
THE LAW OF APPARITION OF PRIMES IN A
LUC ASIAN SEQUENCE*

BY

MORGAN WARD

I. Introduction

1. We call a sequence of rational integers

(u):  M0, «i, u2, ■ ■ ■ , un, ■ ■ ■

Lucasian (Ward [l]f) if it satisfies a linear recursion relation with constant

integral coefficients, and if w„ divides um whenever n divides m. The adjective

"Lucasian" is chosen in honor of the French mathematician Eduard Lucas

who first developed a theory of these sequences! (Lucas [l], [2]). We are

concerned here with the fundamental problem of determining a priori all the

terms of such a sequence divisible by any preassigned modulus m.

Call the suffix k of a term uk of (u) divisible byma place of apparition of m

in (u), and let ©m denote the set of all places of apparition of m. It follows

from the results established in Ward [l ] that the set ©m consists in general§

of all multiples of a finite number of places-of apparition pu p2, ■ ■ ■ , ps called

the ranks of apparition of m in (u) with the defining properties

u,, = 0 (mod m),        u, ^ 0 (mod m) if s divides p.

The least common multiple || p = [pi, p2, ■ ■ • , p„] of the ranks of apparition

of m in (u) is called simply the rank of m in (u). The places of apparition of m

in (u) are periodic modulo p, and p divides the restricted period^ of (u)

modulo m. Furthermore if m = a-b where a and b are co-prime, then the set

©m of places of apparition of m is the cross cut of the sets ©„ and ©&, and

each rank of apparition of m is the least common multiple of ranks of appari-

tion of a and b.

Our fundamental problem reduces then to determining the ranks of ap-

* Presented to the Society, February 26, 1938; received by the editors July 13, 1937.

t The numbers [l ], [2], ■ ■ •  refer to the bibliography at the close of the paper.

% Lucas confined himself in the main to the case when the recursion relation is of order two.

§ An exception occurs only if m divides every term of («) beyond a certain point.

|| We use [a, b, ■ ■ ■ ] and (a, b, ■ • ■ ) to denote the least common multiple and greatest common

divisor of the integers a, b, ■ ■ ■ .

H The restricted period of (u) modulo m is the least positive integer ft such that un+¡í = aun

(mod m) for all large n, where a is a constant integer. For the terminology of the theory of recurring

series which we employ, see Ward [2].
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PRIMES IN A LUCASIAN SEQUENCE 69

parition of primes and powers of primes in {u). In the terminology of Lucas,*

we must discover the "law of apparition" of primes in {u), and the "law of

repetition" of primes in (w). I shall confine myself here to the first problem ;

the modulus m will invariably be a prime number p.

2. It will be well at this point to exhibit some Lucasian sequences. Let

f{x) = xk — Cixk~l — ■ ■ ■ — ck,        g{x) = xl — dixl~l — - • • — di

be two polynomials with rational integral coefficients Ci, ■ ■ ■ , d¡. For sim-

plicity of exposition we assume that /(at) and g{x) have non-vanishing dis-

criminants and resultant.f Let «i, • • • , ak; ßi, ■ ■ ■ , ßi denote the roots of

f{x) =0 and g{x) =0 respectively. Then none of the k{2l+k —1)/2 differences

ai — ßi, cti—ar, rj*i, vanish.

Consider now the sequences {U): U0, Ui, ■ ■ ■ ; {R): R0, R%, ■ • • , where

Un   =   Unif)   =   Il (-), *«   =   *„(/, g)   =   ü (-^ ) •
¡<r \ ai   —   OLT / \Cti   —   ßj /

Then U„ and R„ are rational integers, and both sequences are clearly divisi-

bility sequences. Both sequences are also linear (Ward [l]). Hence, both se-

quences are Lucasian. The sequence U„ for k = 2 is the classical Lucas func-

tion (Lucas [l]), while Rn for g{x)=x — 1 is equivalent to the function

studied by T A. Pierce [l], P. Poulet [l], and D. H. Lehmer [2].\

We shall call the polynomials/(at) and g{x) the generators of {R) and {U).

We refer to both types of sequences as i?-sequences.

The determination of the law of apparition for i?-sequences is of particu-

lar importance because it appears probable that all Lucasian sequences may

be exhibited as i?-sequences or divisors of i?-sequences.§ (See next section.)

I shall show here in detail that the determination of the law of apparition

* See Lucas [l], pp. 209, 289, 294, or Lehmer [l], pp. 421,422.
f This restriction is removed in the body of the paper.

X It is possible to exhibit both (R) sequences and (U) sequences as Pierce sequences. For if we

letß = ß-1,then(a"-ßn)/(a-ß) = ßA-,[(aß)"-l]/(a'ß-l). Accordingly if we denote the kl products

aißj in any order by «i, «s, • ■ ■ , cti, then

A.-(-i)«<-o¿f(-i>ri(—-),
h-l  \ «A — 1 /

and (ein— lXe"— 1) • ■ • (it"—1) is the function studied by Pierce in the paper cited.

A similar result holds for (£7). Since we must then deduce the properties of (R) from a polynomial

(ac— «i) • ■ • (x— (ki) of higher degree than f(x) or g(x) with non-integral coefficients whose fac-

torization depends in a highly complicated manner upon f{x) and g{x), the reduction appears to be of

only formal interest.

§ With the qualifications described in §3,1 have found empirically no Lucasian sequences which

are not i?-sequences.



70 MORGAN WARD [July

depends upon the fundamental problem of determining the period of a mark

in a finite field. My results are sufficiently precise to give a good deal of spe-

cific information about the terms divisible by a given prime in any numerical

example of an P-sequence.

