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1. In view of the recent work on topological groups it is natural to con-

sider the situation which arises when such groups act as transformation

groups on various types of spaces. Such a study is begun here from the point

of view of almost periodic transformation groups, the definition of which is

suggested by von Neumann's paper on almost periodic functions in a group.f

Compact topological transformation groups are a special case of almost

periodic transformation groups, at least for a rather wide class of spaces.

The paper concerns itself chiefly with the nature of the minimal closed in-

variant sets of such groups. There are some results for general spaces but

the main results are for Euclidean spaces and more particularly for three-

dimensional Euclidean spaces. One of the most interesting theorems states

that if a compact one-dimensional group acts on three-space in such a way

that its orbits are uniformly bounded in diameter, then every point of the

space is fixed under the group, so that if such a group is to act in a non-

trivial manner the diameters of its orbits must be unbounded. Under some

restrictions a similar theorem is proved for one-parameter almost periodic

groups. Furthermore it is shown that for this latter class of groups, many of

the orbits must actually be simple closed curves if they have one-dimensional

closures.

2. The group considered here will be denoted by G. It will be subjected

to various conditions as the occasion demands but it will always be Abelian.

In case it is the group of real numbers, it will be spoken of as a one-parameter

group; in case it is the real numbers reduced modulo one, it will be spoken

of as the circle group. The space on which the group acts will be denoted by R.

It will be specialized in various ways, but in any case it will always be a

locally compact metric space. If x and y are two points of R, the distance

between them will be denoted by d(x, y).

Definition 1. The group G is said to be a transformation group (t.g.) of R

if the following conditions are satisfied:

(1) for every g in G there is a homeomorphism of R into itself denoted by

xl=g{x);

* Presented to the Society, February 20, 1937; received by the editors January 13, 1936.

f These Transactions, vol. 36 (1934), p. 445. Cameron has defined almost periodic transforma-

tions. These Transactions, vol. 36 (1934), p. 276.
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(2) if g3 = g1+g2, then g3(x) = g1[g2(x)].

Definition 2* If G is a t.g. of R, G is said to be an almost periodic t.g.

(a.p.t.g.) if for every a in R there is a neighborhood U(a) having the following

property:

For any e>0 there is a finite set of elements g]; g2, ■ ■ ■ , gn in G which are

such that for any g in G there is an i such that d[g(x), gi(x)] <e for all x in

G[U(a)].j

No use is made of a topology in G in either of these two definitions so

that in them G may or may not be topological.

Definition 3. If G is a topological group and a t.g. of R, then G is said to

be a topological t.g. of R provided that g(x) is continuous simultaneously in x

and g.

A t.g. may of course be both topological and a.p. If R is locally compact,

a compact topological t.g. is an a.p.t.g.

Definition 4. The t.g. G is said to be regular^ if for every positive e and

every a in R there is a d such that if d(x, a) <d, then d[g(x), g(a)]<e for all g

in G.

Theorem 1. If G is an a.p.t.g. it is regular.

Let e be any positive number, and let a be any point of R; let U(a) be

the neighborhood of Definition 2, and let gi, g2, • • • , gn be the finite set of

elements associated with e/3. Since gi(x) is a homeomorphism, we may choose

U1(a) within U(a) in such a way that if x is in U1(a) then

d[gi(a), gi(x)] < e/3 (i = 1, 2, • • • , n).

If g is any element of G, there is an i such that

d[g{a), gi{a)\ < e/3

and for any x in U1(a)

d[g(x), gi(x)] < e/3.

From these three inequalities the definition of regularity is seen to be satisfied.

The set Oa =zZeS(a) is called the orbit of a.

Theorem 2. If G is a regular t.g., then Oa is the minimal closed invariant

set including a, and if b is in Oa, then Oa = Ob-

* von Neumann, loc. cit.

t Following the usual convention this symbol is used for the set of points in R of the form g(x)

when g is in G and x is in U(a).

