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Introduction

The plane peanian continuumf M is said to have a unique map on a

spherical surface (or a plane) if, and only if, for any topological image M'

of M on a sphere (or plane) S' and any topological image M" of M on a

sphere (or plane) S", every homeomorphism of M' into M" can be extended

to a homeomorphism of S' into S".

It is the purpose of this paper to characterize the plane peanian continua

that have unique maps on the sphere or in the plane, f

Definitions. The simple closed curve J of a cyclicly connected con-

tinuum C is called a bounding circuit of C provided that for any two maximal

connected components H and K of C—J the sets H J and KJ lie respec-

tively on two distinct arcs AXB and A YB of /.§

A split circuit is a bounding circuit J such that C—J contains at least two

components.

If C is cyclicly connected, then C is triply connected if, and only if, it is

impossible to express C as the sum of two closed connected sets A and B such

that neither A nor B is an arc and the set A B consists of two distinct points

ofC.ll
Theorems IV and V state the principal results of this paper.

Theorem IV. The plane peanian continuum M has a unique map on the

sphere if, and only if, one of the following conditions holds:

* Presented to the Society, September 9, 1937; received by the editors July 22, 1937.

f A plane peanian continuum is a peanian continuum (continuous curve) that has a map

(topological image) in the plane or on the sphere. For a characterization of these continua see W. S.

Claytor, Topological immersion of peanian continua in a spherical surface, Annals of Mathematics,

vol. 35 (1934), pp. 809-835. See also Claytor, Peanian continua not imbeddable in a spherical surface,

ibid., vol. 38 (1937), pp. 631-646.
% This problem was suggested by J. R. Kline. The author also wishes to express his appreciation

of suggestions by Saunders MacLane which have led to improvements in this paper.

§ For cyclicly connected continua bounding circuit is equivalent to boundary curve as defined

by Claytor, loc. cit., first paper, p. 809. A simple closed curve J of M is called a boundary curve of M

provided that there do not exist in M—J distinct^components H and K such that (1) a point pair of

H ■ J separates a point pair of K ■ J on /, or (2) H ■ J = K J = three distinct points. Both definitions

will be found useful in later proofs.

|| Cf. definition of triply connected graphs, H. Whitney, Congruent graphs and the connectivity

of graphs, American Journal of Mathematics, vol. 54 (1932), p. 158.
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il) M is acyclic and consists of either a simple arc or a triod*

(2) M contains one cyclic element Cf which is a maximal triply connected

cyclic curve of M, and M — C consists of at most a countable number of arcs,

a,\, <H, a3, • • ■ , such thatâiâj = 0, ii¿¿j),and each ai-C is a single point which

lies on only one bounding circuit of C,% provided that if C is a simple closed

curve, then M — C is at most a simple arc.

Theorem V. The plane bounded peanian continuum M has a unique map

in the plane if, and only if, M is one of the following curves:

(1) a simple arc,

(2) a triod,

(3) a simple closed curve,

(4) a curve M such that M contains a closed 2-cell C and M — C consists of

at most a countable number of arcs a\, a2, a3, ■ • ■ , such that ai ■ a¡ = 0, (¿ ¿¿j),

and each â,C is a single point which lies on the only bounding circuit of C.§

Preliminary Theorems

Theorem I. The plane cyclic icyclicly connected) peanian continuum C is

triply connected if, and only if, C contains no split circuit.

Theorem II. The plane cyclic peanian continuum C has a unique map on the

sphere if, and only if, C is triply connected.

Corollary 1. If J is a bounding circuit of C which is not a split circuit,

then in every map of C on the sphere ior plane) the image of J is the boundary of

a complementary domain of the map of C.

Corollary 2. If J is a split circuit of C there is some map of C on the sphere

ior plane) in which the image of J is the boundary of a complementary domain

of the map of C. |]

Definition. The point p of M is a split-point of M, if and only if, M can

be expressed as the sum of two closed connected sets A and B such that

AB = p, and such that if A or B is an arc, then p is not an end point of that

arc.

Theorem III. // the plane peanian continuum M has a unique map on the

sphere or in the plane, then M does not contain a split-point.

* Three arcs PA, PB, PC with P, and only P, common to any two.

t G. T. Whyburn, Concerning the structure of a continuous curve, American Journal of Mathe-

matics, vol. 50 (1928), p. 168.

