functions (14.13) it is inferred that
| PITRTI W
1" .
(14.16) *’

(14.15a)

= exp [MGi(\, %) + - - -+ £aGn(N, 2) NE-DH [\ 2] v
m+- - +hbn=888=N4+1,N+2,---;inT(/,d;R)).

By (14.14)
Fi\ x) = E Z )\_pcf'~ .. c:.'"w:l,...,hm;,-.

HEN hyte - thm=H
Thus, in consequence of (14.2), (14.14a), (14.12c), and (14.16)
Fi(\, x) | < ko(y(\))V | N\ |N=2)(pte) oA, %)
(14.17) [Fi(8 ) | < Ro(v())¥ | A ] hn+"§hm=Ngh o
(j =1 ,n in I‘(C', d,’ RI)))
where
(14'18) ghx."'-"».(x) x) = l €xp [hlGl()" x) + tt + hme()‘) x)] l

LemMA 3. The transformation (14.1), (14.1a) (cf. the italics subsequent to
(14.1a)), applied to the system (11.1), will yield the system

- (O

(14.19) N p; O‘; x)_ll*(x’ X, P1y " "t 7Pn) =¢I:*()\,x:P1,“' ’.pn)_Fi()" x)
G=1,---,n).

The ¥ and qF, here involved, satisfy (14.9) in the sense of the italicized state- °
ment subsequent to (14.9). The series

(14.193) QI*()‘} Xy P1y " " ", Pn) = E a"p"'n"n‘i()" x)p:l o P:“

vt top22
will converge absolutely and uniformly in T(c’, d’; R") (|\| 27'), provided
(14.6) holds. Moreover, the F;(\, x) satisfy (14.17), (14.18). The above is as-
serted under the supposition that the arbitrary constants (functions of \) c; sat-
isfy (14.2); furthermore, v, and r' are to be suitably chosen so that (14.4a),

(14.4b) hold.
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15. The Third Existence Theorem. We now have the following state-
ment which is analgous to a statement in §7.
Let N, x be in T'(c’, d’; R') (|N\| =7"). Suppose

(15.1) lo:] =%, |wi] = w* G=1,---,n)
with
(15.1a) p* + w* < p”.

For the function (14.19a) we then shall have
IQI*()" %, p1+ wy, - - ;Pn+wn) —q;‘()\, X, p1y * " 7Pn)|

(15.2) < (g'e* + quMw* (A, xinT(, d’; R); ¢, q independent of \, x).
We now write

(15.3) Pik = Pik-1 = Wik (k=0,1,--;p;1=0),

(15.32) pie = Wiot Wiy 4 - 4 Wik (k=0,1,---)

and consider the succession of differential systems

)C”wf-fi — X\, %, Wik, Waik) = Lik
(15.4) = q}"O\; ®, prok—2 F Wiko1, * *  y Pai k2 + Wit
— qF\, %, prk—2, * * +y Przk—2)
G=1 - ,mk=0,1,---;gi0=— ;F(\, x)).
A solution will be obtained in the form of convergent series
(15.5) pi(A, %) = wio(\, %) + wia(\, ) + - - - G=1---,n).

The left member in (15.4), multiplied by A?, is “asymptotically” identical
with the left member in (12.19) (cf. Lemma 3, §14). Hence in consequence
of the statement in connection with (12.19)-(12.20b) one may write (15.4)
in the form

n

(15.6) wir(h, %) = 2 ais(h, B)ap, i, %) G=1,,mn,
B=1

where

(15.6a) ws(\, x) = Z f NPgrk 05':30\, u)du.
=1

Here the oy*;(\, ) can be taken asymptotically the same (in I'(c’, d’; R’))
as the ¢y:,;(\, x) (4, 7=1, - - -, »), involved in (12.20); moreover,

(75,50, ) = (oyi. 5N, %))~
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If account is taken of (13.1), (13.2), and (13.3), it is concluded that

(15.7)  oy5.i(A, %) = 960 Dyg (A, #), 8.\ ®) = [\, 2],
(15.72)  org(\, %) = e GO ONF 4N, 1), FrsOh ) = [\, us,
(15.7b) |vai @) ], [ Frs® ) | < vs (in (¢, d'; R)).