I This concept is due to Kerekjärtö. See Acta Litterarum ac Seientiarum, Szeged, vol. 6, p. 235.
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The set Oa is the minimal closed set including Oa so that for the proof of

the first part of the theorem it is only necessary to prove that Oa is invariant.

Any point p in 0„ is the limit of a set of points pn = gn(a).\ But then g(p) is

the limit of g(pn) = (g+gn) (a) and hence for every g, g(p) is in Oa which proves

that Oa is invariant. It will now be shown that if 6 is in Oa then Oa=Ob. It

is clear that Ob is in On. To prove that Oa is in Ob it will be shown that a is

in Ob. Let a positive number e be given, and choose d so that if d(x, b) <d,

then d[g(x), g(b)] <e for all g. Since 6 is in Oa there is a g such that d[g(a), b]

<d. Therefore d[a, —g(b) ]<e; that is, there are points of Ob arbitrarily near

a, which is sufficient for the proof.

The following theorem is due in essence to KerekjartoJ who stated it for

the group of integers and a special R. Only a sketch of the proof will be given.

Theorem 3. If G is a regular t.g. of a complete metric space R, then Oxfor

any x is homeomorphic to a topological Abelian group.

The set Ox is a metric space and in order to prove the theorem it must be

shown that the points of Ox may be considered as the elements of a group in

such a way that a + b and — a are continuous operations. It will first be shown

how a + b may be defined for any a and b in Ox. Let A and B be small closed

neighborhoods of a and b in Ox, and let 5 and T contain those elements 5

and t of G such that s(x) is in A and t(x) is in B. Now let C be the set of points

of the form (s + t)(x), where s is in 5 and / is in T. It will be shown that the

diameter of C may be made arbitrarily small by choosing A and B to have

sufficiently small diameters. The point (si — s2)(x) is near x if A is sufficiently

small, for since Si(x) is near a, ( — s2+Si)(x) is near — s2(a) by regularity and

— s2(a) is near x by regularity. Similarly (t1 — t2)(x) is near x. From these

facts we see, because of regularity, that (si — s2+tx — t2)(x) is near x. Hence,

again by regularity, points of the type {si+tx)(x) form a set of small diameter

(because they are near (s2+t2)(x) for fixed s2 and t2). As the diameters of A

and B approach zero, the diameter of the set C therefore approaches zero and

since R is complete, C must shrink toward a limit point which is defined to

be a+b. This operation is clearly commutative and associative, and the proc-

ess of defining it shows that it is also continuous simultaneously in a and b.

In the above notation let D be all points of the form —s(x). The diameter of

D approaches zero with that of A, and the point approached by the shrinking

set D is defined to be — a. This element satisfies the group postulates for an

inverse and is continuous. The theorem is therefore completely demonstrated.

t This is meant to include the case where for all but a finite number of n's, pn = P-

t Acta Litterarum ac Scientiarum, Szeged, vol. 7, p. 76.
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Theorem 4. If G is an a.p.t.g. of a complete metric space then Oa is homeo-

morphic to a compact topological group.

By Theorem 3, Oa is a topological group and it is a compact set because

it is closed and conditionally compact.f

If G is a compact topological t.g. of R, then those elements of G, say

H(a), which leave a fixed form a compact subgroup of G, and Oa which in

this case equals Oa is in reality the difference group G — H(a). It is true there-

fore that the dimension of G is equal to the sum of the dimensions of Oa and

H(a).%

3. If G is an a.p.t.g. of R, let F denote all points of R which are fixed under

the action of every element of G, and let M be the set of moving points, that

is, the set of points which are moved by some element of G. The set F is

closed and hence M is open. Under the action of G, R is divided into a family

of non-overlapping sets, the minimal closed invariant sets. This is a continu-

ous family, for from Definition 2 it follows that if xn—*x, then 0Xn-+Ox. Con-

sider a set of elements R* in one-to-one correspondence with the minimal

closed invariant sets of R. If x* is the element of R* corresponding to Ox, let

L(x) =x*, this being the definition of the function L(x). It is clearly single

valued, but in general its inverse is multiple valued. The set R* may be made

a metric space called the auxiliary space by the definition

d(x*, y*) = d[L-i(x*),L-Ky*)].§

The function L(x) now is a continuous function. It is an inner transformation

of the space R into the space R*; that is, it takes open sets into open sets.

