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1. Equivalences modulo yr+l. The approximations to be obtained are with

respect to k2, where k is the modulus of the Jacobian elliptic functions. It will

be convenient to use the arithmetical concept of congruence, applied to ab-

solutely convergent power series in two independent variables x, y.

All the power series Fix, y), Gix, y), Hix, y), ■ ■ • , Pix, y), ■ • ■ consid-

ered have a common maximum domain R different from \xy\ =0, of abso-

lute convergence; that is, R is the only domain of absolute convergence,

different from \xy\ =0, of all the series considered, containing R.

The series are given initially in the forms

Fix,y) = ¿>(¿/,(í)A---,P(z, y) = ¿*'(¿M*)y),--- •
,=0 \ t—0 ' 8-0 \ 1=0 /

they may be rearranged with respect to ascending powers of y; thus, for

example,

(l.i) ^j) = Zrf("W,
8=0

where
00

F<«>(*) = TífÁs + t)x'+t.
(=0

Let r be a constant integer 2:0. Then (1.1) may be written as

(1.2) F(x, y) = FTix, y) + y*W+»(x, y),

in which

Frix,y) = ¿y'F<«>(*),

00

Fi*+n(x, y) = E yaF<-r+'+1Kx).
8=0

As a function of y, FTix, y) is a polynomial of degree Sr. The degree of the

lowest power of y occurring in F^+^ix, y) is ^0. In analogy with arithmetic,

we write (1.2) as

* Presented to the Society, December 28,1937; received by the editors July 16,1937.
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(1.3) F(x, y) =Fr(x, y) (mod y+»)î

Fr(x, y) is the residue of F(x, y) modulo yr+l. Such residues are the polyno-

mials (in y) with which we shall be concerned. As in arithmetic, we might

now pass from congruence as in (1.3) to equality between residue classes. It

is more convenient however to proceed as follows: (1.3) is written

(1.4) F(x,y)~Fr(x,y),

which is read, "F(x, y) is equivalent to Fr(x, y)." The properties of this equiva-

lence follow from (1.2) or (1.3), the latter of which has the usual properties

of a congruence relation; the conclusions are restated in the form (1.4). The

equivalence in (1.4) has the usual properties of an equivalence relation in

algebra. In each of (1.5)—(1.7) the first relation implies the second:

aF(x, y) + bG(x, y) = H(x, y),

(1.5)
aFr(x, y) + bGT(x, y) ~ Hr(x, y),

where a, b are constants;

F(x,y)G(x,y) = H(x,y),

(1.6)
FT(x, y)Gr(x, y) ~ Hr(x, y);

F(x, y)/G(x, y) = H(x, y),

(1.7)
Fr(x, y)/Gr(x, y) ~ Hr(x, y),

provided Gl0)(x), in the notation of (1.1), is not zero.

From (1.5)—(1.7) we obtain the equivalence corresponding to any rational

relation between F(x,y),G(x,y), ■ ■ ■ ,P(x,y), • ■ ■ . Irrational relations also

occur, for example (F(x, y))", written as F"(x, y), where cr is a positive rational

number, may be expanded in the form (1.1), say F"(x, y) =P(x, y); we then

have Fr'(x, y)~Pr(x, y). If o-<0, the equivalence holds provided Fw(x)^0.

It will be seen that the residues Fr(x, y), • • ■ obtained from elliptic func-

tions can be constructed entirely by finite processes for r = 0, 1, 2, • • ■ , so

that we are operating essentially in the finite domain. The elliptic functions

are the infinite series, as r—>°o through integer values, of the polynomials.

The functions and polynomials introduced in the following section are in-

dispensable for our purpose; they do not seem to have been noticed before.

2. Functions U, V; polynomials A, B,C, D. Let a be a non-negative in-

teger. The functions U, V are defined by

(2.1)      Uo(x)=sinx, Ua(x) = 2~1 (- l)ä*a-' a > 0;
s=o (2j + 1) !
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X2s

(2.2) Voix) = cos x,        Vaix) = X (- i)'5"-' a > 0.
8=o (25)!

If A is the operator of finite differences, and m, « are integers >0, we define

Vnim) by

m

(2.3) mhnim) = (Amx")I=0 = ]C (~ *)*(»> i)(w - i)n,
1=0

where (w, ¿) is the binomial coefficient m\/i\im—i)\. For m^n, vnim) is a

positive integer; vn{m) =0 for m>n. We shall write

s[0]  =  1( ,{«]  = s(s _  i) . . .  (, _ m + 1);

a— ¿

(2.4) «„(0) - 1 ;«„(*) = 0, i>a;uaii) = S (- l)'(o, ¿+i)»<+i(*),0 < i£ a.