The sequence (Í7) is also of importance because of the following theorem:

Theorem 2.1. Let the Lucasian sequence (u) belong to the polynomial f(x),

and let p be any prime which does not divide the discriminant of f(x). Then

every place of apparition of p in (u) is a place of apparition of p in the Lucasian

sequence (U) generated byf(x).

3. Another extensive class of Lucasian sequences arises as follows. Con-

sider for simplicity a sequence (U) with an irreducible generator/(s). The

galois group of f(x) may be represented as a transitive permutation group

upon the roots {«i}, {a2}, ■ ■ ■ , \ak\.

Now let us represent the group as a permutation group upon the k(k —1)/2

pairs of roots {ah cc2}, {ah <x3}, • ■ • , {a*_i, ak}.

If the group is singly transitive over the {a,}, the pairs [a,-, a,} may be

separated into x ^ 2 transitive sets

{<*,!, «<;}, {«,-„ on;}, • • • ,  (a,-,., a,;J

i = I, 2, ■ ■ ■ , k; si + s2 + ■ ■ ■ + sK = k(k — l)/2.

We have a corresponding arithmetical factorization of the general term

Un of (U) into a product of x rational integers:

t-i \ a.¿ — oci\ /

Each of the k sequences (£7(i)) is obviously Lucasian.*

We shall refer to sequences obtained in this manner as divisors of P-se-

quences. The determination of the laws of apparition of primes in divisors of

* For example, suppose that k = 4 and that f(x) = xl—c1x3—CiX1—c>x—Ci=xi+(2Q—R)x2+Q1

whereQ and R are co-prime integers andR is not a square. Then with a proper notation, (z—a\){x—ct2)

= x2—Rll2x-\-Q, a8= — «i, a4= — o¡2. There are two transitive sets of the {a¿, a,■} ; namely, {ai, a2},

{ai,a<}, {ct2,a3\, {a3, at\ and {ai,a3j, {0C2, at}.

We find that Un = UnwU„™ where

/ai" - a2nY/ain - (-«2)nV

r/nU> = ( - ) I - ). ¡7„«>= (4aia2)»-1 = (40»"
\ <*1 — C12 /  \      ai + a2      /

Now (ai*—a2n)/{a\—as¡) is one of the important functions introduced by D. H. Lehmer in his doctor's

thesis (Lehmer [l]), and [ain— (—a2)n]/(ai-)-a2) is immediately expressible in terms of Lehmer's

U„ and Vn.

The function N(an—ß") studied by Marshall Hall (Hall [2]) may be similarly exhibited as a

divisor of a certain i?-sequence.



1938] PRIMES IN A LUCASIAN SEQUENCE 71

2?-sequences is an important part of our general problem. But to avoid

stretching the present paper to an inordinate length, we shall give our in-

vestigations elsewhere. The problem amounts to correlating the results ob-

tained in this paper by the use of Schatanovski's principle (§7) with results

obtained from the Dedekind-Hilbert theory of the ideals of a galois field.

4. The law of apparition of primes in i?-sequences is determined as fol-

lows. Consider first the sequence {R). We show (§§6, 7) that it suffices to

consider primes which do not divide the resultant of the generators of {R).

We have decompositions of/(at) and g{x) modulo p of the form

f{x) sa /i(x)"i • • ■ fr{x)"r; g{x) = Sl{x)bi ■ ■ ■ g,{x)b- (mod p),

where the polynomials/,- and g, are primary, irreducible and co-prime in pairs

modulo p. We show in §8 that we have a corresponding decomposition of the

general term of {R) modulo p

Rnif, g)  -  II  {Rnifi, gdW'   (mod P).

In the terminology of Ward [l], the sequence {R) factors modulo p into

a product of simpler sequences; for the fi and gj are irreducible modulo p.

But then (Ward [1 ]) the set ©p of places of apparition of p in {R) is the union

of the sets of places of apparition of p in the sequences {R{fi, g,)). Therefore

in discussing the law of apparition of primes in {R) we may assume that the

generators of {R) are irreducible modulo p. A like simplification holds for the

sequence {U) (§9).

5. If the generator of {U) is irreducible modulo p, the law of apparition

of p in (Í7) takes the following beautifully simple form, affording a far-reach-

ing generalization of the classical results of Lucas [1 ] :

Theorem 5.1. Let /(at) be irreducible modulo p, and let X be its period*

modulo p. Let k = qfiq^ ■ • ■ qKc* be the decomposition of its degree k into prime

factors. Let p{s) be defined for any positive integer s as the residual^ of p' — l

with respect to X; that is, the quotient of X by the greatest common divisor of X and

p' — l. Then the ranks of apparition of p in {U) occur among\ the k numbers

p{k/qi), ■ ■ ■ , p{k/qK), the rank of p in {U) divides p{k/qiq2 ■ ■ ■ qK), and p

has at most k ranks of apparition.

We observe that the numbers p{k/q) are known as soon as the period is

known.

* The period of f{x) modulo p is by definition the smallest positive value of X such that xx= 1

(modd p,f(x)).

t The operation of residuation has important arithmetical applications. I have developed some

of these in the paper, Ward [3], which arose out of the present investigations.

Î We must exclude from the set of p(k/q) any element which is a multiple of any other.
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Unlike the ranks of apparition of p in (U), the ranks of apparition of p

in (P) are not obtainable from the periods of the generators/(s) and g(x) of

(R) alone when the generators are irreducible modulo p. Iff (a) =0, g(ß) =0,

the ranks of apparition occur among the / periods ax, a2, ■ ■ ■ , a¡ modulo p

of the algebraic numbers a/3-1, aß~", ■ ■ ■ , aß-"1"1 in the galois field of the

roots of the generators (§11). In §14, we assign upper and lower limits to the

periods a in terms of the periods and restricted periods of f(x) and g(x).

