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1. Introduction. An absolute optical instrument is a system of transparent

media which gives a precise point-image of each object-point lying in a three-

dimensional region, the law of light propagation being that of geometrical

optics. For a long time only two absolute instruments were known, the plane

mirror (or combination of plane mirrors) and the "fish's eye" of Maxwell,f

which consists of a single isotropic medium of variable refractive index

(1.1) n = n0a2/(a2 + r2),

where n0, a are constants, and r is the distance from a fixed point. Maxwell's

medium has been generalized by Lenz,î and Boegehold and Herzberger§

have given an infinite class of absolute instruments, consisting of homogene-

ous isotropic media bounded by concentric spheres.

Less attention has been paid to the question of the realization of an abso-

lute instrument by a distribution of transparent media than to the relations

between object and image which must hold if the instrument is absolute. In

the simplest case, in which the initial and final media are homogeneous and

isotropic, it has been shown in various ways by Maxwell, Bruns, Klein, and

Liebmann|| that if A, B are the images of object-points A', B', then

(1.2) n'A'B' = nAB,

where n', n are the (constant) refractive indices of the initial and final media.

This relation may also be written

(1.3) [A'B']=[AB],

where the brackets indicate optical lengths.

* Presented to the Society, March 27, 1937; received by the editors February 26, 1937 and June

16,1937.
f J. C. Maxwell, Cambridge and Dublin Mathematical Journal, vol. 8 (1854), p. 188; Scientific

Papers, vol. 1, Cambridge, 1890, pp. 76-79.

Í W. Lenz, Probleme der Moderne Physik, edited by P. Debye, Leipzig, 1928, pp. 198-207.
§ H. Boegehold and M. Herzberger, Zeitschrift für Angewandte Mathematik und Mechanik, vol.

15 (1935), pp. 157-178.

|| For references and an historical account by H. Boegehold, see Czapski-Eppenstein, Grundzüge

der Theorie der Optischen Instrumente, Leipzig, 1924, p. 213 et seq. See also Carathéodory, Sitzungs-

berichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Physikalische Klasse, 1926,

pp. 1-18.
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Carathéodory* has extended this result to the case of more general media,

namely, to those in which the velocity of propagation of light is the same in

opposite directions and this velocity, considered as a function of the direc-

tion of a ray, satisfies certain conditions of analyticity.f Further, by intro-

ducing the idea of the field of the instrument, he made his result applicable

to actual instruments.

In the present paper the approach to the problem of the absolute instru-

ment differs from that of Carathéodory. Attention is directed to the surface

of components rather than the wave-surface, and we are thereby enabled to

see that when the optical character of one of the terminal media is assigned,

the optical character of the other is rather closely restricted if the instrument

is absolute.

Extension to the case where the space is Riemannian and of N dimensions

may easily be made; but since the problem is one of considerable optical in-

terest, it has been thought best not to complicate the presentation by this

extension. The problem may also be presented as a problem in Finsler space.

2. Fundamental theory. Hamilton's great achievement in geometrical op-

tics was the reconciliation, in the form of a single mathematical treatment,

of the emission theory of light and the wave theory,J or, in the language of

pure mathematics, the calculus of variations and the theory of contact trans-

formations. This comprehensive view places at our disposal for the discussion

of any problem in geometrical optics two alternative methods—the ray-

method and the wave-method.

The methods employed in the present paper are essentially those of

Hamilton, although for brevity an indicial notation will be used, suffixes

having the range 1, 2, 3, with the usual summation convention.§ Except

for a modification of one of Hamilton's definitions to suit present purposes,

there is nothing in the present paper which might not have been given by

Hamilton a century ago as an immediate deduction from his theory. The dis-

* C. Carathéodory, loe. cit. The part of this paper containing the fundamental theorem is re-

produced, with no essential modification, in M. Born, Optik, Berlin, 1933, pp. 61-63.

t Professor Carathéodory has informed me by letter that in establishing the result he had ex-

clusively in mind media of the Fresnel type, or media in which similar conditions of analyticity are-.

satisfied. Unfortunately these conditions were not stated in his paper, and the reader might come to

the false conclusion that the result follows from the single assumption that the velocity of propagation

is the same in opposite directions. That is not so, and it is not difficult to construct artificial examples

in illustration. Carathéodory's method is discussed in §9.