The m0(¿) are further considered in (2.27)-(2.30).

From the binomial expansion of ( — l)a2asa= [l -(25 + 1)]", (2.1), (2.4),

and the known expansion

a

(2.5) i»-S».(»>Wi        a > 0,
i=i

we obtain

°°      C_   ^s^.28+1   /a \

(- l)-2-£70(«) = £  \ (1+ Z (- l)*«.(*)(2s + 1)W).
,_o    (2s + 1) !   \ .=1 /

If Dx* denotes the operator di/dxi, then

x*D¿ sin x = ¿ (- l)'(2s + l)w
r28+l

Zo (2i+l)!

hence, if o>0,

a

(- l)a2aUaix) = sin"x+ X (- lyuai^xWe sin x;
i-i

therefore, if A, B are defined by

So/2

(2.6) ¿.(*) = Z (- 1)^(20*", a > 0,

(2.7) 5.(*) =      Z    (- 1)*».(2» + 1)*"",        a>0,
i=0
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we have

(2.8) (- l)a2aUa(x) = Aa(x) sin x - Ba(x) cos x,        a > 0.

To (2.6), (2.7) we add the initial values

(2.9) Ao(x) = l,        B0(x)=0,

so that (2.8) holds for ez^O.

The next equations follow similarly from (2.2) and

a

(2s)- = !>„(*) (2*)[il,        a>0:
i=i

2"Va(x) = Ca(x) sin x + Da(x) cos x,        aäO;

Co(x) = 0,        Ci(x) = - x,        Do(x) = 1,        Di(x) = 0;

S(a+l)/2

Ca(x) =     Z)   (- l)*w«(2i - l)x2i~l,        a > 0;
>-i

ga/2

£.(*) = E (- l)*».(2i)*", « > 1-
•-1

The values of the polynomials for a = 0, 1, • ■ • can be calculated directly

from (2.7), (2.9), (2.11)—(2.13), but it is easier to obtain them by recur-

rence. Where the argument x is understood, we shall suppress it, and write

Ua, Va, ■ • ■ , Da for Ua(x), • • • , Da(x). Primes indicate derivatives with re-

spect to x. From (2.1), (2.2) we have at once

(2.14) 2Ua+i = xU: - Ua,        2Va+i = xVI,        a â 0;

and by reducing Ua+xVa,

(2.15) 2<7„+i+ Ua- xVa = 0,        a ^ 0.

Combining (2.8) with the first of (2.14), and (2.10) with the second, we find

that

(2.16) Aa+i = Aa - xAL - xBa,       Ba+i = Ba - xBL + xAa;

(2.17) Ca+l   =   X(CL    -  Da) , Da+l   =   x(Ca + D¿).

Similarly, from UJ = Va we get

(2.18) C0= (- \)"(Ai +Ba), Da= (- \Y(Aa-Bi);

and from (2.15),

(2.19) Aa+i-Aa+ (- \)axCa = 0,        Ba+1 - Ba - (- l)axDa = 0.

The last give

(2.10)

(2.11)

(2.12)

(2.13)



1938] APPROXIMATIONS FOR ELLIPTIC FUNCTIONS 51

Aa= 1 + i- l)«*(C«_i - C„_2 + C„_3-+ (- lJ-'Co),

B = - i- l)-at(Z>_i - Da-2 + Z?a-3 -•■•+(- l)'-1^)),

for a>0, or for a^O if we define C,=D, = 0 for s<0.

The polynomials satisfy no linear differential equation of order independ-

ent of a. Elimination of A or of B from (2.16) gives

(2.21) Xa+2 - 3Xa+i + 2»Za'+1 + ix2 + 2)Xa - 2xXl + x2Xl' = 0,

satisfied by X = A, X=B; and in the same way

(2.22) Fn+2 + F0+, - 2xFa'+i + x2Ya + x2Y¿' = 0,

satisfied by Y = C, Y=D.

The preceding relations give recurrences for the coefficients u, v in the

polynomials. Thus, substituting from (2.12), (2.13) into (2.17) we get the

recurrence, equivalent to that for the numbers Am0n/m\,

(2.23) Va+lii)   —   iVaii)  — Vaii —   1)   =  0;

and similarly from (2.16), (2.6), (2.7),

(2.24) Ua+iii) + ii- l)uaii) - uaii - 1) = 0,        a > 0.

