EQUIVALENCE OF PAIRS OF MATRICES*

BY
MERRILL M. FLOOD

1. Introduction. Two pairs of matrices, [41, 42] and [Bi, B:], with ele-
ments in a commutative field F, are said to be egusvalentt if and only if there
exist two non-singular matrices P and Q, with elements in F, such that
A1=PBlQ and A2=PB2Q.

The totality of pairs of matrices may be separated into different classes
in such a way that all pairs in one class are equivalent to one another while
pairs in different classes are not equivalent. The problem which arises natu-
rally is to determine a set of invariants which will characterize the pairs in
each class and to select from each class a canonical pair defined uniquely in
terms of these invariants. A rational solution of the problem is one which is
carried out completely in the field F; the invariants and canonical pairs
obtained in such a solution will be rational.

The rank of a pair [4;, A;] is the maximum rank of the matrices of the
matric pencil A = Ax,1-+ Asxs, where x, and . are indeterminates in F. A ma-
tric pencil is said to be non-singular if it is square and of rank equal to its
order (otherwise it is called singular), and it’is said to be regular if the rank
of either one of its coefficients is the same as the rank of the pencil.

Non-singular matric pencils were first classified by Weierstrass} who con-
structed an irrational canonical form defined by means of the elementary
divisors of the pencil. Frobenius§ later gave a rational treatment of the non-
singular case. Kronecker|| treated the singular case and gave an irrational
canonical form. Muthq gave a full account of the theory of pairs of bilinear
forms as it stood at the turn of the century. De Séguier** seems to have been
the first to give a rational treatment of the singular case. More recently, it has
received the attention of Dickson,tt Turnbull and Aitken,{f Wedderburn,§§

* Presented to the Society, March 27, 1937; received by the editors May 25, 1937.

t C. C. MacDuffee, The Theory of Mairices, Berlin, 1933, p. 48.

1 K. Weierstrass, Monatsberichte, Preussische Akademie der Wissenschaften, 1868, pp. 310-338.

§ G. Frobenius, Sitzungsberichte, Preussische Akademie der Wissenschaften, 1894, pp. 31—44.

|l L. Kronecker, Sitzungsberichte, Preussische Akademie der Wissenschaften, 1890, pp. 1225
1237.

P. Muth, Theorie und A dung der El tartheiler, Leipzig, 1899.

** J. A. de Séguier, Bulletin de la Société Mathématique de France, vol. 36 (1908), pp. 20—40.

tt L. E. Dickson, these Transactions, vol. 29 (1927), pp. 239-253.

11 Turnbull and Aitken, Canonical Matrices, Glasgow, 1932, chap. 9.

§§ J. H. M. Wedderburn, Lectures on Matrices, American Mathematical Society Colloquium
Publications, vol. 17, 1934, chap. 4.
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Turnbull,* Ledermann,t Williamson,} and others.

In this paper the problem of constructing a rational canonical form in the
singular case is reduced to the consideration of the non-singular case. The
proofs are completely rational, quite elementary, and relatively short. The
canonical form which is obtained is defined essentially in terms of the set of
invariants shown by Williamson} to characterize the classes of equivalent
matrices. The method of proof is very similar to that used by Ingraham§ in
his treatment of the equivalence of singular pencils of Hermitian matrices.

2. Preliminary remarks. Consider a singular pencil 4 =4x:4Asx. of
rank p(4)=r and order [0, 8’]. Set Ri=Aitn—+Astn and Ry=Aitio+Asts,
where the #; are quantities of F such that |#;| 0. If R =R+ R, and
T =||#:4|, then the relations above may be written R=AT, and the pencils
4 and R are said to be transformable. If B is a second matric pencil, it follows
easily that 4 is equivalent to B (4 ~B) if and only if AT~BT. In particular,
there exist two quantities #, and #, of F not both zero and such that
p(A.8)+A:8,) =7, and in this case the pencil R=AT is said to be regular.

If it is desired only to obtain necessary and sufficient conditions for the
equivalence of two pencils, then there is no loss of generality in considering
only regular pencils. However, if a canonical form in the most strict sense is
required, it is necessary to start with the original pencils rather than their
regular transforms, as has been pointed out by Ledermann.|| Canonical forms
will be constructed only for regular pencils, but the invariants used will be
shown to afford a satisfactory classification for all pencils. It is felt that this
solves the important part of the problem.

3. Rational canonical form for regular matric pencils. Constant non-
singular matrices P and Q existY such that

l,OH

PRQ =¢ =
R

hence R~ex;+ PRyQx: =ex1+ax, = R,. If we set

1, 0
00

a1l G2

RO = ’ X1 X2,

a21 Q22

* H. W. Turnbull, Proceedings of the Edinburgh Mathematical Society, (2), vol. 4 (1935)
pp. 67-76.

t W. Ledermann, ibid., (2), vol. 4 (1935), pp. 92-105.