Moreover, o can be taken as great as desired, and 6— with . However,
the y.5(), ) will, in general, depend on o.
In view of the above (15.6) may be written in the form

n

(15.8) wi kN, %) = 2 aca(h, )€ Dyg (A, ),
B=1 '
(15.8a) s\, %) = AProg e G0 W) o\, u)du.
Ta=1

Finally, with the aid of (15.7b) we obtain
(15.9) | wiah, )| < my2 3| 80| [ ge| n]pe| -0 || dul
B=1

(in T'(¢’, d’; R)), provided | g;4| <g: (=1, - - -, n) and the integrals here in-
volved can be evaluated.
Write

(15.100 g\ 2) = > |exp [BGi(\, %) + - - + BaGu(), )],
L

(15.10a) B = y(\) | A |7t
Then, since g;.o= —,;F(\, %), in view of (14.17) we may take
(15.11) g0 = ko (\) | M| 2rorgy tow)
Whence, by (15.9),
[ w;o(N, %) I < komy2u¥(\) | A I'(Pﬂ’)ail| eGﬁ(*-”l
= fleowal,

Ryt thp=N

(15.12)

where
(15.13) G\, w) = G\, u) + - o+ EnGu(N, ) — Gs(\, u).
Now

(15.132) RGO\, ) = mRO O w) + - - - + EnROS (N, ) — ROs(N, ).
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Applications of (12.10), (12.10a), and (12.10c) leads (by the same reasoning
as employed in proving (13.13)) to the conclusion that the function of
(15.13a) is =0 for N\, w in I'(¢/, d’; R’).t Since

R[G(\, x) — G\, w)] = f RG®(\)dv,
and since, for
(15.14) dLx<v =

u
dv <0, the integrand just displayed is =0 for \, x in T'(¢’, d’; R’), provided
(15.14) holds. Thus, under (15.14),

(15.14a) RG(\, %) = RGO\, u)
(cf. (15.13)). Accordingly,

(15.15) f lee®wdu| < | o™ |f | du| =] e | (@ — ¢)
’ dl
(\, xin (¢, d’; R")).
In the sequel integrations will be from d' to x (x in (c’, d')).
By (15.15), (15.12), (15.13), and the definition of gx(\, )

(15.16) | wio(A, x)l < kokw¥(N) | N|=Hodgy(N, %) = Fi| N |Prego(n, x)
= wF(\, x) G=1,---,m;\2xinT(,d’; R))
(cf. (15.11)), where
(15.16a) ky = (d — )ny2.

With ¢’ and ¢ denoting the constants of (15.2) let b be the upper bound of
the numbers

p” p// »—1 pll y
o () 1+(6E)
q q [ + 1 _I_pll + 1+pll +q 1+pll

(v=1,2, - --); b will be finite. The inequalities
" "

» T, %) = kb M|Prewd(, x) < e

\, zin T'(, d'; R')(| Xl = 7))
(cf. (15.16), (15.16a)) will be obtained either by
(i) taking r’ sufficiently great;
or by

(15.17) wi(\, x) <

1+pll

1 Presently, however, it is immaterial whether the coefficient of the highest power of A, in
(15.13a), vanishes for any x in (¢’, d').
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(ii) taking the interval (¢', d") sufficiently small.
If we make use of (15.4) for k=1 (with p;,_;=0) and apply (15.1), (15.2),
with

p* = pti(\, 2) = 0, w* = w(\, %),

it follows that '

(15.18) | gin(\, %) | < b(w\, u): =g \, % in T(¢’, d’; R')).
In view of (15.16) and (15.14a) the upper bound of

(15.19) wit(\, 4) | 980 | O\ winT(, d; RY),
for

(15.19a) d=2x=susd,

is attained at x; the function w¢*(\, %), and hence
(15.20) (we* (N, u))’l =G0 w) | ,

will possess the same property. By (15.9) (for £=1), (15.18), and the stated
property of (15.20)

| i\, %) | < (@ — )ny?| M|Preb(wi(r, x))2.
Thus, by (15.17)
(15.21) | wj1(\, %) | < T\, x)wo(N, x) = wi(\, x) (in T(c', d’; R")).
Making use of (15.4) for k=2 (with p;.o=w;.0) and applying (15.1), (15.2),
with
p* = pd(\, x) = wF(\, x), w* = wi(\, x)t
we infer that
| gie2(, #) | < (@wdh, 2) + quE(y, 9wk, 2)
= [¢' + O, @) Jwd(\, D), 2)
< [q’ + q°(1 :_Hp”>:|w6"()\, x)wF(\, 2) < dbwd(\, x)wF(\, x)
(inT(,d"; R)). 1
Assume that for \, xin T'(c’,d’; R') (|1\| =7") and fori=1, - - - [k (22) the
following inequalities hold
(15.23) | g5 i\, x)l < gi = bwiF(\, x)w’:_l()\, x),

(15.22)

T o*Fw*=w+w* <"’ /(140"))+ (" /(14p""))2<p"’ by (15.17) and (15.21).
1 By definition of b,
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(15.23a) ] Wi i\ %) | < w’:_l()\, x) =TI\ )wd\, 2) G=1,---,n).