X Each point a¿ • C is a non-local cut-point of C. See Theorem VI and the alternative statement

of Theorem IV at the end of this paper.

§ See Claytor. loc. cit., p. 810, Corollary (C).

|| This is a generalization of Proposition K, Claytor, loc. cit., first paper, p. 828.
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Proofs of Theorems I-V

Proof of Theorem I. Let C be a map of the given curve on a plane S, and

suppose C not triply connected. There exist two points p and q of C such that

C=A +B and A B=p+q, where A and B are closed connected sets neither

of which is an arc. Let r be a point of A — p — ç and 5 a point of B—p—q. Then

on any arc rxs lying in S — p — q there is a last point of A from r to s and a

first point of B. Let these points be r and s respectively. The open arc {rxs)

lies in a domain R complementary to C with boundary J^r+s. Hence this

circuit / must pass through p and q. But since neither A nor B is an arc there

must exist at least two components of C — J; one in A—AJ and one in

B—BJ. Let A7! and N2 be any two components of C — J. Then two points

of Ni ■ J cannot separate two points oí N2J on /. For N,. and N2 are connected

sets lying in S — R and cannot intersect. If Ni•/ = N2•/ = three points, then

Ni and N2 must intersect; this is impossible. Therefore, since C—J contains

at least two components, J is a split circuit.

Now assume that C contains a split circuit J. There is a component Ni of

C—J with limit points all on the arc gxh of / and a component N2 with limit

points all on the arc gyh=J — {gxh). The arc gxh may be chosen so that g

and h are points of N\-J. Now every component oí C — J must have its limit

points in either gxh or gyh. For suppose some component N of C—J has a

limit point d in {gxh) and a limit point e in {gyh). Every arc of / containing d

and e will necessarily contain either g or k, limit points of iVi which separate d

and e on /. But this contradicts the fact that / is a split circuit.

Now let A =gxh + Ni plus all components oí C — J (different from N2) with

limit points on gxh, and let B=gyh + N2 plus all components of C — J not in-

cluded in A. Then C=A+B, where A and B are closed connected subsets of

C; neither A nor B is a simple arc; and A ■ B =g+h. Therefore C is not triply

connected. This completes the proof of Theorem I.

Proof of Theorem II. Suppose C is triply connected. Then every bounding

circuit of C has an image which is a c.d.b.* In every map of C. For let C

be any map of C on a sphere S', and J' any bounding circuit of C". If C does

not consist of a simple closed curve, then there is one, and only one, com-

ponent of C—J' (Theorem I), and this component must lie entirely in one

of the regions of S' bounded by /'. The other region of S' bounded by J'

must be a complementary domain of C. Obviously every c.d.b. of C is also

a bounding circuit of C.

Therefore if C is a map of C on a sphere S' and C" a map of C on S",

every homeomorphism of C into C" must preserve complementary domain

* "Complementary domain boundary" will be abbreviated "c.d.b."
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boundaries and is extendable to S' and S".* Hence C has a unique map on

the sphere.

Suppose C is not triply connected. Then C must contain a split circuit /

(Theorem I). We shall show first that there is a map of C in which the map of

7 is a c.d.b. Let C be any map of C on a sphere S and suppose J is not a c.d.b.

of C. Let Pi and R2 be the two regions of 5 bounded by J. Since J is not a

c.d.b. of C there must exist a component Ni of C—J in Pi and a component

Ni in R2. Any two points p and q of N\-J lie on some c.d.b. of C within R2.

For if every arc from p to q lying in R2 contains a point of C, there would

then exist a connected subset of C lying in R2 with limit points on / that

separate p and q.\ But such a connected subset would belong to a component

of C — J, and J would not be a split circuit. Hence p and g lie on some c.d.b.

within R2. Furthermore any three points p, q, r of Ni-J lie on the same c.d.b.

of C within R2. To show this suppose p, q, r do not lie on the same c.d.b. within

R2. Then there are three complementary domains of C in R2 each containing

a pair of p, q, r on its boundary Jiy (i = \, 2, 3). Let /, m, n be three arcs, one

from each of the boundaries /¿ such that l+m+n o p+q+r and bounds a

region R3 which is a subset of R2 containing no points of Ji+J2+Jz- This is

possible since no two arcs of /, m, n can have a common point. For if two arcs,

l, m do have a common point (other than an end point) there would exist a

component 7Y3d (l+m) of C—J such that N3-J contains p, q, r, and since

Ni-J contains p, q, r, the circuit J would not be a split circuit (definition).