The least common multiples of pairs of the periods a have the following

remarkable property (§13) :

[0~t, <Tt\   =    [OS, 0-t±(m,t-s) J •

Here m is the least common multiple of the degrees of f(x) and g(x) and we

adopt the convention that ax = av if s = y (mod I).

It appears unlikely that results of simplicity comparable to Theorem 5.1

exist for the law of apparition of primes in (R).

II. Reduction to P-sequences with irreducible generators

6.  This  section is devoted  to  some algebraic preliminaries.  Let  s;

yi, y*, ' ' ' i y*, Zl> z*> ' ' ' > Zl De k+l+1 indeterminates, and let Fi, —Y2,

■ ■ ■ , ( — \)k~1Yk; Zi, —Z2, ■ ■ ■ , ( — \)l~lZi be the k+l elementary sym-

metric functions of the indeterminantes y, z defined by*

(x — yi)(x — y%) ■ • • (s — yk) = s*" — Yix^1 — ■ ■ ■ — Yk,

(x — Zi)(s — z2) ■ ■ ■ (x — zi) = xl — Zixl~l — ••• — Zi.

By the fundamental theorem on symmetric functions, the polynomials

(6.1) ^,(y,z) = i\ll(^^^),     **(y)-n(^——)
¿=i ¡-i \ y i — zj / í,/_i \yi — y j /

«j

may be expressed as polynomials in the F and Z with integral coefficients;

we write

(6.2) ®k.i(y, z) = Pk,i(Y, Z),        <bk(y) = Qk(Y).

Suppose now that h, h, ■ ■ ■ , tm are m new indeterminates where ¿S m^ 1,

l^m^l, and consider the effect of substituting kfor yk and zt, h for y4_i and

z;_i, tz for y¡t_2 and z¡-2, and so on, in the identity (6.2). If we let

(x - yi) ■ ■ ■ (x - yk_m) = s*-m - Yixk-m~1 - • • • - F*'_m,

(s - zi) • • ■ (s - z¡_m) = xl~m - Zixl~m~l - ■ ■ ■ - Z{-m,

(x -   ti) ■ ■ ■ (x - tm)       = xm     - Tí x™-1     - ■ ■ ■ - Pm' ,

* Minus signs are introduced so that the associated difference equation used later

Cl„+k= Fiß„+i_i+ ■ • • +Ykíl„ may have all its signs positive.
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then the polynomial Pk,t on the right of (6.2) is transformed into a polynomial

P*hm in the arguments Y', Z', T' with integral coefficients. Its expression

in terms of y, z, t is easily found to be

nmT,l^Bk-m.i-m{y, z)Sk-m,m{y, 0©».i-«.(<, z)*l{t).

Hence by (6.2)

pXtl,m{r,z>,r)

= n^T^-xPk-m,i-m{Y',Z')Pk_m,m{Y', T')Pm,i-m{T',Z')Ql{T').

Now let Rn = Pki{Y,Z), Un = Qk{Y), i?„* = P*,m(F', Z', T'), and consider

the sequences

{R):     Ro, Ri, R2, ■ • ■ ,

(£7):     U„, Uu Vs, • ■ ■ ,

{R*):     Ro*, R?, R2*,

Theorem 6.1. {R), {U), and {R*) are Lucasian in the rings formed by ad-

joining respectively Y, Z; Y; Y', Z', T' to the ring of rational integers.

Proof. The sequences evidently lie in the specified rings. Consider {R).

Since its general term is a product of cyclotomic functions {yn — zn)/(y — z)

having the divisibility property, {R) has the same property; that is, Rn di-

vides Rm if n divides m, and the division may be performed in the ring of F

and Z. The linearity of {R) over the ring follows from a general theorem in

Ward [1]. Hence {R) is Lucasian. Similarly {U) is Lucasian. Then {R*) as a

product of the seven Lucasian sequences with general terms nm, T'^-1,

Pk-m.i-m(Y', Z'), Pk-m.m{Y', T'), Pm.i-m{T', Z'), Qm{T'), Qm{T'), and is

also Lucasian (Ward [l]).

7. We now consider the sequence {R) of §2 of the introduction. Let 3Î

denote the ring of rational integers, and let

f{x) = xk — c\xh~l — ■ ■ ■ — ck;       g{x) = xl — dixl~l — • • • — di

be two polynomials with fixed rational integral coefficients. Let oti, ■ ■ ■ , ak;

ßi, ■ ■ ■ , ßi be their roots, D¡ and Dg their discriminants, and

Rf.o= ±l\ («.- - ßi)

their resultant. If Rf,g does not vanish, we define a sequence

{R):    Ro, Ri, R2, ■ • • ,

in the notation of §6 by R„ = 6*, ¡ {a, ß) = Pk, ¡ {c, d).

If R/,g vanishes, then
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(7.1) f(x)=f'(x)h'(x), g(x) = g'(x)h'(x),

where

f'(x) = **-•»- cixk-m~1 - ■ ■ ■ - cl-m,

(7.2) g'(x) = x1-™ - dix1-"'-1 - • • • - d/_m,

h'(x) = xm    - ei xm~l     — ■■    — ej , k^m^l; l^m^l,

are polynomials in 9? and P/<iS<5¿0. Deviating for simplicity from the nota-

tion of the previous section, we now define the sequence (R) (instead of a new

sequence (P*)) by letting P„ = P*¡m(c', d', e'). In each case we obtain a

Lucasian sequence over 9î.

Consider now the places of apparition of any prime number p in (R).

There are two cases to consider according as p does or does not divide the

resultant R¡,a.