For k=2 these relations have been established in (15.18), (15.22), (15.16),

and (15.21).
In consequence of (15.23) for i=k, and (15.23a) fori=#%

(15.24) gr = ge(\, u) = bU*1(N, u) (wé*(N, u))2.

In view of the property previously stated in connection with the function
(15.19) and we*(\, %), and in view of the fact that I'(\, %) enjoys the same
property, T if we write

(15.24a) gi(, u) | e8| = BTN, w)w (N, u) [wt (N, w)e=0 ],

we infer that the function on the left-hand side of (15.24a) will attain its up-
per bound at =z, for A\, » in I'(¢/, d’; R’) (provided (15.19a) is satisfied).
Hence from (15.9) it follows that

| s (N, x)| < n272| )\|P+“'(d’ — g\, x) = k1| M| PHepT eI, %) (wd (N, x))2.
Thus, by (15.17)
(15.25) ] wj x(\, %) ] < TR\, x)wi (N, x) = wF(\, x)
(il’l P(C') d,; Rl);j = 1, R n)

In other words, (15.23a) will hold for i=1, - - - | k+1.

We are going to apply (15.4) with % replaced by k+1. We may write
| piim1(N, x)l =|wio\ 2) + - -+ wiaa, 6) | < wEF, ®) + - -

+ wia\, @) =05, |\, 9| < wEQ, 2) = w* G=1,---,m).

Now, by (15.23a) (=1, - - - , k+1) and by virtue of (15.17)

*+ . <( pll >+< pll >2+ +< p// >k+1< .
p w l+p" 1+p// 1+p" P

Hence the statement in connection with (15.1), (15.2) is applicable. We have
| g1 1, %) | < (¢'0* + qu*)w*

= [¢A+T0 %) + - + T, 2)) + gTHN, ) Jwo(h, 2w, «)

<[g+8+ - 48 + gt lwd(, 2)wEW, 2)

< bwd(\, D)wEN, ) = gen (¢ =p"/(1 +p");inT(, d"; R)).
W hence it is concluded that the inequalities (15.23), (15.23a) hold fori=1,2, - - -,
Consequently the series (15.5) converge absolutely and uniformly in
I'(c’,d’; R’) (|\| 27");in fact,

t T (A, u) is wo*(A, ) except for a factor independent of «.

(15.26)
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| pi #) | S wio, @) [+ wia®, ) [+ - -
(15.27) < 'wo:()\, x) + w\, %) 4+ - - -
= w3, D[+ TO 2) +T20, 2) + - - ]
Swi D1 +s4+02 4 ] = wd®, (145"
(inT(/,d;R);j=1,---,m).
The absolute values of the coefficients of wy.; (=1, - - -, %) in

ll*()‘) Xy, Wiky """ wn:k)

are <K, where K is independent of A and « (\, x in I'(¢/, d’; R’)). By (15.4)
for k=0

w:':lz()\, x)l = | )\Ianwd"()\, x) + | )\ngo()\, x).

Substituting the expression for go(A, ) from (15.16), we obtain

wjli))(x’ x) | < kl,l A Ipw(;k()‘) x) (j = 1: RN () in F(C,; dl} RI))T

By virtue of (15.4) for £>1, (15.25), and (15.24) and the fact that T'(), x),
wet(\, x) < 5, it is seen that

| wi, 0) | < [ NnKwdy, 5) + [ 27T 0, (@0, 0)
< (K + b) | N|rerw(n, ).
Thus, with 1% denoting the greater of the numbers &'/, nK +b, we have
(15.28) | winh, 0) | < k| N ]% w0 8) (B =0,1,---;i=1,---,n)
in I'(c’, d'; R).
With the aid of (15.28) it is concluded that the series

o <1) o)
pi (A, %) = wio(\, %) + wia(\, %) + - - -

converge absolutely and uniformly. We have, for \, x in I'(¢’, d’; R'),

i (8 #) | S | wgoh, @) |+ - < (L4 ok M wd(r, ®)

(j = 17 T ") .

For \, z in T'(¢/, d’; R’) (|\| =7’; »’ sufficiently great) the series (15.5)

will truly represent a solution of the transformed system. The p;(\, x) are

analytic in X for A in R’ (A% ), provided x is in (¢’, d’). For any fixed \ in

R’ the p;(\, x) will be continuous in x for x in (¢’, d’).f Moreover, these func-
tions are differentiable in I'(c’, d’; R") with respect to x.