Now any two points of p, q, r lie together on the same c.d.b. of C within P3.

For if every arc from p to q (or to r) lying in R3 contained a point of C, there

would exist, as above, a connected subset of C lying in R3 and having points

on l+m+n that separate p and q on l+m+n. There would then exist a

component N4 of C — J such that N4-J contains p, q, and r; but this is impos-

sible. Now let the circuit /i above be the boundary of a domain ri complemen-

tary to C and lying in R2. Let / be the arc (of the three /, m, n) which lies on

Ji a p+q. Then since R3 contains no points of /1+/2+P3, the domain t\ is a

subset of R2, but not of R3, and has p and q on its boundary. Let r2 be a domain

complementary to C which is a subset of P3 and has p and q on its boundary.

Now P3 is not a complementary domain of C since we are assuming that p, q, r

* V. W. Adkisson, Cyclicly connected continuous curves whose complementary domain boundaries

are homeomorphic, preserving branch points, Comptes Rendus des Séances de la Société des Sciences

et des Lettres de Varsovie, Class 3, vol. 23 (1930), p. 167, Theorem 2. If M is a cyclicly connected

continuous curve lying on a sphere S, and T is a continuous (1-1) correspondence such that

T(M) = M, a necessary and sufficient condition that T be extendable to S is that for every boundary

/ of a complementary domain of M, T{J) be also the boundary of a complementary domain of M.

f C. Kuratowski, Sur le problème des courbes gauches en topologie, Fundamenta Mathematicae,

vol. 15 (1930), p. 274, Lemma III'.
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do not all lie on the same c.d.b. in R2. The above process can then be repeated

and a third complementary domain r3 obtained which is different from r\ and

r2 but also has p and q on its boundary. This process may be continued in-

definitely. Hence there exists an infinite number of domains r\, r2, r3, ■ ■ ■

each complementary to C and having p and q on its boundary. But this is im-

possible since there is at most a finite number of complementary domains of C

of diameter greater than any e >0,* and the diameter of each r, is equal to or

greater than the distance between p and q. We conclude that there is a c.d.b.

L within R2 containing p, q, r.

Now any fourth point s oí NiJ must also lie on L. For s and one of the

three points p, q, r, say r, must separate the other two, p and q, on /. Since

r and s must lie on the same c.d.b. of C in R2 there exists an arc {rs) in R2 such

that {rs) ■ C = 0, and in like manner an arc {pq) in R2 such that {pq) ■ C = 0. But

{rs) and {pq) must then have a common point and hence lie in a common

complementary domain of C. Therefore p, q, r, and 5 all lie on L, and all

points of Ni ■ J must lie on L.

Let Di be the complementary domain of C bounded by L, and let {N)

represent the set of all components Ni oí C—J in Ri for which NiJ = Ni-L.

Let {N') be a topological image of {N) in Di such that C-{N) + {N') is a

map of C. This is always possible since obviously it would be possible if C

were mapped so that L is a circle. This process can be repeated on the map

C — {N) + {N') so that finally a map C is obtained in which i?i is a comple-

mentary domain of C. It follows by well known methods in analysis situs

that C is a topological map of C. For if the above process is necessary an

infinite number of times,f it involves complementary domains A, D2, D3, ■ ■ ■

of C of which only a finite number are of diameter greater than any «>0.

By the same method as above it is possible to map C so that the image of

the split circuit / is not a c.d.b. of the image of C since there are at least two

components oí C — J.

Now let C be a map of C on S' in which the image of / is a c.d.b. of C

and C" a map on S" in which the image of / is not a c.d.b. of C". Then every

homeomorphism of C into C" is not extendable to S' and S" since comple-

mentary domain boundaries are not preserved. Hence C does not have a

unique map, and the theorem is proved.

Corollaries 1 and 2 follow directly from the preceding proof.

* Schoenflies proved (1908) that the complementary domains of a continuous curve are count-

able, and that at most a finite number have diameters greater than any «>0. See R. L. Moore,

Report on continuous curves from the viewpoint of analysis situs, Bulletin of the American Mathe-

matical Society, vol. 29 (1923), pp. 290, 295.
f The components Ni are countable. See R. L. Wilder, Concerning continuous curves, Fundamenta

Mathematicae, vol. 7 (1925), p. 360, Theorem 9.
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Proof of Theorem III. We shall assume that M has a split point and at

the same time a unique map and show that this leads to a contradiction.