We shall now be concerned with the case in which R is Rn, Euclidean

space of n dimensions. If G is a t.g. of Rn a point may be added to Rn to make

it Rn the w-sphere, and G may be extended to a t.g. of Rn by simply requiring

that this point be fixed under all elements of G. If G is topological, it remains

so by this definition; whether or not a group retains its a.p. character by this

extension need not concern us. In any case the function L(x) remains con-

tinuous in the extended case for an a.p.t.g. The space R * is compact, con-

nected, and locally connected.

4. We prove the following theorem.

Theorem 5. If G is an a.p.t.g. of R„ and if there is a number K such that

for every a in Rn diam (Oa) <K, then R* is cyclic.\\

t See von Neumann, loc. cit.

X van Kampen, American Journal of Mathematics, vol. 58 (1936), p. 178.

§ For the definition of the distance between two closed sets see Hausdorff, Mengenlehre.

II For the definition of cyclic sets see Alexandroff, Mathematische Annalen, vol. 106, p. 218 and

p. 223.
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Let x be any point of Rn with coordinates (xi, •••,*»), and let the co-

ordinates of g(x) be denoted by [g(x)]i. For each fixed i and x, [g(x)]i is a

real valued a.p. function defined on the group G. This follows from the defini-

tions of a.p.t.g. and a.p. functions. This function has a meanf which will be

denoted by Fi(x). The n functions Fi(x) determine a point denoted by F(x).

Hence we have defined a transformation of the space Rn into itself. By the

properties of the mean this function is constant on an orbit 0„. The con-

tinuity of the function or transformation can be seen in the following way.

Let a positive e and a point a be given. Choose d so that if d(a, x) <d then

d[g{a), g(x)] <e; this last relation may also be written as | [g(a)]i — [g(*)]<|

<e(w)-1'2. But

\F,{d)-F.<x)] = I M0[g{a)]i - M„[g(x)]i\ g Ma\ [g(a)]i - [*(*)]<|

£ Mge{n)-li2 = e(w)"1'2,

and therefore d[F(a), F(x)] <e. Because F(x) is constant on Oa and continu-

ous it must be constant on Oa. The properties of the mean also imply that

d[x, F{x)]<K{nyi\

If the point at infinity P„ be added to Rn to form the space R„, F(x) may

be extended by defining F(Pai) =PX, and the resulting transformation of R„

into itself is continuous. The transformation of Rn is also essential;! this is

because the degree of F is one, and we see this from the fact that no point can

move to its diametrically opposite point since in Rn d[x, F(x)] <K(n)112.

We can define a transformation h(x*) from R* to Rn in this way: for any

point x* let h(x*) = F[L~1(x*)]. Since the transformation F takes L_1(x*) into

a single point, h(x*) is single valued and furthermore it is continuous. Clearly

h[L{x)] = Fix),

The transformation h(x*) must be an essential transformation of R* into Rn.

If this were not the case there would be a function h(x*, t) defined for every

x* in R* and for every / in the interval 0 1, this function being such that

h(x*, 0) =h(x*) and h(x*, 1) is constant. But then

k(x, t) = h[L(x), t]

is a deformation of F{x) having properties similar to the ones just mentioned

for h(x*, t), and this implies that F{x) is not essential. From this contradiction

we conclude that h(x*) is essential and hence that R* is cyclic; that is, it con-

tains an w-dimensional power cycle which is not homologous to zero.

t For the existence and properties of the mean see von Neumann, loc. cit.