Case 1. P/lS^0 (mod p). Then Rn=0 (mod p) if and only if

©*.«(«, ß) = II (—-r) =- 0 (mod p).
\  <Xi  —  ßj /

Case 2. Rfiä = 0 (mod p). In this case (7.1) and (7.2) hold modulo p with

Rr,a,^Q (modp):

f(x) m f(x)h'(x) (mod p), g(x) m g'(x)h'(x) (mod p).

We now make use of the following principle :

Schatanovski's principle.f If <p(yu y2, ■ ■ ■ , y<k) is an integral symmetric

function of the indeterminates yi, y¡, ■ ■ ■ , yk with integral coefficients, and if

for a natural number m

f(x) = (x — ai)(x — a2) ■ ■ ■ (x — ak) = (x — 7i)(s — y2) ■ • ■ (x — yk) (modm)

where f(x) is a polynomial with integral coefficients, then

(7.3) <#>(ai, a2, ■ ■ ■ , ak) = <Kyi, 72, • • • , 7*) (mod m).

Let

<Kyi, ya, ■ • ■ , yk) = III--7"),
\ yi - ßi /

and let 71, 72, • ■ ■ , yk be the roots oîf'(x)h'(x) =0 in a definite order. Then

on taking m = p, (7.3) gives us

Rn = Rn(f, g) m Rn(f'h', g) (mod p).

t See Schatanovski [l], Lubelski [l], [2]. The principle is also used constantly in Ward [2].
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Here and later if R/,g vanishes, we can replace the congruence by an equality.

A second application of Schatanovski's principle gives us

R» = Rnif, g) - Rnifh', g'h') = PÎ.tAc', d', e') (mod p).

Hence we obtain from (6.3) the congruence

(7.4)     Rn m nmenp-xPk-m.x-m{c', d')Pk_m,m{c', e')Pm,,-m{e', d')QJ{e') (mod p).

In particular then Rp = 0 (mod p). Since p has no proper divisors and Ri = l,

we thus obtain the following theorem :

Theorem 7.1. p is a rank of apparition of any prime p in {R) which divides

the resultant Rf,0 of the polynomials /(at) and g{x) which generate {R).

Now clearly

ck = c/t'_m«m' (mod p),    dt = d{-me¿ (mod p),    {ck-m, d{-m) f= 0 (mod p).

Hence em' =0 (mod p) if and only if ck=d¡ = 0 (mod p).

Also Rf,i0,^0 (mod p), {Rf.h', Rg\h>)^0 (mod p). If we assume that

Rf,h,=0 (mod p), we have a congruence similar to (7.4) for Pk-m,m{c', e');

with an obvious extension of notation

Pk-m,m{c', e') m nm'e'^-1Pk-m-m'.m'{c'', e") • • • (mod p).

By what we have just shown, e^'^0 (mod p) if and only if ej, =ck-m = 0

(mod p). A like result holds if Rg,h,=0 (mod p). Now it is easily seen that

in case 1, p is not a null divisor of {R). Hence we obtain the theorem :

The orem 7.2. pis a null divisor of the Lucasian sequence {R) if and only if p

divides the constant terms ck and d¡ of the polynomials f{x) and g (at) which gen-

erate {R).

Hence if p is not such a null divisor of {R), the determination of its places

of apparition in case 2 reduces by virtue of (7.4) to determining its places of

apparition in various sequences dividing {R) modulo p but for which p does

not divide the associated resultant. For (Ward [l ] Theorem 6.3) the set of

places of apparition in the product of two or more sequences is the union of

the sets of places of apparition in the constituent sequences, and the ranks of

apparition in the product are immediately specifiable in terms of the ranks

of apparition in the constituents. 77 suffices therefore to consider only case 1.

8. We next prove that it suffices to consider the case when/(at) and g{x)

are irreducible modulo p. With our previous notation, let p be a prime which

does not divide the resultant of the generators of {R). Let the decompositions

of the polynomials/(at) and g{x) modulo p be

fix) m /i(x)°i • • • fr{x)"r (mod p), g{x) = gl{x)\ ■ ■ ■ gs{x)b. (mod p).
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Here the polynomiials/i(s), •• • , g,(x) have integral coefficients, and are pri-

mary, irreducible, and co-prime in pairs modulo p. Schatanovski's princi-

ple gives us then the congruence

Pn  -  Rn(f, g)   =-  Rn(frf? ■   "   • fa #$ ■   ■   ■   #)   (mud f).

On using the elementary multiplicative properties of resultants (Fricke

[1 ]) this last congruence may be written

Rn(f, g)   =   \Rnifu «l)}^  •   •   •    {Rnifr,  g,)}**'  (mod />) •

Hence it follows as in §3 that we may confine ourselves to the case where

the generators of (P) are irreducible modulo p.

9. In determining the law of apparition of primes in the sequence (U), we

can similarly confine ourselves to the case when the generator of (U) is ir-

reducible modulo p. It would at first appear as if this result were a special

case of the reduction for (P), since (U) is obtainable from (R) by setting

g(x) =df(x)/dx. But the leading coefficient of df/dx is not unity but k, so that

the primes dividing k would be unclassified by this method. It is however

possible to parallel the reduction for (P), and the process is so similar that

we shall merely indicate the main steps.

We begin as in §6 by considering the effect upon

*       / y «   _   y .n\

(9.1) ¥*(y) = II-— ) = QÁY)¿,í_i \yt— y i /

of substituting, in place of y1} ■ ■ ■ , yk, h distinct new indeterminates

hi, • • • , ¿i*i, • • ■ , in, ■ ■ ■ , trkr so that we have

r       ku

(x - y{)(x - y2) •••(*-?*) = n II (* - ,«<)a"»
U = l   1 = 1

ai^i + Ö2&2 + • • • + arkr = k, ki + k2 + ■ ■ ■ + k, = h,

and at least one au is greater than unity. The right side of (9.1) then becomes

a polynomial in the quantities Tu ■ ■ ■ , TT defined by

(s — /„i)(s — tu2) ■ ■ ■ (x — tUku) = xk" — Tuixk»-1 — • • • — Tuk».