Let M be a map on the sphere S, p a split point of M, and A and B two

closed connected subsets of M such that M = A+B, A -B = p, and such that

if A or B is an arc, p is not an end point of this arc. Let R be a complementary

domain of M whose boundary contains points of both A and B. Let x¿¿p

be a point of A in the boundary of R and z ̂  p a point of B in the boundary

of R. Let (xyz) be an arc in R, xpz an arc of M, A d arc xp, and B d arc pz.

Let ^4i be a connected component of A —xp such that Ai has a point r on

xp—x, and Pi a connected component of B — pz such that Pi has a point s

on pz—z. Since neither A nor P is a simple arc with end point at p, it is possi-

ble to choose s and z so that this latter condition may be satisfied. There are

two cases to consider.

Case 1. r^s. Let M' represent a map of M on the sphere S'. Let T be a

homeomorphism such that T(M)=M' and T(S)=S'. This is possible since

we assume that M has a unique map. Throughout this proof a primed set will

indicate the topological image under T of the unprimed set. Now either the

set Ax lies in the region Di of S bounded by the simple closed curve C —xpzyx

while Pi lies in the other region D2 bounded by C,or Ai and Pi lie in the same

region, say Dx. We shall assume the latter, but the proof is practically the

same in either case.

Since T is extendable to S and S', the sets A{ and B{ lie in D{. We now

construct a new map M"oî M on^S" as follows: Let Hi, (i = 1,2),be the subset

of A'—arc x'p' that lies on D[. The set H{ includes A{. Let Hi' be a topo-

logical image of Hi lying in D2 —B'Dl, and H2 a topological image of H{

lying in D{ —B'Dl such that x'p'+Hi' +HÍ' is a topological image of A'.

Then M"=x'p'+H{' +H2" +B'. Let U be a homeomorphism such that

U(M) = M" and C/(5) = S'. Let £/(s;yz) «=*'/'»', £/(#<) =#/', and for points

in B+xpz let U = T. Since £/ is extendable, U(Di) =Z>i" is a region of 5' con-

taining U(M-Di). Let/be any arc of S' from a point of A{' (the topological

image of A{ in Hi') to a point of B{ which lies entirely in D{' including end

points. Such an arc must intersect C, the boundary of D{, since Pi' lies in

Di and .4]" lies outside Di ; and since x'p'z' is in the boundary of DI' the

arc / must intersect (x'y'z'). Then any arc g from r' to s' lying, except for

end points, in D(' must intersect (x'y'z'). To show this let d and e be regions

about r' and s' respectively, that do not contain points of x'y'z'. It is possible

to obtain an arc / that lies entirely in d and joins a point of g — r' to a point

of A{'. In like manner we obtain an arc u in e joining a point of g — s' to a

point of Pi'. The arcs / and u plus the proper subset of g then yield an arc h

from A{' to Pi' lying entirely in DI'. But h must then intersect (x'y'z'), and
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since neither / nor u can intersect {x'y'z') the arc g must have a point in com-

mon with {x'y'z'). Hence there must be a connected subset of x'y'z' lying in

DP with two points on C" =x'y"z'p'x' (the boundary of DC ) that separate r'

and s' on C".* One of these points must obviously lie on the arc r's' of C"

where r's' c {x'p'z'). But this is impossible since {x'p'z') and {x'y'z') have

no common points. Therefore the assumption that every homeomorphism of

M is extendable has led to a contradiction, and we conclude that M has no

unique map.

Case 2. r = s = p. We use the same notation as in Case 1 and obtain in the

same manner the map M". Any arc joining a point of AP to a point of B{

and lying entirely in DP must intersect {x'y'z'). Let d be a region about p'

that contains no points of x'y'z'. Let/ be an arc from A{' to B{ lying in DP

and also in d. Then / cannot intersect {x'y'z') but must intersect {x'y'z').

This contradiction shows that M has no unique map and completes the proof

of Theorem III.

Proof of Theorem IV. First, assume that M has a unique map. If M is

acyclic it must consist of either a simple continuous arc or a single triod since

M contains no split point (Theorem III). Obviously these are the only two

acyclic peanian continua without split-points.

If M is not acyclic it contains at least one cyclic element C which is a

maximal cyclic curve of M. Since M cannot contain a split-point there is only

one such cyclic element C. For if there were a second cyclic element Ci which

is a maximal cyclic curve of M, there would exist a cut-point p of M separating

C and G,t and obviously p would also be a split-point.