X See the previously cited paper of Alexandroff.
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Corollary. If G is an a.p.t.g. of Rn and if R* is not cyclic, then the di-

ameters of the orbits in Rn are unbounded.

The theorem below can be applied more easily than Theorem 5 to certain

special cases which will be considered later. The set L(M) is denoted by M*,

L(F) by F*.

Theorem 6. // G is an a.p.t.g. of Rn whose orbits are uniformly bounded,

and if the dimension of M* is less than n, then every point of Rn is fixed under G.

The set F* is homeomorphic to F, and if we assume that the theorem is

false and that the set M is not vacuous, then F* is homeomorphic to a proper

part of the sphere Rn. The set F* itself therefore cannot be cyclic. Since M

is at most (n — l)-dimensional, F*+M* cannot contain a power cycle homolo-

gous to zero. This can be seen from the Phragmen-Brouwerf theorem. There-

fore F*+M* is not cyclic, but this contradicts Theorem 5, so that we must

conclude that M is vacuous and that the theorem is true.

Theorem 7. If G is an a.p.t.g. of R„, then no minimal closed invariant set

is n-dimensional and at least one such set is of dimension less than (n—l).

If a minimal closed invariant set were w-dimensional, it would have to

contain an interior point of Rnt and the family of minimal closed invariant

sets could not be a continuous family in this case.

Suppose now that every minimal closed invariant set is in — ̂ -dimen-

sional. If Oa is (n— l)-dimensional, it goes by an e-transformation into a set

containing an (n— 1)-dimensional torus;§ and therefore Oa must separate Rn.\\

The point L(Oa) must therefore separate ic„*. Hence every point except possi-

bly P* is a cut point of R *. But since R * must have at least two non-cut

points, If we see that at least one minimal closed invariant set is less than

(»— l)-dimensional.

5. For the application of these theorems to certain special cases a few

preliminary facts are necessary and these will now be discussed. Let G be an

a.p.t.g. of R, and let A be a subgroup of G. It can be verified that A is also

an a.p.t.g. of R and the minimal closed invariant sets (under A) in R form a

continuous family. Denote the space formed by this continuous family of sets

by RA and the continuous transformation taking R into RA by LA. If G — A = B,

f Alexandroff, loc. cit., p. 186. See also p. 218.

t Menger, Dimensionstheorie, p. 244.

§ Pontrjagin, Annals of Mathematics, vol. 35 (1934), p. 386.

|| Alexandroff, Annals of Mathematics, vol. 30 (1929), p. 148.

If R. L. Moore, Foundations of Point Set Theory, American Mathematical Society Colloquium

Publications, vol. 13,1932, p. 45.
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then B can be considered in a very natural way as a t.g. of RA. If x* =LA(x)

and if h is an element of B corresponding to the coset b+A, the following

definition is made:

*<**) = LA[b(x)].

This is a unique definition and by it the transformations b(x*) are homeo-

morphisms of R satisfying the conditions for a t.g.

Theorem 8. Under the conditions given above B is an a.p.t.g. of RA.

Only the a.p. character of B remains to be proved. Let a* be any point

of RA; then Lrl(a*) is a minimal closed invariant set in R which will be de-

noted by Oa(A), the point a being selected as any point of the set. Since G

is a.p. there is a neighborhood U(a) having the property that for every posi-

tive d there is a finite set gi, g2, • ■ • , gn such that for any g in G there is an i

such that d[g(x), gi(x)] <d for all x in G[U(a)]. Now assume that d is fixed

and that gi, gt, • ■ • ,gn is the corresponding finite set. Now let LA U (a) = U(a*).

Let gi be the finite set of elements of B corresponding to the cosets gi+A.