The value of the left side of (9.1) is then easily found to be

(9.2) ± n'Ù r^-»n {Qkui.T.ÏÏ-'ïï {Pk..k,(Tu, r.)}«-,
u=l u=l u,v=l

Au =  \au(au —   1), I =   kiAi +  ¿2^2 +   '  *  '   +  krAr

in analogy with formula (6.3).
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Consider now the sequence {U) of §2 with the generator

/(at) = xk — C\Xk~l — ■ ■ ■ — ck = (x — ai)(x — a2) ■ ■ ■ (x — ak)

and discriminant

Df={± II («<-«/)

If Df does not vanish, we define the sequence

(£/):    Uo, Uu U2, ■ ■ ■ ,   by   Un = **(«) =Qk{c).

If Df vanishes, we have

(9.3) f{x) = {/i(*)}i{/i(*)}* • • • {/,(*)K

where/1l(x)=x':«—Cuiat*«-1— • • • —cuku = (at—tuí) ■ ■ ■ {x—rukv) and Diu^0,

R/u./v^0, Ut¿v. We then define Un by means of (9.2) as

(9.4)   Un = ± «<n c^"-1'n {<2<w(okn {¿w<.. c)}—».
l*—l u=l «,v> 1

Now consider the places of apparition of any prime p in {U). As in the

case of {R), there are two cases according as p does or does not divide the

discriminant D¡.

Case 1. .D/^0 (mod p). Then Z7„=e0 (mod p) if and only if

**(«) = II (a<n ~ Uf\ - 0 (mod /»).
\ a, — a, /

Case 2. Z)/=0 (mod/>). In this case (9.3) holds modulo p where we may

assume that the polynomials /«(at) are irreducible modulo p and relatively

prime in pairs modulo p. We deduce then from Schatanovski's principle that

(9.5)       Un ■ ± n'f[ e£-» f[  {&.('.) KO {¿V*.(c, c)}0»0- (mod #).
«■■1 11=1 w,v=l

W<1>

This congruence is the analogue of (7.4). We deduce the theorems:

Theorem 9.1. pis a rank of apparition of any prime p in {U) which divides

the discriminant D¡ of the polynomial /(at) which generates {U).

Theorem 9.2. p is a null divisor of the Lucasian sequence {U) if and only

if p divides the last two coefficients ck and c*_i of the polynomial /(at) which gen-

erates {U).

■
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Formula (9.5) also shows us that it suffices to consider case 1 for (U) or

(P). But in case 1 for (U), we have a decomposition (9.3) of f(x) modulo p

with all the au unity. Thus a decomposition (9.5) applies with all the au, av

unity, all the au zero, and / zero. We thus deduce that it suffices in every case

to assume the generators of (U) and (R) irreducible modulo p.

Formula (9.5) shows that the law of apparition of primes in the sequence

(U) depends on the law of apparition in (R), for each sequence with general

term P*„,*„(c«, c») 1S a special (R) sequence.

III. Laws of apparition for P-sequences with

IRREDUCIBLE GENERATORS

10. We shall now determine the law of apparition of primes p in (P) when

the generators of (P) are irreducible modulo p.

With our previous notation, let

f(x) = xk — CiXk~x — ■ ■ ■ — ck = (x — ai)(x — a2) ■ • ■ (x — ak),

g(x) = xl - dix1'1 - ■ ■ ■ - di = (x - ßx)(x - ß2) ■ ■ ■ (x - ßi)

be the generators of (R). Both/(s) and g(x) are algebraically irreducible. Let

$ denote the galois field of the roots of f(x) =0 and g(x) =0 obtained by ad-

joining the k+l quantities on, ■ ■ ■ , ßi to the field of rationals.

Lemma 10.1. p is a prime ideal of $.

Proof. If C is the ring of integers of $, it suffices to show that the quotient

ring £)/ [p] is a field. Let 9î as before denote the ring of rational integers, and

let a be any root of /(s)=0, ß any root of g(x)=0. Construct the ring

0 = 3î [a, ß]. Clearly £) contains o. Hence £)/ [p] contains o/ [p]. We shall now

show that o/ [p] contains £>/[p] so that

(10.1) D/[p] = o/[p].

To prove this it suffices to show that every element of O is congruent modulo

p to an element of o. Let D be the discriminant of the field ÎÏ. Then (Hubert

[1], Theorem 85, page 144)

(10.2) (p,D) = \.

For since both/(s) and g(x) are irreducible modulo p, p is prime to their dis-

criminants.

We can choose rational integers ei, ■ ■ ■ , ek; /i, • • • , fi such that

ö = ci«i+ • • • +ekPtk+fißi+ ■ ■ ■ +fißi is a primitive element of $. But we

have the congruences in O

(10.3) ai m apTi (mod p);    0/ ■ ßp,i (mod p),     i = 1, • • • , k; j = 1, • • • , I,
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where r\, • • • , rk; Si, ■ ■ ■ , s¡ are the integers I, ■ ■ ■ , k; 1, ■ ■ ■ , I in some

order. Hence 0 is congruent modulo p to an element of o. But if n is the degree

of the field ® and D as before its discriminant, the n elements D~l, BD~l, • • • ,

6N~lD~l are a basis of £). Hence by (10.2), each element of this basis is con-

gruent modulo p to an element of o. Hence (10.1) follows.