The u are expressed in terms of the v from (2.18),

(2.25) iuaiî) - Uaii - 1) = (- \y+iVaii - 1),        a > 0;

or from (2.20),

ga-i+l

(2.26) uaii) = i- 1)°  S   (- V'Va-iii - 1), K t â a.
J=-l

For i fixed, (2.24) is in the standard form of the linear difference equation

of the first order, with the restriction that uBii) is not defined. Solving (2.24)

we find

r m2(î) «   u,ii — 1)1
Wa+1(t) - (1 - *)«   —^r + £ -J-M,        a>\,        i>\;

LI — i       ,_2   (1 — i)> J

and hence, since m2(2) = 1, u2ii) =0, i>2, we have

Mo+i(2) = (- 1)°[- l + ¿(-l)'] = §[! + (- 1)0+1],        a>l,

which also is seen directly to hold for a=0, 1, and

(2.27) Ua+iii) = (1 - ¿)°¿ 7 *~x   »        a>l,        t>2.
i=2   (1 - i)>
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At once from (2.24),

(2.28) «„(0) = «„(I) = 1.

Taking ¿ = 2 in (2.27), and noting that «i(3) =0, we get

(2.29) 6«„(3) - - (- 1)«[2« - (- 1)« - 3],        a > 0;

whence, with i = i in (2.27),

(2.30) 24«a(4) = (- 1)°[3° - 2"+2+ (- l)" + 6], a > 0,

and so on.

The polynomials are easily calculated recursively from (2.11), (2.16)—

(2.19). The first 9 in each set follow. The argument in all is x. These suffice

for obtaining approximations to the Jacobian elliptic functions with modulus

k up to terms of order k16.

A„ = 1 Bo = 0
^1=1 Pi = x

A2 = 1 — x2 B2 = x

As = 1 B3 = x ~ x3

Ai = 1 -x2 + xi Bt = s + 2s3

Ah = 1 - 5x4 P6 = x - 5x3 + s5

Ao = 1 - x2 + 20a:4 - x6 B6 = x + 10s3 - 9s5

At = 1 - 70s4 + 14x6 P7 = x - 2\x3 + 56z5 - x1

As = 1 - x2 + 231*4 - 126*6 + xs Bs = x + A2x3 - 294x5 + 20s7

Co = 0 Do = 1

Ci = - x Di = 0

C2 = — x Di = — x2

C3 = — x + x3 D3 = — 3s2

C4 = - x + 6x3 Di = - 7x2 + x4

C6 = - x + 2Sx3 - xb D¡ - - 15s2 + 10s4

C6 =-s + 90s3 - 15s5 Do = - 31s2 + 65s4 - s6

C7 =-x + 301s3 - 140s5 + s7 £>, = - 63s2 + 350s4 - 21s6

Cs = -x + 966s3 - 1050s5 + 28s7 Ds = - 127s2 + 1701s4 - 266s6 + s8

Although they will not be required here, it may be mentioned that gen-

eralizations of Ua(x), Va(x) to non-integral values of a, by means of contour

integrals, have been investigated by Professor H. Bateman. These lead to

expansions of the functions (for any a) in terms of Bessel functions; such ex-

pansions offer a point of departure for approximating the values of the poly-

nomials in y( =k2) next obtained as approximations in y to sn(s, k), cn(s, k),
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dn(x, k), for large values of the x occurring in the coefficients of the poly-

nomials.

3. The polynomials snr*. The modulus of sn x being k, we write sn(a:, k)

= sn(#|¿2), in Milne-Thomson's notation,* as it is usually k2, not k, that is

given in applications, and only even powers of k appear in the power series

expansion of sn(x, k). Finally we write k2 = y, \—y=yi = k'2, and consider

sn(#, k) = sn(*| y) = sn x as a function of x, y. Similarly for en x, dn x. For the

meaning of snr#, ■ • • , see §1. We shall use the forms of the power series ob-

tained in a previous paper.f For sn x we found

r    s -i (_ j"\8it-28+i

sn* Í\tpÁs)r]
s=0 L r=0 J8=0Lr=0 J   (25+   1)!

Pois) - 1, 2*p1(s) = 32«+! - 85-3,

2sp2is) = 52s+1 - 4(25 - l)32s+1 + 3252 - 325 - 17,

212p3is) = 72s+1 - 4(25 - 3)52s+1 + (3252 - 885 + 30)32s+1

- K25653 - 105652 + 7525 + 471),

the general p,is) being of the form

(3.1) 2*ip¿s) = (2; + 1)2*+! + Pn(s)(2j - 1)2*+1 + • • • + P««!*",

in which Puis) is a polynomial in s of degree / with rational coefficients. More-

over it was shown (loc. cit., p. 846, (8)) that the p¡is) can be calculated by

linear recurrence, and in a subsequent paperj numerous linear recurrences

were given for the calculation of the coefficients appearing in the recurrences

for the piis). We may therefore consider the p¡is) îorj = 0, 1, 2, • • • known,

as it is straight-forward elementary algebra to obtain a particular p,{s) by

the means indicated.