X Cf. G. Prange, W. R. Hamiltons Abhandlungen zur Strahlenoptik, Leipzig, 1933, Anmerkungen,

p. 104; The Mathematical Papers of Sir W. R. Hamilton, vol. 1, Cambridge, 1931, pp. 277, 497. The
latter will be referred to as M. P. H.

§ J. L. Synge, Journal of the Optical Society of America, vol. 27 (1937), pp. 75-82.
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cussion of an absolute instrument does not seem to have occurred to him;

the idea arose out of Gaussian optics.

The essential parts of the theory will now be developed, care being taken

to present them in a form applicable to an absolute instrument. Certain ex-

ceptional features are present in such an instrument which may render invalid

statements valid in more general cases.

The instrument is composed of any number of media. Each medium has

a positive medium-function v(xT, ar), a function of rectangular cartesian co-

ordinates xr and of direction cosines ar ; v is homogeneous of degree unity in

the direction cosines. It is in general multiple-valued. If the units of space

and time are so chosen that the velocity of light in vacuo is unity, then 1/v

is the ray velocity in the medium for a ray having direction cosines ar at the

point xr. (For an isotropic medium, v is equal to the refractive index.)

By Fermat's principle (accepted as a basic hypothesis) rays satisfy the

variational principle ôfvds = 0, ds being an element of arc.

The components of normal slowness corresponding to a ray through xT with

direction cosines ar are denned as

(2.1) ffT = dv/dctr.

They were so called by Hamilton* because the vector <rr stands normal to the

wave and its magnitude is equal to the reciprocal of the wave velocity.

The right-hand side of (2.1) being homogeneous of degree zero in the di-

rection cosines, we can eliminate their ratios and obtain the medium-equation

(2.2) n(xr, o>) =0.

If, from an assigned point xr, we measure off along each straight line with

direction cosines ar a length 1/v, obtaining a point with relative coordinates

dr/v, the surface so obtained is the wave-surface corresponding to xr. On the

other hand if we draw from xr the totality of vectors ov satisfying (2.2), we

get the surface of components corresponding to xT. The wave-surface and the

surface of components are reciprocal surfaces with respect to the unit sphere

with centre xT. t

* M.P.H., p. 278; M. Herzberger, Strahlenoptik, Berlin, 1931, p. 9, calls this vector the "normal

vector." "Slowness vector" might be a more descriptive abbreviation for the full title namely, "the

vector representing the normal slowness of wave-propagation. " These components are of course the

optical analogues of the generalized momenta {p,) of Hamilton's dynamical theory.

t It seems a pity to reject Hamilton's very suggestive terminology, wave-surface and surface of

components, in favor of the names indicalrix and figuratrix, which carry no intrinsic meaning. Unless

the extension to « dimensions appears an important advance, it does not seem historically correct

to assign priority in the consideration of these surfaces to Minkowski and Hadamard (cf. C. Cara-

théodory, Variationsrechnung, Leipzig und Berlin, 1935, p. 247). Hamilton had a priority of seventy

years, and even he assigned priority to Cauchy.
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The optical length of any curve C joining points P, Q is

(2.3) [PQ] =  fvds,

the directional arguments of v being the direction cosines of the tangent to C,

in the sense P to Q, and ¿5 being a positive element of arc. Giving a weak

variation with, in general, displacements of the end points P, Q, we know

from the calculus of variations that

.      .      / dv       \ / dv       \        (• / d    dv        dv\
(2.4) ô[PQ} = ( — SXr)   -( — «*,)  -       ( -        Uxrds.

\oar       /q       \aar       /p     J c \as   aar       axr/

Suppose now that C is a ray; then, by the Euler equations, the integral van-

ishes and we have, in the notation of (2.1),

(2.5) 5 [PQ ]   =   i<Tr8Xr)Q -   i<TrSxr)p.

The characteristic function of an instrument is a function V of the coordi-

nates xr' of a point A' in the initial medium M' and the coordinates xr of a

point A in the final medium M, such that V is equal to the optical length of a

ray joining A ' and A. The function V may not be defined for all values of

the six variables x', xT corresponding to points A', A in the initial and final

media respectively, because there may exist no ray joining A' and A. In

general V is multiple-valued, since v is multiple-valued.