1 J. Williamson, ibid., (2), vol. 4 (1936), pp. 224-231.

§ Ingraham and Wegner, these Transactions, vol. 38 (1935), pp. 145-162.

Il Loc. cit.

 MacDuffee, loc. cit., p. 43.
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it follows immediately that a» =0, for otherwise the rank of R, would be
greater than r, which is impossible since R, has been assumed to be regular.

Since 1,%1+aux. is non-singular, the rows of (g2 0) must be linearly de-
pendent on the rows of (1,£+4an a:2) ; thus there exists a matrix X, such that
Xa(1,24+a1) =an and Xza.2=0. Necessarily then, X5 =axn(1,2+a1)~?, and
an(1,x+a1u)"la:2=0. For x sufficiently large

(1rx+ an)?t = — Z<— au)

X k=0

hence asata12=0 for £=0,1,2, - - - .

Conversely, if anata12=0 for £=0,1, 2, - - -, then as(1,2+a1)"1a1=0.
Hence, if X5 =a2(1,2+a1)7, it follows that Xa(1,2+ a11) =ae and X261:=0,
so that the last 6 —r rows of ex+a are dependent on the first » rows. This
proves the following lemma:

LemMA A. The rank of the matric pencil
l 1, 0

0 0
is r if and only if =0 and anata2=0 for k=0,1,2, - - - .

Lemma A holds true only if the coefficient field F is commutative and
has characteristic zero. For a field of characteristic 0 it is necessary to
alter the treatment slightly. The present author has shown (Annals of
Mathematics, (2), vol. 36 (1935), p. 865) that the matric pencil of Lemma A
is equivalent to a pencil

a1y Q12

X1 X2

a21 Q22

1 0 0 bu 0 b13
0 0 Offzs 4|0 1, O |a
0 0 0 by 0 O
where s=p(as) and bgbhbis=0 for £=0, 1, 2, - - - . It follows easily that

there is no loss of generality in considering pencils satisfying the conditions
of Lemma A; and in this way the proofs given in this paper may be extended
to include pencils with coefficients in an arbitrary field. This more general
method of proof has been used by the present author in a recent paper
(Strict equivalence of matric pencils, presented to the Society December 29,
1937, but not yet published) treating the problem of equivalence of matric
pencils, singular and non-singular. :

We now proceed with the construction of a canonical form for the regular
pencil S=ex+a. If « and 8 are non-singular matrices of orders 6 and 6’ with
elements in F, then aeB =e¢ if
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-1
Q11 0

B21 P22

a = 5

0

where a2 and 2 are non-singular, and so

-1 -1
angnan + aigaionn + andizfa anndifae
-1

aaf =
Q220210011 0

Now if the rank of @, is 71, a2 and oy may be chosen so that

1, 0
0 0

-1
ag3d2101) = ‘ ’

and it follows from Lemma A that the first r; rows of a1a1:8:2 must be zero.
Furthermore, if the rank of @y, is ¢y, it is clear that 8, may be chosen so that

00 l
0 1,
With this choice of a;; and Bi. the pencil T =a.S8 takes the form

annafse =

1,0 0 0 0 0 %1 81 8,0 0 0
0 1,60 0 0 0 % @2 a3 0 0 0O
ro|00 000 x3x4x5001c1’
000 0,00 1,0 0 0 0 0
000 0 00 000000
00000 O 000000

where h=r—r—c, j=0—r—r—c, and k=0"—r—7,—c;. Finally a;» and 8z
may clearly be chosen so that the x; are all zero; then

X a; a4 0 0 0

Ox-+aa; 0 O O

0O 0 0 0 1
T =

1 0 0 0 0 O

o 0 0 0 o0 o0

0O 0 0 0 0 O

The rank of T is 7, since « and 8 were chosen non-singular, therefore

ay a4

x+az as
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is regular and of rank r —7, —¢;. Hence, by Lemma A, ¢,=0 and a¢,a# a; =0 for
k=0,1,2,---.

Consider a second regular pencil U = U,x,+ Ujx, which is equivalent to R.
The rank of U, is necessarily 7, therefore, constant non-singular matrices P,
and Q, exist such that PoU,Qo=e. Then if

bll bl2
b21 b22

V = PyUQo = exy + bxs = ex; + ‘ X2,
it follows from Lemma A that by =0. Since V~S there exist constant non-
singular matrices x and y such that £V =Sy, which equation is equivalent to
the relations xe=ey and xb=ay. From xe=e¢y it follows that %, =y, 22 =0,
y12=0, and that x, 2, and y»; are non-singular. Then from xb =ay it follows
that xbs = a1 and xubie = G19yee. Since %, %11, and Y, are necessarily non-
singular this shows that the ranks of b, and by are the same as the ranks »;
and ¢; of az and @y,. 7, will be called the first “row invariant subrank” and ¢,
the first “column invariant subrank” of R or of any pencil equivalent to R.
It follows that constant non-singular matrices a and 8o can be chosen so that
W =a,Vp, takes a form analogous to that of T but with a, replaced by bs.