Now the ring o/ [p ] may be obtained either by first adjoining a and ß to 9Î

and then forming the quotient ring, or else by first forming the quotient ring

9î/[^] and then adjoining a and ß. Since 3î/[/'] is a field, o/[p] is conse-

quently a field, so that by (10.1), £)/ [p] is a field.

11. Now assume that for a certain value of n

R»=n(---M^OGnod*).
\    Oli  —  ßj /

Since p is prime to the resultant off{x) and g{x), we see from Lemma 10.1

that this congruence can hold if and only if

(11.1) at = ß» (mod/))

in O for some values of the subscripts i and j.

On multiplying (11.1) by ßfn, raising to the proper power of p, and utiliz-

ing (10.3) we obtain as a necessary and sufficient condition that p divide i?„f

(11.2) {a/3-**}» = 1 (mod p), 1 á * á L

Now aß-*' is an element of the finite galois field $* = dt [a, ß]/[p] of order

pm where m is the least common multiple of the degrees of /(at) and g{x). Let

a, be its period. Then (11.2) holds if and only if

(11.3) n = 0{moda,).

We thus obtain the following theorem :

Theorem 11.1. // a, is the period of aß~p" modulo p in £)/[/>], then

<Ti,(r2, ■ ■ ■ , a i constitute a set of generators for the multiplicative set <3P of places

of apparition of p in {R).

If we regard the solution of the problem of determining the period of a

mark in a finite field as known, the law of apparition of p in {R) is determined :

all ranks of apparitions necessarily occur in the set <ri, <r2, ■ • ■ , ah and to ob-

tain them we merely reject all o-,- which are multiples of order <Ji in the set.

The rank of p is then the least common multiple of the surviving er, and the

set ©p is exactly specified.

12. From a more realistic standpoint, the period of a mark in a finite

t If d'i is chosen so that d¡d¡ = 1 (mod ^>), an explicit expression for/3-1 is given by the congruence

ß-1 = di (ß'-1 - d, ß'-2 -   ...  - di.,) (mod p).
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field is not given to us by merely specifying the field and the mark, so that it

becomes important to reduce the number of crude generators <Ti, • • • , <rj of

©p as much as possible. Before giving the details of this reduction, we shall

consider the sequence (Í7) for the case when its generators are irreducible

modulo p.

By a repetition of the arguments applied to (R) in the previous section, we

deduce that if (U) is generated by a polynomial f(x) which is irreducible

modulo p, then

Um = 0 (mod p)

if and only if

m = 0 (mod p„),

where p„ is the period of ap,_1 in the field 9Î[a]/[p], s is an integer ^ 1 and

=£ k, the degree of f(x), and a is any root of f(x) =0.

But if X is the period of a, the period p„ of ap'~x is easily seen to be the

residualt of p' — 1 with respect to X. In the usual notation for residuals,

(12.1) p. = \:p>-\.

We observe in particular that

(12.2) pk = 1,       pi = p..

Here p. is the restricted period of f(x) modulo p; that is, the least positive

integer such that (Ward [2], p. 284)

ai = a2 = ■ ■ • = ak (mod p).

Now (Ward [4], p. 627) by (12.1)

k p<] = [*:#' - 1. X:f - 1] = \:(p> - 1, ?' - 1)

= [A:/><»'» - 1]

since the sequence 0, p — 1, p2 — \, pi — 1, • • • has the property that

(p'-l,p'-l) =/><'•«-1 (Lucas [l],Ward [5], [6]). Thus

(12.3) [ps, pí] = P(8,¡).

It follows from (12.3) that if s divides t, then pt divides p,. On taking t = k

in (12.3) and using (12.2), we see that

(12.4) p, = pd where d = (s, k) divides k.

f For the properties of residuals used here, see Ward [3], [4].
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We therefore need consider only periods pd where d divides k. Butf if

¿|¿'|£, then Pd'\pd-

We therefore need consider only periods pd where d divides k and no multi-

ple of d divides k. On collecting these results, we obtain Theorem 5.1 of the

introduction.

Letirk. = pk-l:p' — l. SinceXdivides^-1,X:¿>S-1 divides/>*-1 :¿>*-1.

(Ward [4] formula (4.51)). Hence p,\irks, (5 = 1, 2, 3, ■ • -, k).

We thus obtain from Theorem 5.1 the following result which gives us a

useful upper limit to the ranks of apparition of p.

Theorem 12.1. If f{x) is irreducible modulo p and of degree k, the ranks

of apparition of p in the sequence {U) generated by f{x) divide the numbers

pk-l/pkl,!i-l, pk-i/pk'"i-l, • • • , pk-i/pkl"K-l. Here qu ■ ■ ■ , qK are

the k prime factors of k.

If Q = qiq2 ■ ■ ■ qK, it easily follows that the rank of p in {U) must divide

the number pk — í/pklQ — í.

13. We return now to the reduction of the generators of the places of ap-

parition of p in {R). With the notation of §10, let 7 be a primitive element of

the finite field $*. Then

a = ya, ß = yb, aß-"'= y"-bp'{mod p)

where a and b are positive integers.î Hence

(13.1) r.-p»-V.{*-br), (5= 1, 2, ••• ,0-

Here m, it will be recalled, is the least common multiple of the degrees of the

generators of {R).

We extend the definition of the cr, over the entire ring 9î by letting

(13.2) <jr — a,        if        r = 5 (mod I).

The numbers a, have the following strange property which stands in re-

markable contrast to the property of the ranks of apparition of p in {U) ex-

pressed by formula (12.3).

Theorem 13.1. Let p be a prime, let the generators of the sequence be irre-

ducible modulo p, and let m be the least common multiple of their degrees. Then

the least common multiples of pairs of generating elements for the places of

apparition of p in {R) satisfy the relation

(13.3) [cr,, <t<] =  [a,, <T,±(.m,t-,)\.

t We use the usual notation a \ b for a divides b.