Let g be any element of B corresponding to the coset g+A, and consider the

distance d[g(x*), gi(x*)], where x* is any element of U(a*). Remembering

that g(x*) =LA [g(x) ] and that gi{x*) =LA [gi(x) ] as well as the local compact-

ness of R, we see that d may be so chosen that the distance in question is less

than any e specified in advance. This is sufficient to prove the theorem.

If K* is a closed set in an auxiliary space, the set K is said to be a true

section of L^iK*) provided (1) that it is closed, and (2) that it contains pre-

cisely one point on L~l{x*) for every x* in K*.] Bearing in mind the notation

of the preceding theorem, we let Lb(Ra) =Rab- This space RAb is homeo-

morphic to Ra which we ordinarily denote by R*.

Lemma 1. Let K* be a closed set in R*(RAb). If KA is a true section of

L^iK*), and if K is a true section of L^^Ka), then K is a true section of

L-^K*). ■

This lemma, the proof of which will be left to the reader, provides an op-

portunity to obtain true sections in complicated cases from true sections for

simple cases.

The following lemma due to Zippin will also be useful in this connection.!

Lemma 2. Let F(t) be a continuous function which is defined on a linear

t Montgomery and Zippin, these Transactions, vol. 40 (1936), p. 24.

t Zippin stated this theorem to the author in conversation, but he has not as yet published his

proof. The author has found an independent proof. Added in proof. On March 27, 1937, G. T.

Whyburn read a paper containing a proof of this theorem. His paper will appear in the Duke Mathe-

matical Journal.
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interval agtgb and whose values are disjoined closed zero-dimensional sets in

a compact metric space. Then there is a continuous point valued junction /(/)

defined on agtfsb in such a way that f(t) is in F(t). This may be chosen so that

if eis any point in the interval, f(c) is any desired point of F(c).

This is equivalent to saying that there is a true section of the continuous

family of sets which are the functional values of F(t).

Theorem 9. If G is a one-parameter topological a.p.t.g. of R whose minimal

closed invariant sets are at most one-dimensional, then for any arc a*b* in R*

there is a true section ab in L~1(a*b*).

To begin with assume that a*b* is in M*. It will first be shown that if c*

is any point of a*b*, then there is a subarc e*f* including c* on its interior

which is such that if c is any point of Z_1(c*) there is a true section ef in

Z_1(e*/*) containing c.

In order to prove this, note that the family of curves filling L~x{aV) is a

regular family so that Whitney's results on local cross sectionsf may be ap-

plied. Let c be a definite point of L~l{c*), and let S be a cross section of the

family of curves through c (Whitney, loc. cit.). Now Oc S must be zero-

dimensional for if it were one-dimensional, then Oc would be at least two-

dimensional. Hence there is in 5 an open set 0 including c which has no points

of Oc on its boundary. There must be a small arc e*f* including c* in its in-

terior which is such that for any point x* in e*f*, [Z_1(a;*)]-0 is a closed

zero-dimensional set and Z_1(x*) does not intersect the boundary of O. The

family of sets [L_1(x*)]-0 for all x* in e*f* is a continuous family of zero-

dimensional sets, and hence by Lemma 2 there is an arc ef which is a true

section and which goes through c.

By the Heine-Borel theorem there are a finite number of arcs of the same

type as e*f* which cover a*b*. Hence a*b* may be divided into a finite num-

ber of subarcs a*a*, a*a?, ■ ■ ■ , a*b* which are such that L~1(a*a*) has a

true section through any point of Z_1(a*), L~1(a*a2*) has a true section

through any point of L~x{a*), and so on. Now choose any true section aax of

L-1(a*a*). Choose a true section of L~l(a*a*) which begins at ah call it a\a2.

Then choose a true section of Z_1(a*a3*) which begins at a2, call it a2a3. Pro-

ceeding in this way there is obtained a finite set of true sections whose sum

is a true section of Z,-1(a*o*). The proof of the theorem is now complete for

the case where a*b* is in M*.