The pencils U and R are equivalent if and only if there exist constant non-
singular matrices p and ¢ such that pT =Wyg. From pe=eq it is clear that
p and ¢ must be of the forms

* z O
=1l and ¢=|_ .||
hence pT = Wq may be replaced by the equation
pu D12 P13 P Pus Prs 0 a0 000 0 500 00 tupps 0 0 0
D2 P22 P23 P Dos Do 0 6220 0 O 0 % b 0 0 O papnps 0 0 0
Da1 P2 P33 Pu D3 Pss 00 0O0O01 _ 00O0O0O1 pupnps 0 0 O
000 Du Das Dus 100000 1 00000 qa Qa2 Qa3 Gas Qa5 Gas
00O Pos Dss Dse 0 0O0O0O009 00 0O0O0O0TD O 51 Q52 Q53 Q54 Qo5 s
0 00O P« PGS ﬁu 00 O0O0OTO 000O00O0 0 Je1 Qo2 Ges Jos Jes Jes |

This equation is equivalent to the set of relations:
Pse = Poe = P12 = P13 = Qea = Qes = P2z = 0,
P11 = Pas, P33 = Qes, D3¢ = Ge1,
1 = bipa, P3ea3 = Qes, P1283 = bipas,
p2e = bapar + bspa, pua1 + preaz = bipss,
3181 + 3202 = ez, pe2as = bapas + bspas,
2101 + pasas = bapae + bapse.
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It follows easily that these equations have a solution such that p is non-
singular if and only if there exist constant non-singular matrices pu, ps2, and
P33 which satisfy the relations:

puar = bipae, p22as = b3pas,
p2181 + pras = bopos + bspas.

These equations may be rewritten in the form

P22 P a2 as)| by b3 pa2 O
0  pu a1 0 by 0 psz pssll’
and this is simply the condition for the equivalence of the two regular pencils
T1=”1 0 . as aa’ Wl=”1 0”x+’bz bs
00 a 0 0 0 by 0

The pencils T and W! will be called “first kernels” of the pencils R and U.
Thus the problem of classifying singular pencils of rank 7 has been reduced
to that of classifying singular pencils of rank r—r;—c¢;, or else to that of
classifying non-singular pencils if a; and a; happen to be zero.

If r;1 and c;yq are the first invariant subranks of 77, and T7/t! is a first
kernel of T for j=1, 2, 3, - - -, n, and if T**! is non-singular or zero; then
ri and ¢; for j=1, 2, - - -, n+1 will be called the “invariant subranks” of
R, and T+ a “kernel” of R. This proves the following:

THEOREM 1. Two regular mairic pencils are equivalent if and only if they
have identical sets of invariant subranks and equivalent kernels.

It is clear that the construction which leads to T can be extended until a
rational canonical form for R is obtained. This canonical form would dis-
play the invariant subranks and invariant factors of R. The invariant
factors of R are clearly the same as those of any kernel of R except for
> 7¥!(ri+c;) units which would appear in the normal form of R but not in the
normal form of any kernel of R. This demonstrates the corollary:

CoOROLLARY 1.1. Two regular matric pencils are equivalent if and only if they
have the same invariant subranks and the same elementary divisors.

4. Transformable matric pencils. Let 4 =4 x,+ 4,2, be an arbitrary ma-
tric pencil, and define matrices M:(A4) and N(4),for k=12,3, - - -, by the
relations

4, 4. 0
0 A4, 4.

o ..
) b

M) = [ 4, Ao,  Ma(a) = ”
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4 A, 0
Nl(A)=l Al y NQ(A)"—‘ Az Al y T
? 0 4,

It is convenient to denote by m:(4) and #:(4) the ranks of M(4) and
N(A4) and to call m(4) the “row singularities” and #+(4) the “column singu-
larities” of 4.

It is obvious that equivalent matric pencils have the same row and column
singularities. We now proceed to prove the following:

THEOREM 2. Transformable matric pencils have the same singularities.

Proof.* Consider a matric pencil 4 = 42,4 4,x; and a non-singular trans-
formation of indeterminates x =#x’, or more explicitly

%1 = tux{ + hoxe , xg = tnx{ + faxg .
Under this transformation, the pencil 4 is carried into the pencil
A" = At = (tndr + tads)x{ + (h12dy + te2ds)xs = A{ x{ + A3 x5,

and the theorem states that mi(4) =m.(4’) and nx(4) =n.(4’). The first of
these equalities will be demonstrated by constructing non-singular matrices
T* such that

MuA)T* = TH1M(4")  for k=1,2,3,---,

and the second can be shown by a similar construction.