J If Xi and Xí are the periods oif{x) and g{x) modulo p, the numbers a and b are subject to the

conditions

(a, p<» - 1) = p°> - 1 :Xj,       (b, pm-i) = pm-1 :x2.
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Proof. For convenience write r+s in place of t so that (13.3) becomes

(13.31) [aB, <rr+sJ =   [os, ar±(m,r)\ ■

By (13.1) and elementary properties of residuals

,n m\ tff" '•+■] = Pm~ i:(Pm - 1> a - °P\ a - bp*+'),
(13-4) .

[o„ <r.±(»,,)] = pm - U(pm - 1, a - ¿>/>', a - i/>«±<m'r)).

Thus the proof reduces to showing that the two greatest common divisors

on the right of (13.4) are equal. Now

(pm - 1, a - bp', a - bp^') = (pm - 1, p'b(pr - 1), a - bp')

= (#- - 1, b(p' - 1), a - bp>)

since  (/>', /»m —1) = 1; and we obtain

(/>*"-1, a-bp', a-bpr+') = (pm-\, b(p^m^-\), a-bp')

since   (¿r-l, />m-l) =/><<".'■> — 1.    Hence   since    (p'~^m'r\ pm-l) = l    and

(/>», r-i) = i,
(/>m — 1, a — bp', a — bp7*') = (pm - 1, p>-^m^b(p{-n'T) — 1), a — Z>/>*)

= (¿m - 1, a - bp'-(m'r\ a - bp'),

(pm — 1, a — ô/>*, a - ¿»/>r+>) = (pm - 1, p'b(p(m'r) - Í), a - bp')

= (pm — 1, a - bp'+<-m-r), a — bp').

It follows from (13.3) that the 1(1 —1)/2 least common multiples [o-„ o-t],

(s,t = l, • ■ • ,l;s<t), may be grouped into a certain number of sets such that

all the members of a set are equal to one another.* For example, if I = 6, k = 2,

we find that the fifteen least common multiples are grouped into six sets:

[ffi, <r2] =  [<r2, <r3] =  [<r3, <r4] =  [<r4, o-6] =  [o-5, ffe] =  [ffi, <r6];

[«■i, ^3] =   [ffi, os] =   [<r3, ff6]; [cr2, 0-4] =   [0-4, tre] =   [<T2, tre];

[0-1,0-4];      [02,05];      [o3, o6].

The case when there is only one such set is of particular interest on ac-

count of the following easily proved theorem :

Theorem 13.2. // all of the 1(1 —1)/2 least common multiples [<r„ <r,] are

equal to one another, then if there is more than one rank of apparition of p in

(R), the rank of p in (R) is the least common multiple of the two smallest at.

If the smallest <rt divides the next smallest, there is only one rank of apparition.]

* But not necessarily unequal to least common multiples in other sets.

t It must not be supposed that there are at most two ranks of apparition. For instance if 1 = 3,

we might conceivably have <ri = 6, <r2= 10, <r3= 15. The least common multiples \a„ at] then equal 30.
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It can be shown from (13.3) by a simple enumeration that the hypothesis

of the theorem is satisfied ii 1 = 2, 3 or 5; / = 6 and k=0 (mod 4); 1 = 7 and

/MO (mod 60).
14. If we raise the congruence an=ßp'n (mod p) to the p'th and ^>*th

powers successively, we obtain aip~1)n = l (mod p), ßp'lp _1>n = l (mod p).

Hence if Xi and X2 denote the periods of /(at) and g{x),

n m 0 {modXilp1 - 1),        n m 0 (mod \2.pk - 1),

where we are using the notation already employed in §12 for residuals.

NowXi:/>'-l=Xi:(Xi, />i-l)=X1:(Xi, pk-\, Pl-1) since Xi divides pk-\.

But {pk-\, pl-\)=p<-k-»-\. Hence Xi^'-l =Xi:/><*-»-l. Similarly

\i'.pk-l=\2:p(k-l)-i. Hence n=0 (mod [Xi:/»(*-«-l, X2:/>(*-')-l]) or

(14.1) » = 0 (mod [Xi, X,]:^<*.» - 1).

(14.1) gives us a /ower fc'm¿í for every rank of apparition a of p in (2?) in

terms of the periods of the generators of {R). An upper limit may be obtained

as follows :

If jui, ju2 denote the restricted periods of /(at) and g{x) respectively; then

ai  = a2  = ■ ■ ■ ^ ak = a (mod p),       ßi m ßt m • • • m ßfm b (mod p),

where a and b are rational integers. Then if <p is the least positive value of x

such that ax = bx (mod p), every other such x is easily shown to be divisible

by (p. Now <p as a divisor of /> — 1 is relatively prime to the restricted periods

Pi and p2 (Ward [5]) and hence relatively prime to their least common multi-

ple [fii, P2]. It readily follows that the least positive value of n such that

(14.2) a? ■ ai - • • • ■ akn m ß? m ßf m . . • m /3,» (mod p)

is p=4> [ßi, p2]. Every other such n is divisible by p. Since (14.2) is satisfied for

n= [Xi, X2] we see that <f>\ [Xi, X2]/[/ii, p2].

It is now easy to show (compare M. Hall [l ] or Ward [2]) that every rank

of apparition of p in {R) divides p. We thus obtain the following theorem :

Theorem 14.1. Let the generators of {R) be irreducible modulo p with de-

grees k and I and with periods and restricted periods Xi, pi and X2, p2 respectively.

Then for every rank of apparition a of p in {R),

(14.3) [Xi,X2]:(^*>-l)

divides a; a divides <p[pi, jug]. Here <j> divides [\,, ^2]/[pi, M2], and p=<p[pi, P2]

is the least positive value of n such that the congruence (14.2) holds.