Suppose now that a*b* is anywhere in R* so that part of it may be in F*.

Let K* = a*b*. The set L~l(K* F*) is its own true section. The set K*-M*

f Annals of Mathematics, vol. 34 (1933), p. 244.
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may be represented as the sum of the interiors of a countable set of intervals

c*d*, where c* and d* are in F*. The interior of any interval c*d* may be repre-

sented as the sum of a doubly infinite set of adjacent intervals cfcf+i, where i

runs over all positive and negative integers. For each i the set L~l(cfcf+i) has

a true section dci+i, where either c{ or ci+i can be chosen arbitrarily in

L~l{cf) or i_1(cf+1) respectively. We may therefore assume, as our notation

has anticipated, that the last point of c{ci+1 coincides with the first point of

Ct+iCi+2- Let L-1(c*) =c and L~l(d*) =d. Then the set 'Y^Cid+x+c+d is a true

section of L-1(c*d*); because of the a.p. character of G, the sum converges

properly toward c and d. Since this same process can be carried out in each

interval, it is clear that there is a true section of L~1(a*b*) and the proof of

the theorem is now complete.

Corollary. Let G be the circle group, and let G be a topological t.g. of R.

Then if K* is an arc in R*, there is a true section of Z,-1 (./£*).

This is a special case of the preceding theorem.

Theorem 10. Let G be a connected compact one-dimensional t.g. of R. Then

if K* is an arc in R*, there is a true section K of L~X(K*).

In this case G contains a compact zero-dimensional subset A such that

G — A is the circle group. Hence the theorem is an immediate consequence of

the preceding corollary and Lemmas 1 and 2.

Lemma 3. If G is a compact one-dimensional topological group, there is in G

an arc C including the zero of G as an interior point and which has a certain

group property as follows: There is an open subset V of C including zero and such

that if u and v are in V, then u+vis in C.

This is contained in a result of Pontrjagin.f

Theorem 11. Let G be a compact connected one-dimensional t.g. of R. Then

if K* is an arc in M*, L~X(K*) is two-dimensional.

There is an arc ab which is a true section of L^(K*) by Theorem 10. Let

C be the arc and V the subset of C of the preceding lemma. The "group" C

may be assumed to be locally isomorphic to a part of the real number group,

and we will speak as if the elements of C were real numbers. If F is chosen

sufficiently small, then for every v different from 0 in F, »(a)^a; for if there

were a set of elements vn with zero as a limit and such that v„(a) =a, then

for every element v in V, v(a) — a. In this case the set H(a) of elements of G

leaving a fixed is one-dimensional, and therefore the orbit is zero-dimensional

which means in this case that it is a point. But this is a contradiction, and

t Loc. cit., p. 387.
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we conclude that our original statement must be true. A similar statement

is true for all elements x in K. There is in fact a V so small that for every v

different from zero in V and every x in K, v(x) 9^x. If this were not true there

would be a set of elements vn approaching zero and a set of elements x„ in K

which may be assumed to approach x0 such that vn(xn) =xn. Assume that V

is so chosen that if v is in V, v(x0) 9^x0. Now let v be any element in V. For

any n, v = knvn-\-un, where k is an integer and \un\ <\v„\. We know that

v(xn) approaches v(x0), but v(xn) = (k„v„+un)(xn) =un(x„). Hence v(x0)—Xo,

and we have reached a contradiction from which we conclude that a F of the

type stated exists. Assume that V consists of all elements of the type \v\ <r

where r is a positive number. If \v\\ <r/2 and \v2\ <r/2 and ti9*9t then

Vi(x) = v2(x), for if vi(x) =v2(x), then (vi —v2)(x) —x and | v\ —v2\ <r.

Consider all elements of the form v(x) for x in K and v in V. This set is

homeomorphic to the product of an open interval and a closed interval and

is therefore two-dimensional. We have now proved a slightly stronger result

than the one stated in the theorem, namely, that the arc ab is actually im-

bedded in a two-cell which is in Z,_1(a*ö*).