If wo, w1, s, - - -, ur are k41 indeterminates, then the identity
) woxt + Crath 257105 + Crousxt 22 + - - - + wind
= ug x{* + Craui 2{ 7125 + Cious x{* 222 + - - - + u x*
defines g, #y, - - - , w as linear combinations of %o, #1, - - - , %, and these

may be written in either of the forms

k
k k
w! =Y Tim; or o =Tu.
i=0

Now if T%=|| T%||, then ¢—T* is a representation of the full linear group of
all non-singular matrices of order two, and hence T* is non-singular since ¢ is.
If (1) is differentiated with respect to xy and x4, there results:

(uotritwster) 1 Cror 1 (b1 4 %ator) F 204 + -+ + (Up—rbriFuntar) x5!

— / ! f— 1! — / ’ I k—
=ug o/ ¥ 4-Croyata o] 205 + - - - Fuf_xd*,

(22)

* I am indebted to Dr. A. H. Clifford for this proof.
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(wotra+trtas) 6 FE1HCroy,1(Urtrattobas) x5 2x0+ - -+ + (Ui—rbraturte) 2!

=uf o *+Croraud 2 20s + - - Fug agt

(2b)

If (2a) is multiplied by 4., and (2b) by 4., and the resulting equations are
added, it follows that

(wod{ 4w A3 )24 Croy1(Ad] Fu2ds )t 202 + - - - + (1 4{ +urdd ) 2!
= (ug Artui A2)x! ¥+ Croy1(uf Artus Ao)x{ ¥ 225 +- - - +(ui_1 A1+ us Ag)xs %,

and from this identity that

k—1
wldy+ wlpde = 3 Tip (wid{ + uindd) for i=01,---,k—1.

i=0
These identities may be written in the form
Mi(A)w' = T*'My(4")u
or, since 4’ = T*u, in the form
Mu(A) T u = T M(A")u.
The indeterminate vector # may be cancelled in this equation and so
M(A)T* = TH1M,(4")
as was to be shown.
It is convenient, at this point, to state the following:

LeEMMA B.* The invariant factors of transformable matric pencils are con-
nected by the same transformation of the indeterminates x, and x: as the pencils
themselves.

5. Equivalence of general matric pencils. Williamsont has shown that
the minimal numbers of a matric pencil can be expressed in terms of its singu-
larities, from which follows the theorem:

THEOREM 3. Two matric pencils are equivalent if and only if they have the
same singularities and invariant factors.

This theorem may also be proved with the help of Theorem 2 and Lemma
B by showing that the invariant subranks of a regular matric pencil can be
expressed in terms of its singularities. This will now be done for the row sub-
ranks, and an analogous treatment of the column subranks would complete
the proof. There is no loss of generality if the pencil is taken to be in canonical
form.

* See MacDuffee, loc. cit.
1 Loc. cit.
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Consider the regular canonical pencil W =ex+ ¢ of rank r, with row sub-
ranks 7; and column subranks c;. Set

1,,0 0 000
E, 0
E,=|l0 0 0}, Fr=|0 O0 0|, and e= .
A, F,
000 0 0 1, -
Then square matrices 4; may be defined by the relations
0 E, O
Ar=1|| 0 A Fy for k=1,2,---,9¢,
00 O

where A, is the canonical kernel of S and EzA{F,=0 for j=1,2, - -.
Of course 7, is the rank of Ej, and ¢, is the rank of F;.

Now, by definition,
0 0 E;0 0O
E,0 O
(W) eoaO 10A1F100 + 0 E. 0
m = == =17
: 1o e all "o 00 0 Eo0 ? '
1 A, Fy
0 01 0 4, F,

If the first column of this matrix is multiplied by —F, and added to the last
column, and then the third row is multiplied by — E; and added to the first
row; since E,F;=0, it follows that

0 —E4, E
m(W)=r+p||0 E | = 21’+p” .
: EA,
1 4
In similar fashion, it is easily shown that
E,
E4,

m(W) = kr + p|| E14 for =1,2,3,---.

EAT
Since E;43F;=0, it follows that
' 0 EAy 0
4 =||0 4i 43'F. ||,
o 0 0
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and hence that
E1 Ez
ElA 1 EzA 2
P =n+o»p ;
Edy EuAy

and a simple induction now shows that

k—1
mk(W) = kr + Z ri.
i=1
This equation provides the necessary relationship between the row singulari-
ties and subranks of W and the proof of Theorem 3 is complete. Of course,
k—1 k—1
r;,=mk—r—zm,- and ck=nk—r—2n,-
i=1 jm1
are the inverse equations which express the subranks in terms of the singu-
larities.
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	MR1501957.pdf