We shall use accents to denote quantities pertaining to the initial medium

M' of the instrument; quantities pertaining to the final medium will be left

unaccented. Different rectangular axes for xr' and xT may be used for M' and

M respectively. Inspection of the method by which (2.5) has been established

shows that the axes to which quantities at P are referred need not be the

same as the axes to which quantities at Q are referred. From (2.5) we see at

once that if we pass from a ray joining points A', A to an adjacent ray

joining points B', B, the variation in V is*

(2.6) SV   =   CrbXT  -   (j'rhx'r  .

* This is the fundamental equation of Hamilton's theory, called by him the equation of the

characteristic function (M.P.H., p. 168). It is of course the optical analogue of the fundamental equa-

tion defining contact transformations in dynamics. Hamilton did not frame his theory to take into

account the exceptional case presented by an absolute instrument; he assumed that six arbitrary

variations &x/, hx, were permissible in (2.6), so that

dV/dxr=<ir, dV/dXr'=-<rr'.

This cannot be done in the case of an absolute instrument if the points x/ and xT correspond to object

and image respectively. The argument of the present paper, which makes no such illegitimate as-

sumption, has already been given by Herzberger (op. cit., p. 12) in a different notation.
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Following Carathéodory, we shall say that a ray passing through a point

A ' of M' with direction cosines ar' lies in the field of the instrument if it passes

through the instrument to the final medium M. At a given point A' of M'

the directions of the rays lying in the field of the instrument will be bounded

by a cone of unidirectional straight lines drawn out from A '.

3. Necessary conditions for an absolute instrument. Consider the rays

emanating in the field of the instrument from an initial point A'. As the

medium-functions of the media in the instrument may be multiple-valued,

these rays may pass through the final medium in a number of congruences,

which we distinguish from one another by calling them congruences of

different types.

If all the rays in the final congruence of type P pass through a single

point A, we may say that the instrument is absolute (type T) with respect to

the source A', A being the image (type P) of A'. If the instrument is absolute

as above with respect to all initial points and directions in the field of the

instrument, we may say that the instrument is absolute of type T. If it is abso-

lute for all types, we may say that it is completely absolute.

In the present paper we shall be concerned with absolute character for

final congruences of a definite type. For simplicity, we shall refer to an instru-

ment possessing this absolute character as absolute, without further explicit

qualification.

In an absolute instrument there exists a one-to-one correspondence

between the points of the initial and final media, A with coordinates xr being

the image of A ' with coordinates xr'.

If, given A', we seek points A such that a ray joins A' to A, we find our

choice of A restricted to that part of the final medium traversed by the con-

gruence of rays from A'. Thus, given A' with coordinates xj, the character-

istic V(xr', xr) is defined only for a restricted range of values of X,. This range

includes of course the image of A '; the coordinates of that image are, by (3.1),

functions of xr'. When A is chosen at the image of A', there is an infinity of

rays joining the two points, but by Fermat's principle their optical lengths

are all the same. Hence in an absolute instrument there exists an absolute char-

acteristic, namely, a function of the three initial coordinates, or of the three final

coordinates, whose value is equal to the optical length of a ray joining object to

image. This absolute characteristic will be denoted by P.

Let us now take two adjacent image-points xr, xT+8xr, and compare the

optical lengths of the rays drawn to these points from their respective ob-
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jects. The difference between these optical lengths, by (2.6) and (3.1), is

given by

BF   —   (TràXr  —  a'rhx'r

(3.2) ; dx',
= <TrSxr — a, -Sxr,

dxT

where <sr' are the components of any ray (lying in the field) through the ob-

ject Xr and <Tr the components of the corresponding ray through the image xT.

Since hxr are arbitrary, (3.2) gives the three equations

dF dx',
(3.3) - = <tt — a', -;

dxr dx,

which are the fundamental equations of the present paper.