6. We have the following theorem:

Theorem 12. If G is a one-dimensional connected compact t.g. of R3, then

M* is at most two-dimensional.

If M* were three-dimensional, it would contain a compact three-dimen-

sional set and hence a compact three-dimensional Cantorian manifold.f In

fact there would have to be a point a* in M* such that an arbitrarily small

three-dimensional Cantorian manifold contained it. On the other hand, M*

contains no cut points because the inverse of a point is one-dimensional, and

a* must be an interior point of an arc which is in M*.| This arc separates M*

locally at a* because the inverse of the arc contains a two-cell and therefore

separates R3 locally. These two facts contradict each other, and it may there-

fore be concluded that M* is at most two-dimensional.

Theorem 13. If G is a one-dimensional connected compact t.g. of R3 whose

orbits are uniformly bounded, then G leaves every point of R3 fixed.

This is an immediate consequence of Theorems 6 and 12.

Theorem 14. Let G be a one-parameter topological a.p.t.g. of R3 whose

minimal closed invariant sets are one-dimensional. If the orbits are uniformly

bounded, then every point of R3 is fixed under G.

It is necessary to prove that M* is at most two-dimensional. If a*b* is

f Alexandroff, Mathematische Annalen, vol. 106, p. 214 and p. 217.

t R. L. Moore, loc. cit, p. 148.
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an arc in M* and ab is a true section of L_1(a*6*), it can be shown as in Theo-

rem 11 that ab is imbedded in a two-cell in L~1(a*b*) and therefore the dimen-

sionality of M* may be verified in the same way as in Theorem 12.

It would be interesting to remove the restriction on the dimensionality

of the minimal closed invariant sets in this theorem.

Theorem 15. If G is a one-parameter topological a.p.t.g. of Rs, and if the

minimal closed invariant sets are at most one-dimensional, then the points whose

orbits are points or simple closed curves are everywhere dense.

In order to prove the theorem we need only concern ourselves with the

moving points, for the fixed points clearly lie on orbits of the type described.

Let a* be any point in M*, and let e*f* be an arc in M* containing a* as an

interior point. The point a* may be accessible from M* — e*f*, but if not there

is in any case a point b* arbitrarily near a* which is accessible from M* — e*f*.

It will be shown that either L_1(o*) is a simple closed curve or that it has a

simple closed curve as an orbit near it. Let ef be a true section of L~l(e*f*).

Let b*c* be an arc in M* which has only the point b* in common with e*f*,

and let be be a true section of L~l(b*c*) with 6 in the set ef. Let H be the two-

cell including ef, the existence of which was proved in Theorem 14.

Our definition of almost periodicity is equivalent in the case under con-

sideration to the more familiar one,f and we can therefore conclude that ef

and be are so chosen that there is a set of real numbers gn approaching infinity

such that for any point x in H+bc, d[gn(x), x] <\/n. If gn(H) intersects H

for a large value of n, some point of H is on a periodic orbit, and if this is true

no matter how small e*f* is, b is arbitrarily near a periodic orbit. This case

may therefore be dismissed, and we turn to the case where for all n suffi-

ciently large H and gn(H) do not intersect. Then a small open set U may be

chosen with ö as an interior point in such a way that H separates U into two

connected parts Ui and U2. Assume that be lies in Ui. Choose n so large that

gn(H) is very near H and gn(bc) is very near be. How gn(H) must cut either

Ui or <72, and we may assume that it is Z72; for if it cut Ui it would only be

necessary to interchange the parts played by H and gn{H). Now gn(H) must

separate b from c in £72, and hence g„(H) must intersect be at an interior

point, which contradicts our choice of b*c* and be. This case having led us to

a contradiction we conclude that the theorem is true.

t Bochner, Acta Mathematica, vol. 61, p. 154.
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