For the meaning of snrx see (1.2). The sx occurring in the sin sx, cos sx ap-

pearing in snr# expresses a number of radians. We have

" (- l)'xu+1
(3.2) sn0 x = 2^ Pois) ————— = sin x;

8_o (25 + 1)!

X (_     ^8^28+1

sni x = Yl [Pois) + piis)y] ■
8=0 (25 + 1)!

Reducing the coefficient of y in the last we get (see §2)

* L. M. Milne-Thomson, Die elliptischen Funktionen von Jacobi (5-figure tables), Berlin, 1931.

f These Transactions, vol. 36 (1934), pp. 841-852, in which note the following misprints:

p. 842 (1), for x2 read x1'; p. 843, last line, for 22« read 32'; p. 844, in the expression for q3(s), for -297

read +297; p. 844 (7), all exponents on the right should be 2s, not j.

X American Journal of Mathematics, vol. 48 (1936), pp. 759-768.
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« (- l)«s2«+l        A (- l)*s2'+1

242ZPÁs)K-~—~ =  E (32«+1 - 85 - 3) \     '
,_o (25+ 1)! ,=o (2s + 1)!

= sin 3x — 8Ui(x) — 3 sin x

= sin 3x — 3 sin x + 4(Ai sin x — Pi cos x)

= sin 3x + sin s — 4s cos s;

(3.21) sni x = sin s + 2_4y(sin 3x + sin s — 4s cos s).

Proceeding to sn2s we have the new term in y2. The coefficient of 2~8y2 is

co    /_ iyxit+i

Y,- [52,+1 - (85 - 4)32"'1 + 32s2 - 32s - 17],
to    (25+1)!

= sin 5s + 4 sin 3x - 17 sin x - &Ui(3x) + 32U2(x) - 32Ui(x).

The new detail Ui(3x) is typical of the like in subsequent calculations. By

(2.8),

— 8¿7i(3s) = 4[^4i(3s) sin 3x — Bx(3x) cos 3x],

= 4(sin 3x — 3x cos 3x).

The remaining terms are evaluated as before, and we get

sn2 x = sin x + 2~4-y(sin 3x + sin x — 4s cos x)

(3.3) r
+ 2~sy2 [sin 5a; + 8 sin 3s + (7 — 8s2) sin s — 12 cos 3x — 24s cos x\.

These are enough to show the process.

By (1.2) and the cited expansion of sn s we have, for r>0,

CO X2&+1

snr x = snr_i x + yrY, pr(s)(- l)8————■.
.=o (25+ 1)!

and hence by (3.1) the coefficient of 2-4ry in snr s is

(3-4)       ¿ (" 1)'^T T<2r + 1>"+1 + Z^(5)(2r+ 1 - 2/)2s+1l,
,_o    (25 + 1) !   L ¡_i J

in which

(3.5) PTt(s) = pt0(r)s' + pn(r)s'-1 + ■ ■ • + ptt(r), t>0,

the ptj(r) being rational numbers; by convention we take poo(r) = 1. From this

we can determine the general form of snr s. The result of substituting from

(3.5) into (3.4) and reducing by (2.1) is

r I

(3.6) sin (2r + \)x + £ £ pti(r)Ut-A(2r +l-2t)x).
(=1 /=o
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To express this in the same form as (3.3) we apply (2.8), noting that poo(r) = 1,

and defining the polynomials a, ß by

t

«t(r, x) = 2Z (- 2)'-1¿íí(r)¿t_í((2r + 1 - 20*),

i
ßt(r, *) = £(- 2)'-'pti(r)Bt^((2r + 1 - 2t)x),        t ^ 0.

Then the whole expression in (3.6) becomes

r

2~2 [<xt(r, x) sin (2r + 1 - 2/)s - ßt(r, x) cos (2r + 1 - 2t)x].
(_0

Hence finally, for r >0,

r ¿

snr s = sin s + £ 2~iiyi2^í [at(i, x) sin (2r + 1 — 2t)x

(3.7)
- /5,(i, s) cos (2i+ 1 - 2i)s].

For a given r, and / an integer >0, snP' s can be calculated directly from

snr s. Powers of sines and cosines are expressed as sums of sines or cosines of

multiple angles. For t = r = 2 the result is, by (3.3),

sn22 x — 2_1(1 — cos 2s) + 2~iy(\ — cos 4s — 4s sin 2s)

(3.8) + 2"9y2[l6 + (3 + 32s2) cos 2s - 16 cos 4s - 3 cos 6s

— 32s sin 4a; — 40a; sin 2s]".