The implications of Í3.3) may be explored in various ways. Thus we may

suppose the absolute characteristic F and the transformation (3.1) given,

and inquire into the conditions imposed by (3.3) on the optical characters of

the initial and final media. Or we may suppose that the initial and final media

are of assigned optical characters, given by medium-functions v'ixr',ar'),

vixr, <xr) or by surfaces of components

(3.4) Q'(*,', <rt) = 0,        Çl(xr, cr) = 0;

we may then inquire into the conditions imposed by (3.3) on the absolute

characteristic F and the transformation (3.1). The latter type of approach has

been the usual one.

4. The optical character of one terminal medium in an absolute instru-

ment deduced from that of the other. Let us write (3.3) as

(4.1) a, = arsa's  + bT,

where

dx's dF
(4.2) ars = -» br =-

dxT dxT

Let us consider (4.1) as a transformation expressing final components aT in

terms of initial components ar', the corresponding object and image-points

iA' and A) and the absolute characteristic being given. Thus for present

purposes ar, and br are to be treated as constants; (4.1) is a linear transforma-

tion.

Corisider now the surface of components S' corresponding to A' (with

equation Q.' = 0) and the surface of components 5 corresponding to A (with
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equation Q = 0). Consider any ray through A' in the field of the instrument.

Let its components be ov'. Then the vector drawn from A ' with components

o>' parallel to the axes of xr' has its end on S'. The corresponding final ray

has components given by (4.1). But the vector drawn from A with compo-

FlG. l

nents ar parallel to the axes of xr must have its end on S (Fig. 1). Hence we

have the following result :

Theorem 1. In an absolute instrument the portions lying in the field of the

instrument of the surfaces of components corresponding to an object-point A ' and

its image A are transformable into one another by a linear transformation, whose

coefficients are in general functions of the coordinates of A '.

Thus, insofar as the condition (3.3) is concerned, we may choose arbi-

trarily the following:

(i) the absolute characteristic F,

(ii) the correspondence xT = xr(x¡ ),

(iii) the surfaces of components (that is, the equation ti'(xT', o-/)=0)

throughout the initial medium.

Then the surfaces of components for the final medium (and hence its

medium-function v) can be found to satisfy (3.3). We have in fact by (3.3)

dxs      dF
(4.3) ,*., ,

ax;      dxr

so that Q'(xr', <r/)=0 implies

/ dx,      dF\
(4.4) 0'{¿(x,), „. — -—   =0;
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these are the required surfaces of components in the final medium, (4.4) being

immediately expressible in the form fl(a;r, ov)=0.

In particular we may observe that if there is an absolute instrument in

which the surfaces of components in one of the terminal media are ellipsoids

(the wave-surfaces being consequently, by the reciprocal relation, ellipsoids

also), then the surfaces of components in the other terminal medium are also

ellipsoids (and so are the wave-surfaces).

More generally, if in an absolute instrument the surfaces of components

throughout one of the terminal media are undegenerate algebraic surfaces of

the «th degree, then the surfaces of components throughout the other termi-

nal medium are also algebraic surfaces of the nth degree.

The assumption of algebraic character carries with it an important impli-

cation (as would also a suitable assumption regarding analyticity), namely,

that a linear transformation which carries the portion of one of the surfaces

of components corresponding to rays lying in the field of the instrument into

a portion of the other surface of components, also carries the whole of one

surface of components into the whole of the other. It is this fact that enables

us to make statements about complete surfaces of components, although our

data deal only with the portions corresponding to rays lying in the field of

the instrument.

5. The case where the surfaces of components in the terminal media are

general algebraic surfaces. Let us now suppose that there is an instrument

with given terminal media in which the surfaces of components are unde-

generate algebraic surfaces of the «th degree. We may write

(5.1) Ü'  =   1   +  c'T0-'r    + Cr, O-'rO-',    +   •   ■   •   (t-0 » +   1   terms)   =   0,    ic'r,   =   C,r),

(5.2) Ü  m 1 + crar + crs <rr a, + • • • (to n + 1 terms) = 0,   (crs = c,r),

where cj, c'r,, ■ ■ ■ are assigned functions of xr', and cr, crs, ■ ■ • are assigned

functions of *,.

We wish to investigate the possibility of constructing an absolute instru-

ment with these terminal media, taking into consideration the condition (3.3).