If M — C contains a maximal connected acyclic subset with a branch-point

p, or if M — C contains two arcs with a common end point p on C, then p is

in either case a split-point. Therefore, M — C contains at most a countable

number of simple arcsj with distinct end points on C.

We shall now assume that C is not triply connected and obtain a contra-

diction of the assumption that M has a unique map. If C is not triply con-

nected, C contains a split circuit / (Theorem I). Let If be a map of M on

the sphere S and assume that the components Ni and N2 of C—J lie in the

regions Ri and R2 of 5 bounded by J. There exists a c.d.b. L of C lying in R2

such that ÑlJ = Ñi-L (this was shown in the proof of Theorem II). Let D

be the complementary domain of C bounded by L. Let XX be the set of arcs

of M lying in D with end points in Ni-L and XX' tne set of arcs oí MD

not included inXX- We now obtain a new map M' oí M on S as follows: Let

* Kuratowski, loc. cit., Lemma III'.

f See G. T. Whyburn, loc. cit., p. 168.

î R. L. Wilder, loc. cit., p. 360, Theorem 9.
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(K) represent all arcs of M — C with end points on Ni, and let Ni be a map

in D of Ni+(K) such that ÑvL = Ñi L and C-iVi+iVi' is a topological

image of C+(K). Let Di be the complementary domain of M— [Ni + (K)]

that contains Ni + (K), and let Xa>' be a topological image of Xa¿ in A such

that each arc 5/ has one end point on L, and the set of all these end points of

X#/ is identical with the set of end points of X5«' on L. For each ¿>, we obtain

a new arc b' as follows: If hi-Ni =0, then è/ =bf. If 5,-./Yi 5^0, let di be a

region about Qf (the end point of bf on P) containing no point of Ni. Then b'

is taken as a simple arc which is a subset of b{ and lies in ¿¿ with end point

Qi. Then M' = Äf-2Vi-(P:)+/Vi' -X>i+X>.' -X&;+Xà/ is a topological
image of M. But every homeomorphism of M into M' cannot be extended to 5

since L is a c.d.b. of M but not a c.d.b. of M'. Hence M does not have a unique

map, and this contradiction leads to the conclusion that C must be triply con-

nected.

Now suppose C does not consist of a simple closed curve, and there is an

arc b in M — C with end point p on two bounding circuits, / and L, of C.

Let (M — b) be any map of (M — b) on S. Then / and L bound two comple-

mentary domains of C and are outer boundaries of two complementary do-

mains Di and D2 of M — b. Let M' be a map of M obtained by mapping b

in Di with end point at p, and M" a map of M obtained by mapping b in D2

with end point at p. We have now two essentially different maps of M. Hence

the end points of the arcs in M — C that lie in C must lie in one, and only one,

bounding circuit of C.

If C consists of a simple closed curve, M — C cannot contain more than one

arc. The proof of this statement is not difficult and will be omitted.

If M consists of a simple continuous arc, the sufficiency of condition (1)

follows from the fact that any homeomorphism between two arcs is extend-

able to a homeomorphism of their planes.* If M consists of a simple closed

curve plus an arc, the proof that M has a unique map is easily obtained from

the Schoenflies theorem that any homeomorphism between two simple closed

curves can be extended to a homeomorphism of their planes.

The proof that a triod has a unique map may also be obtained by a simple

application of the Schoenflies theorem.

Suppose C is not a simple closed curve. Let M be a map of M on S, and M'

a map on 5'. The map of C is unique (Theorem II), and from Corollary 1 we

see that a c.d.b. of C in one map has an image which is a c.d.b. in every map

of C. Let Xflf be the arcs of M — C with end points on the same bounding cir-

* R. L. Moore, Conditions under which one of two given closed linear point sets may be thrown into

the other one by a continuous transformation of a plane into itself, American Journal of Mathematics;,

vol. 48 (1926), p. 67.
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cuit / of C. Then in the map of C on S these arcs lie in the same complemen-

tary domain D of C bounded by /, and the map XX' of XX on S' must lie

in the complementary domain D' of C bounded by /' (the image of /) since

the end points of XX' lie on J' and on n0 other bounding circuit of C.