(15.29)

t &'’ is independent of A, x.
1 The p;(A, x) are uniformly convergent series of continuous functions.
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THE THIRD EXISTENCE THEOREM. Let T'(a’, B’; R) be a region proper ac-
cording to Definition 2, §12. The functions Q:(\, x), here involved, are from the
formal matrix solution (12.2) satisfying the linear problem (12.1) (associated
with the system (11.1)). Let the G:(\, x) (i=1, - - -, n) be defined by (12.6b).
LetT'(c, d; R’) be an admissible (cf. Definition 3, §12) subregion of T'(a’, 8’; R).
With suitable notation we then have (12.10), (12.10a), (12.10b), and (12.10c).

Let N (>0) be a fixed integer, however large. Form a region T'(c’, d’; R’),
where R’ is the same region as before and (¢, d’) is a subinterval of (c, d) such
that the italicized statement preceding (13.17) should hold for (¢’,d’). Let the c;
(=1, - - -, m) be arbitrary functions of N (independent of x), subject, however,
to the condition stated in italics in connection with (14.2).

The system (11.1) will then possess a solution y;(\, x) (=1, - - - , n), whose
elements are analytic in \ for N in R’ (A% ) (x in (¢’, d")) and satisfy asymp-
totic relations

(15.30) yil\, ®) ~ si(\, %) G=1,---,ninT(/,d’; R)),

where the s;(\, x) are the series referred to in Lemma 2, §13. The relations (15.30)
are asymptotic in the following sense. The v;(\, x) are of the form

N—1 . -
yil\, %) = > 2o Cm M kiM% F 0N, 2)

(15.30a) Ny A Gt o,
where
Mhysee lmii(Ay )
(15.30b) = exp [FiGi(\, %) + - - - + EaGu(A, 2) NCD @O\, 2],
(ki kmZ 0 kit F bn=pv=1,2--- N—1;7=1,---,n)

for\,xin T(c’,d’; R). The symbol [\, x15_, 11, above, is defined in T'(c’, d’; R’)
according to Definition 4, §13. The p;(\, x) are functions defined, together with
the derivatives p; ¥\, x), in T'(c’, d’; R') and are such that

| i8, %) | < y¥(N) | M| @D Gt

> lexp [BGiN %) + - - + haGu(d, 8)]] = XN, %),

hot N

(15.30c)

where ¥(N) is defined as in (14.2) and

(15.30d) | py O\ @) | < B\ D) | A G =1, -, m; inT(, &'; R)),

k, k, being independent of N, x. In the above, &, depending on N, is to be taken
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suitably great. In R', |\| =7’ and v’ is to be taken sufficiently great so that
(14.42) and (15.17)+ will hold.

Note. We observe that |p;(\, #)| is essentially of the order of

k k
Z C1 o Emm)v‘l]k, ..... km;i()\, x).
kit km=N

In fact, the absolute value of the latter expression is less than
kv (N, ) (in T(¢, d'; R')),

where % is independent of \, x.

The following general remarks will be made regarding the main results
of this work.

The remaining problem is of interest, namely, fo determine under what
specialized conditions the formal series solutions involved in the three existence
theorems converge. 1t is to be noted that in all of Horn’s work, which relates
to certain restricted first-order problems,} the formal solutions converge and
thus represent actual solutions.§

Another problem of importance is to find under what restrictions are the co-
efficients in the formal series solutions (in the case of the First Existence T heo-
rem) representable with the aid of the fundamental methods of N orlund (Laplace
integrals leadings to convergent factorial series developments—essentially by
a method of exponential summability).||

Finally, it is observed that the existence theorems of this work can be
extended without any substantial difficulties by replacing the second mem-
bers in the systems (A), (B), and (C) of §1 by suitable functions satisfying
in a certain neighborhood of the singular point appropriate relations asymp-
totic with respect to yi, - - -, ¥, (to a finite number of terms with respect to ¢

(or \)).

1 These conditions can be also satisfied by other means (cf. the text in connection with (14.4a)
and (15.17)).

1 For references to J. Horn see (T)); also see my paper in Compositio Mathematica, loc. cit.

§ Even in the first-order problems occasions arise when the formal solutions diverge. So even
for these problems one is forced to use asymptotic methods, unless suitable restrictions are introduced.

|| Whenever applicable, these methods yield results of greater precision than those obtained by
asymptotic methods. On the other hand, as indicated in (T;), they are applicable only under suitable
restrictions.
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