Adopting the notation of (4.1) and substituting in (5.2), we get

(5.3) Q m 1 + criarao-¡ + br) + c„(arto7 + ô,)(a,„o-„' + b.) + ■ ■ ■ =0;

this must be the same as the surface (5.1). Thus we require

1 + crbr + cTSbrb, + ■ ■ ■ =8,

(5.4) c,asr + 2csta,Tbt + ■ ■ ■ = Bei ,
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where 0 is a factor of proportionality. Here we have a set of equations for

five unknown functions of xr, namely, P, xr', 6. Omitting from consideration

for obvious reasons the case « = 1, let us pass to the case n = 2, for which the

surfaces are quadrics. There are then ten coefficients in £2 and hence ten equa-

tions in (5.4) for five unknowns. If n>2, there are of course more equations.

It is therefore in general impossible to construct an absolute instrument with arbi-

trarily assigned terminal media in which the surfaces of components (or the wave-

surfaces) are undegenerate algebraic surfaces of the second degree or of higher de-

gree.

6. The case where the surfaces of components in the terminal media are

central algebraic surfaces. By a central surface we shall understand a surface

which has a centre at the origin ; for a surface of components or wave-surface,

the origin is the point in the medium to which the surface corresponds.

A linear transformation (4.1) which carries a central surface into a central

surface must lack the absolute term. Hence we have this result (of importance

in connection with Carathéodory's theorem and implicit in his proof, unless

replaced by a condition of analyticity) :

Theorem II. In an absolute optical instrument in which the surfaces of com-

ponents (or, equivalently, the wave-surfaces) are undegenerate central algebraic

surfaces, the absolute characteristic is a constant. This result also holds for de-

generate central surfaces, provided that each of the separate surfaces given by

degeneration is central.

Under these circumstances the transformation of components is simply

, dxi
(6.1) cr = c[-

dXr

7. The case of isotropic terminal media. When the terminal media are

isotropic, the surfaces of components are spheres with the equations

(7.1) fi' m alo-I - n'2 = 0,

(7.2) fi  = o-r<Tr - n2  = 0,

where n', n are refractive indices, functions of position. Applying (6.1), we

see that if the instrument is absolute, the correspondence of object and image-

points must satisfy

dxi dx't      n2

(7-3) — — - -58i,
dxr   dxr      n 2

where b3t is the Kronecker delta. These partial differential equations, six in
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number, are not in general soluble for the three unknowns *,'. We deduce

from them

(7.4)

and hence

dx',      n2  dxr

dxT      n'2 dxi

dxr dxr
n2ds2 = n2dxrdx, = n2-dx',dx[

die',  dx[

«'" dx',  dx
(7.5) =-dxldxl

n2    dXr    dXT

= n'2dx',dx',

= n'2ds'2.

This establishes (by a method different from, and perhaps more direct than,

the method of Carathéodory) the equality of optical lengths for object and

image elements in an absolute instrument for which the terminal media are

isotropic and in general heterogeneous. A necessary condition for the abso-

lute character of such an instrument is the applicability of the terminal

media, considered as Riemannian spaces with metrics nds, n'ds'.

8. The case of Fresnel media. In a biaxial crystal, or homogeneous Fres-

nel medium, the surface of components referred to principal axes has the

equation*

ffi2 a22 ai

(8.1) -1-Y -  =  0, q2 = <Tr<Tr,
1 - c,V       1 - c22q2       1 - ciq2

where cr are constants (the principal velocities). Cleared of fractions, this

equation reads

(8.2) q2AmnO-mO-n — BmnOmO-n  +   Í   =   0, Ç2  =  0>0-r,

where

(8.3)
(A°n = c22c32,

{Bu   =   C22 + C32,

^422 = c32ci2, A33 = CiW,

B°22 = c32 + ci2,        B°a = ci2 + C22,

and Aomn = Bomn = 0ií m^n.

If we change to an arbitrary set of rectangular axes (not principal) the

surface of components has an equation of the form

(8.4) q2Amnamo-n ~ Bmno-mCn +1=0, q2 = crar,

* Cf. M.P.H., p. 280; Born, op. cit., p. 224.
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where Amn = Anm, Bmn — Bnm, these quantities being found from A°mn, B°mn

respectively by application of the rules of tensor transformation. Given an

equation (8.4), necessary and sufficient conditions that it should define the

surface of components in a homogeneous Fresnel medium are as follows :

(i) The roots of the determinantal equations

(8.5) IA mn — \8mn | = 0, | Bmn — pômn |=0,

are of the form

(8.6)
(\i = c22d,

Xp-i = c? + c32,

X2 = c32ci2, X3 = Ci2c22,

M2 = C32  + C12 , M3 = C12 + C22 ,

where the cr are constants.