Now any homeomorphism T{M) =M' can be extended to D and D'. Let

pq be one of the arcs a, in D with end point p on J such that either pq or its

image p'q' on S' is of diameter greater than some e>0. Let (qxy) be an arc in

D —XX where y is a point of / but not an end point of some arc a,- in D.

Let {q'x'y') be an arc in D' — XX' where y' = T{y). Let r and j be points of /

that separate p and y, and let r' — T{r) and s' = T{s). Let ak be any arc of XX

that lies in the subset d of D bounded by pqxyrp. Then ak must lie in the sub-

set d' of D' bounded by p'q'x'y'r'p'. For if a¿ lies in D' — d', it must have an

end point at either p' or y'. But this is impossible since y was selected not to

be an end point, and p cannot be an end point common to two arcs in D.

Hence if XX- is the subset of XX lying in d, then 7\XX) is the subset of
Xa«' lying in d'. The same would be true of any similar subdivision of D

and D'. In fact sides are preserved under T as used by Gehman.* Therefore

T can be extended to D and D', and in like manner to each complementary

domain of C and C, and finally to 5 and S'. The proof would necessarily be a

partial duplication of Gehman's proof and is omitted. This completes the

proof of Theorem IV.

Proof of Theorem V. Cases (1), (2), (3) of Theorem V follow easily from

Theorem IV.

If M has a unique map and is not acyclic or not a simple closed curve,

Theorem III shows that M contains one, and only one, cyclic element C

which is a maximal connected cyclic curve of M. Furthermore C cannot con-

tain two distinct bounding circuits or consist of a single circuit which would

be the outer boundary of two complementary domains of M in any map. For

if this were true there would be a circuit / which would be the outer boundary

of a bounded complementary domain R of M in some map on a plane 5

(Corollary 1). Now let M' be a map of M on a plane S' in which the image of

the boundary of R is the boundary of the unbounded complementary domain

R' of M'. Then obviously any homeomorphism of M into M' which carries

the boundary of R into the boundary of R' cannot be extended to R and R'.

Therefore C contains only one bounding circuit, and Claytor's result (Corol-

lary (C), p. 810) shows that C consists of a closed 2-cell.

Since M cannot contain a split point, M — C can consist of at most a count-

* H. M. Gehman, On extending a continuous (1-1) correspondence of two plane continuous curves

to a correspondence of their planes, these Transactions, vol. 28 (1926), proof of Theorem I, pp. 256-260.
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able number of distinct arcs with distinct end points on the bounding circuit

of C.
Now suppose M consists of the curve (4) in the theorem. The arcs M—C

must all lie in the unbounded complementary domain of C in any map of M

in the plane. Let D and D' be the two unbounded complementary domains of

two maps of M and M' respectively. Then any homeomorphism of M into M'

can be extended to D and D' as indicated in the last paragraph of the proof

of Theorem IV.

A point p of a peanian continuum M is said to be a local cut-point of M if,

and only if, p is a cut-point of some connected open subset of M*

The following theorem will be stated without proof :

Theorem VI. If M is a peanian continuum in a plane S, any non-cut-poinl

p of M lies on two (or more) complementary domain boundaries of M if, and

only if, p is a local cut-point of Jfcf.f

Now if M is a plane peanian continuum and C a maximal cyclic curve of

M, every point in C-(M-C) must lie on a bounding circuit of C. Since C

contains no cut-point (of C) we can make the following alternative statement

of Theorem IV:

The plane peanian continuum M has a unique map on the sphere if, and only

if, one of the following conditions holds :

(1) M is acyclic and consists of either a simple arc or a triod,

(2) M contains one cyclic element C which is a maximal triply connected

cyclic curve of M, and M — C consists of at most a countable number of arcs,

öi, a2, a3, ■ ■ ■ , such that aia¡ = 0, (i j¿j), and each ai Cis a non-local separating

point of C, provided that if Cis a simple closed curve, then M — C is at most a

simple arc.

* See G. T. Whyburn, Local separating points of continua, Monatshefte für Mathematik und

Physik, vol. 36 (1929), pp. 305-314.
t This theorem is well known to topologists although the author has been unable to find it stated

explicitly in any published paper. See, however, G. T. Whyburn, Local separating points of continua,

loe. cit., Theorem 6, and G. T. Whyburn, Concerning points of continuous curves defined by certain im

kleinen properties, Mathematische Annalen, vol. 102 (1929), pp. 313-336, Theorem 31.

University of Arkansas,

Fayetteville, Ark.