4. The polynomials cnr s. The preliminary expansion is

(- l)«s2'
en

s=l L r=0 J (2s)!

qo(s) = 1, 2V(s) = 32' - 8s- 1,

2sq2(s) = 52' - 8(s - l)32s + 32s2 - 48s - 9,

212?3(s) = 72« - 8(s - 2)52s + 2(16s2 - 60s + 41)32s

- |(256s3 - 1248s2 + 1280s + 297).

Corresponding to (3.1), (3.5) we have

2*'qr(s) = (2r + l)2« + Qrl(j)(2r - l)2' + • • • + &r(s)l2', t > 0,

Qrt(s) = qi0(r)s' + gn(f)**-* + • • • + qu(r),

the qtj(r) being rational numbers, and qoo(r) = 1 by convention.

Proceeding as in §3 we find
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cn2 * = cos x + 2~4y(cos 3x — cos x + Ax sin x)

(4.1) + 2~sy2[cos 5x + 8 cos 3x — (9 + 8x2) cos x

+ Í2x sin 3x + 16x sin x].

This may also be obtained (see §1) from cnr2 x+snr2 x~l ; whence

cn2 x = (1 — sn22 x)1/2 = 1 — § sn22 x — | sn24 x — • • • .

The value of cn22 x can be determined directly from (4.1), as for sn22 a; in §3.

The result is (as it should be) 1 — sn22 x, where sn22 x is given in (3.8). To indi-

cate the general form corresponding to (3.6), we define the polynomials y, 8:

t

y tir, x) - Z 2'-'qiiix)Ct-]H2r + 1 - 2t)x),
)=0

i

M', *) - 2 2>-tqti(x)Dt-,i(2r + 1 - 2/)*),        / à 0,
J=0

and find, for r>0,

r i

cnr a; = cos x + Z 2_4iT*Z [tiC^ x") sin (2¿ + 1 — 2t)x
(4.2) ,_i ¡_o

+ o¡(í, at) cos (2i + 1 — 2t)x}.

In getting (4.2) we have used the second of the following formulas, which

follows from the first,
r

cnr2 x + snr2 x ~ 1,  Z ?»W = 0>        r > 0.
1-0

5. The polynomials dnr x. The preliminary expansion is

CO       (~   8—1 -I    /_    |\8^2S

dn x = 1 + £     £ ^WyH-i ;       ,
8=1  L r=0 J (25)!

22Ao(5) = 22', 26Ä!(5) = 22s(223 -85 + 4),

210Ä2(5) = 22s[32! - 4(25 - 3)22s + 3252 -885 + 31],

the general coefficient being of the form

his) = 22«-4-2[(r + l)2« + Hriis)r2° + • • • + #rr(5)l2s],

Hrtis) = htoir)s' + hnir)s"i + • • ■ + Ä„(r);

the hair) are rational numbers, and by convention hooir) = 1. As before we get

dn2 x = 1 — 2_2y(l — cos 2x)
(5.1)

+ 2 6y2(— 5 + 4 cos 2x + cos 4x + 8x sin 2x).
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The identity dn2 s = 1 — y sn2 s gives

dnr2 x ~ 1 — y snr2 s ;

hence in particular, by (3.8),

(5.2) dn22 s = 1 - 2-^(1 - cos 2s) + 2~V(- 1 + cos 4s + 4s sin 2s).

In the same way as before we find the general form,

(5.3) dn0x=l,        dni s = 1 + 2~2y(- 1 + cos 2s),

with e, f defined by

t
tt(r, x) = 2Z 2>-iht](r)Ct-j(2(r + 1 - /)*),

j-0

i

M', *) = E 2>-<hti(r)Dt-j(2(r + 1 - t)x),        t ^ 0 ;
j'=o

and, for r>0,

dnr+i s = 1 + 2~2y(— 1 + cos 2s)

(5.4) + ¿ 2-«-2y'+i ¿ [- hit(i) + et(i, x) sin (2(i + 1 - t)x)
¿=1 ( = 0

+ Ui, x) cos (2(i+ 1 - t)x)].

The approximations in this and preceding sections give approximations to

the standard elliptic integrals. Thus from

E(x) =   I    dn2 x dx
J o

and (5.2) we get

P2(s) = x — 2~ly(x — sin x) — 2_6y2(4s — 4 sin 2a; — sin 4s + 8s cos 2s)

for the elliptic integral of the second kind.
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