(ii) Each of the three perpendicular directions defined by

(8.7) Amno-n — Xr<rm = 0

for fixed r, coincides with the direction defined by

(8.8) Bmn(Tn  —  ßrO-m   —   0

for the same value of r.

A heterogeneous Fresnel medium may be defined as a medium in which

at each point there exists a set of axes such, that the surface of components

corresponding to that point has the form (8.1). Equivalently, we may say

that, for a single set of rectangular cartesian coordinates throughout the

medium, a heterogeneous Fresnel medium is one in which the surface of com-

ponents at any point has the form (8.4), where Amn, Bmn are functions of the

coordinates xr satisfying the conditions (i) and (ii) above, in which cr are

no longer constants but functions of xr. We shall confine our attention to the

undegenerate case in which C\, c2, c3 are distinct.

Let us now consider an absolute instrument in which the terminal media

are Fresnel media, in general heterogeneous. Their surfaces of components

have the equations

(8.9) ?'M;„<rm'an'  - P¿n<rm'<rn'  +1=0, q'2 m <rr'a'r ,

(8.10) q2Amnaman — Bmn(jmo-n +1 = 0, q2 =    aro-T.

Since these are undegenerate central algebraic surfaces, the formula for trans-

formation of components is homogeneous of the form (6.1). Hence we must

have

(8.11) Bm„o-mo-n = B'mn"mOl ,

(8.12) q2Amncmc„ = q'2A'mno-^o-ñ .
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Two cases must now be distinguished, according to the way in which we break

up (8.12):

Case I:

(8.13)

Case II:

(8.14)

9Y2, Amn<TmO~n  =  B     Amn<Tm "n  ',

<t>2A m„<rm amn" m vn   , nO-mO-n   =  </>.   V2;

here 6, <p are undetermined functions of xr.

Let us choose a pair of corresponding points (object and image) and

choose our axes in the principal directions corresponding. Then (8.11) reads

(8.15) E id + Ci2W m £ (c2'2 + cp)ap

where E indicates a sum of three terms obtained by cyclic permutation of

1, 2, 3. Therefore, renumbering the axes if necessary,

(8.16)

id +Ci2W s id2 + cP)o-P,

ici +cr>22 = id2 +cl2)o-l2,

\ici2 + ci)d = id2 + cP)*P.

Let us now consider separately Case I and Case II.

Case I: Substitution from (8.16) in (8.13) gives

(8.17)
_  cP + cl2
Z, —T-.-~<

(8.18)

From (8.17) we have

(8.19)

Etfcf

C22   +  C32

cP + cP

ci   +  C32

p m 02E <ri'2,

ap =B-2Y,cPcPaP.

cp +cP = 02(c22 +d2),

cP +cP = e\c32+ci2),

cP +cp =e2ic? +C22),

from which it follows that

(8.20) c{ = Bei, c2   = Bc2,        c3   — 6c3;

then (8.18) is automatically satisfied.

Case II: Substitution from (8.16) in (8.14) gives

(8.21)
cP + cP

c22 + c32
m' tfZd 2CP<TP,
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(8.22)

From (8.21) we have

(8.23)

E¿22C32

J. L. SYNGE

c2'2 + c3'2

[July

c22 + ci
a{2 =<t>-22Z°l2-

CÍ-2+c(-2 = 02(C22  + c32),

c3'"2 + c/-2 = 02(c32 +Cl2),

and hence

(8.24) Cl

C\

— 4>ci,

+ c2'~2 = <¿2(c,2 +c22),

c2 4>c2, c3,'-1 =— <t>cz\

then (8.22) is automatically satisfied. Hence we have this result:

Theorem III. In an absolute instrument in which the terminal media are

undegenerate Fresnel media (in general heterogeneous), the principal velocities

at a point in one medium are either directly or inversely proportional to the prin-

cipal velocities at the corresponding point in the other medium.