In particular if / and k are co-prime, [Xi, X2] :/>(i'*) — 1 = [fii, p2]. Hence if a

is a rank of apparition of p so that a^^ßf (mod p), (14.3) implies that p

divides a.
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Theorem 14.2. If the generators of (R) are irreducible modulo p and if their

degrees are relatively prime, there is only one rank of apparition of p in (R). This

rank is the least positive value of n such that the congruence (14.2) holds, and it is

a multiple of the least common multiple of the restricted periods of the generators

of (R), and a divisor of the least common multiple of their periods.

IV. Applications to general Lucasian sequences

15. We shall now prove Theorem 2.1 of the introduction. Let (u):

«o, «i, m2, • • • be a Lucasian sequence belonging to the polynomial

f(x) =xk— ■ ■ ■ —ck = (x—oii) ■ ■ ■ (x — ak), and let p be any prime dividing

neither its constant term* ck nor its discriminant D = Df= ±XT»<?(«< — a,)2.

Let Ê now denote the galois field of the roots of f(x) =0 and p a prime

ideal divisor of p in $. Then the general term un of (m) is of the form

un = Aia-i" + • ■ • + Akakn ,

where DAU ■ ■ ■ Dkk are integers of $, so that Ai, • • • , Ak are integers

modulo p. Since (u) is a divisibility sequence, un = 0 (mod p) if and only if

Aic*rn + A2a2mn + • • • + Akakmn = 0 (mod p), m = 1, 2, • ■ ■ , k.

Thus the determinant of this system of congruences must be divisible by p.

This determinant may be written cknY[i<,-(o!i — o¿¡)Un. Since p is prime to the

first two terms, Un = 0 (mod p) so that £7„ = 0 (mod p). Hence every place of

apparition of p in (u) is also a place of apparition of p in (U).

16. Suppose that the k (not necessarily distinct) wth powers of the roots

of/(s) =0 are grouped modulo p into / incongruent sets:

(16.1) ah = anh= ■ ■ ■ = anit. = f,- (mod p), i = 1,2, ■ ■ ■ ,t,

fi ^ f,- (mod p)    if    Í9*j¡    Si + s2 + ■ ■ ■ + St = k.

Furthermore let

(16.2) Ai = Ah + Ai, -I-+A,-.., i-1, 2, ••-,*.

Theorem 16.1. Any prime p which does not divide the discriminant of f(x)

divides a term un of the Lucasian sequence (u) belonging to f(x) if and only if

Ai = 0(modp), (» = 1, 2, • • • ,t).

Here Ai is given by formulas (16.1), (16.2)f and p is any prime ideal divisor of p

in the Galois field of the roots of f(x) =0.

* If we are willing to assume that «o=0, we may dispense with this first assumption. Marshall

Hall [l] has shown that «o is usually zero.

t The groupings of the roots in (16.1) depend of course on our choice of p.
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Proof. See Ward [2], pp. 284-285.

We may make this result more explicit by the use of Schatanovski's prin-

ciple. Suppose that the decomposition of/(at) modulo p is

fix) = /i(x)/2(x) • • • fix) (mod p),

where/¿(at) is primary and irreducible modulo p and of degree ki, and let the

rootsof/i(x)=0 be7i(*',,72(,'), • • • ,7*/°.

Then by Schatanovski's principle

Un  =  Un      +  M„      +•■•+«„      (mod p) ,

where

un   = Ti {tí  }   + • ■ • + r*,. {t*, }

satisfies the difference equation associated with/(i,(at) and

r¿   = «(?; )// (t¿ )

(Ward [2], p. 283).

Construct the galois field 2 = dt (yi(1), • • • , ykr( r) ), and let 3DÍ be the ring

of integers of ?. Then as in §10, p is a prime ideal of 2, for ^ is prime to the

discriminants and resultants of all the /,(x). Furthermore the ring 8/ [p ] is a

finite field of order pH where u = \ki, k2, ■ ■ ■ ,kr].

Suppose that in 90? the wth powers of the roots of/i(x) =0,- • -,/r(x)=0are

grouped modulo p into in congruent sets as in (16.1) so that we have, omitting

subscripts,

(16.3) {7Ci)}n =  {7(;)}n (mod p)t ijéj.

Then we deduce as in §14 that

(16.4) n = 0 (mod [\(i), X(,)]:¿(**-*í5 - 1).

Here X(i) and X(,) are the periods of/(i)(x) and/(i)(at) modulo p, and ki and k¡

their degrees.

In particular, if {ki, ¿,.)«1, then [X<0, \u>]'.p(*i>*fl-l** \p<0,nlf>], where

/x(i) and pU) are the restricted periods of /(i)(at) and/('É)(at). Now ^t(i) divides

pk<-l/p-l,p(i) dividespk>-l/p-l, and

/P*<-1   Pk> - 1\ = j

\# - i ' # - 1/

Hence we obtain from (16.4) the following theorem:
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Theorem 16.2. // the degrees of f(i)(x) and f(i)(x) are relatively prime to

one another, then the congruence (16.3) can hold if and only ifnis divisible by the

product of the restricted periods offii)(x) andfU)(x).

In the simple case when/(s) is irreducible modulo p, we easily find as in

§12 that un=0 (mod p) only if »=0 (mod \:pd — 1).* Here d is some divisor

of k and X is the period of f(x). In particular then if k is a prime number,

there is only one rank of apparition of p in (u), the restricted period of (m).

It seems unprofitable to investigate the law of apparition in general

Lucasian sequences in very much greater detail until it is definitely known

whether or not Lucasian sequences exist which cannot be exhibited as di-

visors of P-sequences.
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