9. Carathéodory's method. By (3.2), valid for an absolute instrument, we

have

(9.1) OF   =   0-Tdxr  —   Crr'5xr'

Now it is immediately obvious that if we take adjacent points A', B' on a

ray in the initial medium in the field of an absolute instrument, their images

A, B lie on the final portion of the ray in question. Taking in (9.1) hxr' to

be the displacement from A' to B' and bx, to be the displacement from A to

B, and denoting the direction cosines of initial and final rays as usual by

a/, ar, we may substitute in (9.1)

(9.2) ôxr = ards, hx'r   = aids',

where ds, ds' are respectively equal to AB, A'B'. Thus we obtain, on division

by ds,

(9.3)
dF

dxr
ar = ar(Xr — <Jr a,

ds'

~ds~

or, by (2.1) and the homogeneity of v,

(9.4)

But

dF ds'
-ar = v(xr, ar) — v'(xf , a'r ) ——
dxr ds

ds' /       dxr\ ds' /       dxi\ /       3xr'    \
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and (9.4) thus becomes

dF (      dx',    \
(9 . 6) - ar = Vixr, Or) — v' I x'r, - a, ).

dxr \        dx,     /

Except for trivial changes in notation, this is the fundamental equation (14)

of Carathéodory's paper (loc. cit.).

Let us now reconstruct Carathéodory's theorem regarding equality of op-

tical lengths, filling in the part of the proof not given explicitly in his paper.

We shall assume that the instrument is absolute for rays (in the field) of a

certain type, corresponding to a certain one of the values (d') of the multiple-

valued medium-function of the initial medium and to a certain one of the

values iv) of the multiple-valued medium-function of the final medium. We

assume that these single-valued functions v',v are even analytic functions of

ar', a., respectively, throughout three-dimensional spaces in which ar', ar are

coordinates, except perhaps for certain singular lines through the origins.

Let P be any point in the region of the ar space which is filled with lines

drawn in the directions of rays lying in the field of the instrument, and let Q

be the reflection of P in the origin of the ar space. Let C be an analytic curve

joining P and Q. Then if we put

dF ( (      dx'r    \]
4>iu)  = -ar —   < VÍXT, OCr)  —  v' I x'r , - a, ) > ,

dxr I \       dx,     /)

where u is the parameter on C, <j>iu) is an analytic function which vanishes

for a range of values of u adjacent to P, Therefore 0(w) =0 along C and, in

particular, at Q. But the first part of #(w) is an odd function, and the second

part is an even function. Hence, adding and subtracting the values of <£(«)

at P and Q, we get

/      àx'T    \
(9.7) dF/dXr = 0, vixr, ar) «»'{*,',-a,),

\        dx,     /

throughout the field in which P has been taken. Applying the analytic condi-

tion again, we see that the second relation holds for all values of ar, except

for the excluded singularities. Hence if 5xT', hxT are object and image elements

with lengths hs', 8s and direction cosines ar', ar respectively, we have

/      âxt    \
vixr, ar)Ss = v' I Xr ,-a, ) OS

\       dx,     /

(9.8) /   ,   dxl( dXr \
v' I xi,-OX,

\       dx,      )

= v'ixl,ai)ôs'.



46 J. L. SYNGE

Thus Carathéodory's method establishes the equality of optical lengths for

corresponding elements in an absolute instrument. The method by which the

fundamental equation (9.1) is obtained in the present paper (indeed, it is

deducible in a couple of lines from Hamilton's equation of the characteristic

function, properly interpreted) appears more direct than the method given

by Carathéodory. The latter part of the argument given above is merely the

expansion of Carathéodory's proof, with a full statement of the implied condi-

tions.

The necessary amplification of his original proof will also be found in

Carathéodory, Geometrische Optik, Berlin, 1937, p. 70, which appeared after

the present paper was written. Reference should be made to W. Blaschke,

Abhandlungen aus dem Mathematischen Seminar der Hansischen Univer-

sität, vol. 11, 1936, pp. 409-412; although not based on the characteristic

function, his argument is similar to that of the present paper, for he directs

attention to the surface of components and the linear transformation (4.1).

I owe this reference to W. C. Graustein.*

* The last paragraph was added in proof, May 20, 1938.
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